S-Triggered Schmidt-type Rearrangement of Vinyl Azides

to Access N-Aryl-(trifluoromethylsulfinyl)acetamides

Zhenhua Liu,^a Tian Yu,^a Longhua Li,^a Wei Fu,^b Xingxing Gan,^a Huimin Chen,^a Wen Gao^{*a} and Bo Tang^{*a}

^aCollege of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P. China

^bDepartment of Pharmacy, Zibo Central Hospital, Zibo 255000, P. R. China.

E-mail: gaowen@sdnu.edu.cn; tangb@sdnu.edu.cn

Contents

I. General information	S3
II. Optimization of ligands	
III. Synthesis and analytical data of compounds 2	S4-S13
IV. Crystallography of compoud 2b	
V. NMR spectra copies	S15-S41

I. General information

All reagents were purchased from commercial sources and used without treatment, unless otherwise indicated. The products were purified by column chromatography over silica gel. ¹H NMR, ¹³C NMR and ¹⁹F spectra were recorded at 298 K on a Varian 400 MHz, 100 MHz and 376 MHz, respectively, and TMS was used as internal standard. Mass spectra were recorded on Bruker Avance III HD 400M NMR Spectrometer. High resolution mass spectra (HRMS) were recorded on Bruker microTof by using ESI method.

II. Optimization of ligands

$ \begin{array}{c} & \overset{N_3}{\longleftarrow} + & CF_3SO_2Na \end{array} \xrightarrow{\begin{array}{c} Cat. (0.02 \text{ eq.}) \\ BTC (1.0 \text{ eq.}) \\ \hline \text{ligand } (1.0 \text{ eq.}) \\ CH_3CN, r.t. \end{array}} \xrightarrow{\begin{array}{c} Cat. (0.02 \text{ eq.}) \\ BTC (1.0 \text{ eq.}) \\ H \end{array}} \xrightarrow{\begin{array}{c} O \\ S \\ CF_3 \end{array}} \xrightarrow{\begin{array}{c} O \\ S \\ CF_3 \end{array}} \xrightarrow{\begin{array}{c} CF_3 \end{array}} $			
	1a	2a	
Entry	Cat.	ligand	Yield/% ^a
1	Pd(PPh ₃) ₄	PPh ₃	0
2	Pd(PPh ₃) ₄	Na ₂ CO ₃	0
3	Pd(PPh ₃) ₄	1,10-phen	10
4	Pd(PPh ₃) ₄	EDTA	0
5	Pd(PPh ₃) ₄	PMDETA	0
6	Pd(PPh ₃) ₄	DBU	0
7	Pd(PPh ₃) ₄	TMEDA	0
8	Pd(PPh ₃) ₄	pyridine	15
9	Pd(PPh ₃) ₄	DMAP	trace
10	$Pd(PPh_2)_4$	4 4'-bipyridine	20

^aConditions: **1a** (0.5 mmol), CF₃SO₂Na (0.75 mmol), BTC (0.5 mmol), ligand (0.5 mmol), Pd(PPh₃)₄ (0.01 mmol), CH₃CN (2 mL) at r.t. under Ar for 3 h; Yields of isolated products. EDTA = ethylenediaminetetraacetic acid; PMDETA = N,N,N',N'',N''-pentamethyldiethylenetriamine; DMAP = 4-dimethylaminopyridine; DBU=1,8-diazabicyclo[5,4,0]undec-7-ene; TMEDA = N,N,N',N'-tetramethylethylenediamine.

II. Synthesis and analytical data of compounds 2

Genernal procedure: Under argon atmosphere, sodium trifluoromethanesulfinate (117.0 mg, 0.75 mmol, 1.5 eq.), triphosgene (BTC) (148.4 mg, 0.5 mmol, 1.0 eq.), 2,2'-bipyridine (78.1 mg, 0.5 mmol, 1.0 eq.), Pd(PPh₃)₄ (11.6 mg, 0.01 mmol, 0.02 eq.) were added in an oven-dried 15 mL Schlenk tube with 1 mL CH₃CN, then vinyl azide 1 (78.0 μ L, 0.5 mmol, 1.0 eq.) in 1 mL CH₃CN was added in the above mixed solution. The reaction mixture was then stirred for 3 h at room temperature when TLC conformed that substrate 1 had been consumed. The reaction was followed by adding 30 mL H₂O and taken up with dichloromethane (3×15 mL). The combined organic layer was washed with brine (3×40 mL), dried over MgSO₄ and concentrated under reduced pressure.The residue was purified by a silica gel column chromatography (petroleum ether/ethyl acetate) and the target product was afforded.

(2a) 0.5 mmol scale: Prepared following the genernal procedure showed above using (1-azidovinyl)benzene (72.5 mg, 0.5 mmol, 1.0 eq.), sodium trifluoromethanesulfinate (117.0 mg, 0.75 mmol, 1.5 eq.), BTC (148.4 mg, 0.5 mmol, 1.0 eq.), 2,2'-bipyridine (78.1 mg, 0.5 mmol, 1.0 eq.), Pd(PPh₃)₄ (11.6 mg, 0.01 mmol, 0.02 eq.), The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=3:1) as white solid (103.0 mg, 82%); ¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 7.53-7.47 (m, 2H), 7.38-7.30 (m, 2H), 7.22-7.13 (m, 1H), 3.94 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 159.8, 136.7, 129.2, 125.5, 125.1 (q, *J* = 334.8 Hz), 120.4, 53.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -71.96; HRMS (ESI-TOF) m/z calculated for C₉H₈F₃NO₂SNa [M+Na]⁺: 274.0126, found: 274.0135.

(2b) 0.5 mmol scale: Prepared following the genernal procedure showed above using 1-(1-azidovinyl)-4-methylbenzene (79.5 mg, 0.5 mmol, 1.0 eq.), sodium trifluoromethyl sulfonate (117.0 mg, 0.75 mmol, 1.5 eq.), BTC (148.4 mg, 0.5 mmol, 1.0 eq.), 2,2'-bipyridine (78.1 mg, 0.5 mmol, 1.0 eq.), Pd(PPh₃)₄ (11.6 mg, 0.01 mmol, 0.02 eq.), The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=3:1) as white solid (116.7 mg, 88%); ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 7.39-7.33 (m, 2H), 7.15-7.08 (m, 2H), 3.99-3.88 (m, 2H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.7, 135.2, 134.2, 129.6, 125.1 (q, *J* = 333.8 Hz), 120.4, 53.4, 20.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -72.06 ; HRMS (ESI-TOF) m/z calculated for C₁₀H₁₀F₃NO₂SNa [M+Na]⁺: 288.0282, found: 288.0289.

(2c) 0.5 mmol scale: Prepared following the general procedure showed above using 1-(1-azidovinyl)-4-ethylbenzene (86.5 mg, 0.5 mmol, 1.0 eq.), sodium trifluoromethanesulfinate (117.0 mg, 0.75 mmol, 1.5 eq.), BTC (148.4 mg, 0.5 mmol, 1.0 eq.), 2,2'-bipyridine (78.1 mg, 0.5 mmol, 1.0 eq.), Pd(PPh₃)₄ (11.6 mg, 0.01 mmol, 0.02 eq.), The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=3:1) as white solid (117.3 mg, 84%); ¹H NMR (400 MHz, CDCl₃) δ 8.17 (s, 1H), 7.43-7.35 (m, 2H), 7.18-7.12 (m, 2H), 3.99-3.88 (m, 2H), 2.66-2.55 (m, 2H), 1.21 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.7, 141.7, 134.3, 128.5, 125.1 (q, J = 328.5 Hz), 120.5, 53.7, 28.4, 15.6; ¹⁹F NMR (376) MHz, CDCl₃) δ -72.04; HRMS (ESI-TOF) m/z calculated for C₁₁H₁₂F₃NO₂SNa [M+Na]⁺: 302.0439, found: 302.0432.

(2d) 0.5 mmol scale: Prepared following the genernal procedure showed above using 1-(1-azidovinyl)-4-propylbenzene (93.5 mg, 0.5 mmol, 1.0 eq.), sodium trifluoromethanesulfinate (117.0 mg, 0.75 mmol, 1.5 eq.), BTC (148.4 mg, 0.5 mmol, 1.0 eq.), 2,2'-bipyridine (78.1 mg, 0.5 mmol, 1.0 eq.), Pd(PPh₃)₄ (11.6 mg, 0.01 mmol, 0.02 eq.), The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=3:1) as white solid (126.1 mg, 86%); ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 1H), 7.42-7.36 (m, 2H), 7.17-7.11 (m, 2H), 3.98-3.88 (m, 2H), 2.61-2.51 (m, 2H), 1.66-1.59 (m, 2H), 0.93 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.6, 140.1, 134.3, 129.1, 125.1 (q, *J* = 325.6 Hz), 120.4, 53.6, 37.5, 24.5, 13.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -72.08; HRMS (ESI-TOF) m/z calculated for C₁2H₁₄F₃NO₂SNa [M+Na]⁺: 316.0595, found: 316.0592.

(2e) 0.5 mmol scale: Prepared following the genernal procedure showed above using 1-(1-azidovinyl)-4-pentylbenzene (107.5 mg, 0.5 mmol, 1.0 eq.), sodium trifluoromethanesulfinate (117.0 mg, 0.75 mmol, 1.5 eq.), BTC (148.4 mg, 0.5 mmol, 1.0 eq.), 2,2'-bipyridine (78.1 mg, 0.5 mmol, 1.0 eq.), Pd(PPh₃)₄ (11.6 mg, 0.01 mmol, 0.02 eq.), The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=3:1) as white solid (121.9 mg, 78%); ¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 7.38-7.34 (m, 2H), 7.12-7.07 (m, 2H), 4.04-3.87 (m, 2H), 2.64-2.48 (m, 2H), 1.65-1.52 (m, 2H), 1.35-1.27 (m, 4H), 0.89 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.8, 140.3, 134.3, 129.0, 125.2 (q, *J* = 338.1 Hz), 120.4, 54.2, 35.4, 31.4, 31.1, 22.5, 14.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -72.12; HRMS (ESI-TOF) m/z calculated for C₁₄H₁₈F₃NO₂SNa [M+Na]⁺: 344.0908, found: 344.0912.

(2f) 0.5 mmol scale: Prepared following the genernal procedure showed above using 1-(1-azidovinyl)-4-hexylbenzene (114.5 mg, 0.5 mmol, 1.0 eq.), sodium trifluoromethanesulfinate (117.0 mg, 0.75 mmol, 1.5 eq.), BTC (148.4 mg, 0.5 mmol, 1.0 eq.), 2,2'-bipyridine (78.1 mg, 0.5 mmol, 1.0 eq.), Pd(PPh₃)₄ (11.6 mg, 0.01 mmol, 0.02 eq.), The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=3:1) as white solid (130.7 mg, 78%); ¹H NMR (400 MHz, CDCl₃) δ 8.43 (s, 1H), 7.37-7.30 (m, 2H), 7.12-7.04 (m, 2H), 4.07-3.87 (m, 2H), 2.64-2.48 (m, 2H), 1.62-1.51 (m, 2H), 1.34-1.24 (m, 6H), 0.95-0.85 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.8, 140.3, 134.3, 128.9, 125.2 (q, *J* = 329.7 Hz), 120.4, 54.4, 35.4, 31.7, 31.4, 28.9, 22.6, 14.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -72.22; HRMS (ESI-TOF) m/z calculated for C₁₅H₂₀F₃NO₂SNa [M+Na]⁺: 358.1065, found: 358.1067.

(2g) 0.5 mmol scale: Prepared following the genernal procedure showed above using 4-iso-propyl phenylenyl azide (93.5 mg, 0.5 mmol, 1.0 eq.), sodium trifluoromethanesulfinate (117.0 mg, 0.75 mmol, 1.5 eq.), BTC (148.4 mg, 0.5 mmol, 1.0 eq.), 2,2'-bipyridine (78.1 mg, 0.5 mmol, 1.0 eq.), Pd(PPh₃)₄ (11.6 mg, 0.01 mmol, 0.02 eq.), The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=3:1) as white solid (123.2 mg, 84%); ¹H NMR (400 MHz, CDCl₃) δ 8.25 (s, 1H), 7.41-7.35 (m, 2H), 7.20-7.15 (m, 2H), 4.02-3.88 (m, 2H), 2.93-2.82 (m, 1H), 1.22 (d, *J* = 6.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 159.7, 146.2, 134.4, 127.0, 125.1 (q, *J* = 335.8 Hz), 120.5, 53.9, 33.6, 23.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -72.11; HRMS (ESI-TOF) m/z calculated for C₁₂H₁₄F₃NO₂SNa [M+Na]⁺: 316.0595, found: 316.0605.

(2h) 0.5 mmol scale: Prepared following the genernal procedure showed above using 1-(1-azidovinyl)-4-(tert-butyl)benzene (100.5 mg, 0.5 mmol, 1.0 eq.), sodium trifluoromethanesulfinate (117.0 mg, 0.75 mmol, 1.5 eq.), BTC (148.4 mg, 0.5 mmol, 1.0 eq.), 2,2'-bipyridine (78.1 mg, 0.5 mmol, 1.0 eq.), Pd(PPh₃)₄ (11.6 mg, 0.01 mmol, 0.02 eq.), The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=3:1) as white solid (124.5 mg, 81%); ¹H NMR (400 MHz, CDCl₃) δ 8.35 (s, 1H), 7.42-7.36 (m, 2H), 7.35-7.30 (m, 2H), 4.03-3.87 (m, 2H), 1.29 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 159.8, 148.5, 134.1, 125.9, 125.1 (q, *J* = 333.5 Hz), 120.2, 54.3, 34.5, 31.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -72.09; HRMS (ESI-TOF) m/z calculated for C₁₃H₁₆F₃NO₂SNa [M+Na]⁺: 330.0752, found: 330.0756.

(2i) 0.5 mmol scale: Prepared following the genernal procedure showed above using 1-(1-azidovinyl)-4-fluorobenzene (81.5 mg, 0.5 mmol, 1.0 eq.), sodium trifluoromethanesulfinate (117.0 mg, 0.75 mmol, 1.5 eq.), BTC (148.4 mg, 0.5 mmol, 1.0 eq.), 2,2'-bipyridine (78.1 mg, 0.5 mmol, 1.0 eq.), Pd(PPh₃)₄ (11.6 mg, 0.01 mmol, 0.02 eq.), The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=3:1) as white solid (98.3 mg, 73%); ¹H NMR (400 MHz, CDCl₃) δ 8.33 (s, 1H), 7.49-7.38 (m, 2H), 7.03-6.95 (m, 2H), 4.03-3.88 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 160.7, 159.3 (d, *J* = 247.7 Hz), 133.9, 125.5 (q, *J* = 334.6 Hz), 121.6 (d, *J* = 8.9 Hz), 115.4 (d, *J* = 22.3 Hz), 56.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -71.89, -116.18; HRMS (ESI-TOF) m/z calculated for C₉H₇F₄NO₂SNa [M+Na]⁺: 292.0031, found: 292.0006.

(2j) 0.5 mmol scale: Prepared following the genernal procedure showed above using 1-(1-azidovinyl)-4-chlorobenzene (89.5 mg, 0.5 mmol, 1.0 eq.), sodium trifluoromethanesulfinate (117.0 mg, 0.75 mmol, 1.5 eq.), BTC (148.4 mg, 0.5 mmol, 1.0 eq.), 2,2'-bipyridine (78.1 mg, 0.5 mmol, 1.0 eq.), Pd(PPh₃)₄ (11.6 mg, 0.01 mmol, 0.02 eq.), The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=3:1) as white solid (112.8 mg, 79%); ¹H NMR (400 MHz, CDCl₃) δ 8.43 (s, 1H), 7.43-7.37 (m, 2H), 7.28-7.22 (m, 2H), 4.10-3.80 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 159.8, 135.3, 130.5, 129.1, 125.0 (q, *J* = 326.1 Hz), 121.4, 53.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -71.86; HRMS (ESI-TOF) m/z calculated for C₉H₇ClF₃NO₂SNa [M+Na]⁺: 307.9736, found: 307.9713.

(2k) 0.5 mmol scale: Prepared following the genernal procedure showed above using 1-(1-azidovinyl)-4-bromobenzene (111.5 mg, 0.5 mmol, 1.0 eq.), sodium trifluoromethanesulfinate (117.0 mg, 0.75 mmol, 1.5 eq.), BTC (148.4 mg, 0.5 mmol, 1.0 eq.), 2,2'-bipyridine (78.1 mg, 0.5 mmol, 1.0 eq.), Pd(PPh₃)₄ (11.6 mg, 0.01 mmol, 0.02 eq.), The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=3:1) as white solid (125.4 mg, 76%); ¹H NMR (400 MHz, CDCl₃) δ 8.37 (s, 1H), 7.45-7.35 (m, 4H), 4.01-3.88 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 159.8, 135.8, 132.1, 125.0 (q, *J* = 334.8 Hz), 121.8, 118.2, 53.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -71.81; HRMS (ESI-TOF) m/z calculated for C₉H₇BrF₃NO₂SNa [M+Na]⁺: 351.9231, found: 351.9209.

(21) 0.5 mmol scale: Prepared following the genernal procedure showed above using 1-(1-azidovinyl)-3-methylbenzene (79.5 mg, 0.5 mmol, 1.0 eq.), sodium trifluoromethanesulfinate (117.0 mg, 0.75 mmol, 1.5 eq.), BTC (148.4 mg, 0.5 mmol, 1.0 eq.), 2,2'-bipyridine (78.1 mg, 0.5 mmol, 1.0 eq.), Pd(PPh₃)₄ (11.6 mg, 0.01 mmol, 0.02 eq.), The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=3:1) as white solid (108.8 mg, 82%);¹H NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 7.35-7.24 (m, 2H), 7.22-7.15 (m, 1H), 7.00-6.93 (m, 1H), 4.02-3.88 (m, 2H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.8, 139.1, 136.6, 128.9, 126.3, 125.0 (q, *J* = 331.0 Hz), 121.0, 117.4, 54.0, 21.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -72.02; HRMS (ESI-TOF) m/z calculated for C₁₀H₁₀F₃NO₂SNa [M+Na]⁺ : 288.0282, found: 288.0279.

(2m) 0.5 mmol scale: Prepared following the genernal procedure showed above using 1-(1-azidovinyl)-3-ethylbenzene (86.5 mg, 0.5 mmol, 1.0 eq.), sodium trifluoromethanesulfinate (117.0 mg, 0.75 mmol, 1.5 eq.), BTC (148.4 mg, 0.5 mmol, 1.0 eq.), 2,2'-bipyridine (78.1 mg, 0.5 mmol, 1.0 eq.), Pd(PPh₃)₄ (11.6 mg, 0.01 mmol, 0.02 eq.), The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=3:1) as white solid (115.9 mg, 83%); ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.36-7.30 (m, 2H), 7.27-7.21 (m, 1H), 7.04-6.98 (m, 1H), 3.93 (s, 2H), 2.69-2.58 (m, 2H), 1.23 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.7, 145.6, 136.7, 129.1, 125.2 (q, *J* = 339,1 Hz), 125.1, 119.9, 117.8, 53.4, 28.8, 15.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -72.05; HRMS (ESI-TOF) m/z calculated for C₁₁H₁₂F₃NO₂SNa [M+Na]⁺: 302.0439, found: 302.0427.

(2n) 0.5 mmol scale: Prepared following the genernal procedure showed above using 1-(1-azidovinyl)-3-isopropylbenzene (93.5 mg, 0.5 mmol, 1.0 eq.), sodium trifluoromethanesulfinate (117.0 mg, 0.75 mmol, 1.5 eq.), BTC (148.4 mg, 0.5 mmol, 1.0 eq.), 2,2'-bipyridine (78.1 mg, 0.5 mmol, 1.0 eq.), Pd(PPh₃)₄ (11.6 mg, 0.01 mmol, 0.02 eq.), The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=3:1) as white solid (118.8 mg, 81%); ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 7.37-7.31 (m, 2H), 7.26-7.20 (m, 1H), 7.06-6.99 (m, 1H), 4.01-3.88 (m, 2H), 2.93-2.82 (m, 1H), 1.23 (d, *J* = 6.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 159.7, 150.2, 136.7, 129.1, 125.1 (q, *J* = 333.6 Hz), 123.6, 118.5, 117.9, 53.8, 34.1, 23.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -72.12; HRMS (ESI-TOF) m/z calculated for C₁₂H₁₄F₃NO₂SNa [M+Na]⁺: 316.0595, found: 316.0604.

(20) 0.5 mmol scale: Prepared following the genernal procedure showed above using 1-(1-azidovinyl)-3-(tert-butyl)benzene (100.5 mg, 0.5 mmol, 1.0 eq.), sodium trifluoromethanesulfinate (117.0 mg, 0.75 mmol, 1.5 eq.), BTC (148.4 mg, 0.5 mmol, 1.0 eq.), 2,2'-bipyridine (78.1 mg, 0.5 mmol, 1.0 eq.), Pd(PPh₃)₄ (11.6 mg, 0.01 mmol, 0.02 eq.), The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=3:1) as white solid (122.9 mg, 80%); ¹H NMR (400 MHz, CDCl₃) δ 8.16 (s, 1H), 7.45-7.42 (m, 1H), 7.41-7.35 (m, 1H), 7.30-7.22 (m, 1H), 7.21-7.17 (m, 1H), 4.01-3.88 (m, 2H), 1.30 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 159.7, 152.5, 136.5, 128.8, 125.2 (q, *J* = 330.6 Hz), 122.6, 117.7, 117.5, 53.8, 34.8, 31.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -72.13; HRMS (ESI-TOF) m/z calculated for C₁₃H₁₆F₃NO₂SNa [M+Na]⁺: 330.0752, found: 330.0747.

(2p) 0.5 mmol scale: Prepared following the genernal procedure showed above using 1-(1-azidovinyl)-3-fluorobenzene (81.5 mg, 0.5 mmol, 1.0 eq.), sodium trifluoromethanesulfinate (117.0 mg, 0.75 mmol, 1.5 eq.), BTC (148.4 mg, 0.5 mmol, 1.0 eq.), 2,2'-bipyridine (78.1 mg, 0.5 mmol, 1.0 eq.), Pd(PPh₃)₄ (11.6 mg, 0.01 mmol, 0.02 eq.), The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=3:1) as white solid (114.4 mg, 85%); ¹H NMR (400 MHz, CDCl₃) δ 8.57 (s, 1H), 7.45-7.35 (m, 1H), 7.26-7.17 (m, 1H), 7.12-7.05 (m, 1H), 6.88-6.79 (m, 1H), 4.08-3.90 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 162.8 (d, *J* = 241.9 Hz), 160.9, 139.3 (d, *J* = 11.4 Hz), 130.1 (d, *J* = 18.8 Hz), 125.1 (q, *J* = 339.7 Hz), 115.3, 111.4 (d, *J* = 19.5 Hz), 107.4 (d, *J* = 23.1 Hz), 56.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -71.79, -110.86; HRMS (ESI-TOF) m/z calculated for C₉H₇F₄NO₂SNa [M+Na]⁺: 292.0031, found: 292.0009.

(2q) 0.5 mmol scale: Prepared following the genernal procedure showed above using 4-(1-azidovinyl)-1,2-dimethylbenzene (86.5 mg, 0.5 mmol, 1.0 eq.), sodium trifluoromethanesulfinate (117.0 mg, 0.75 mmol, 1.5 eq.), BTC (148.4 mg, 0.5 mmol, 1.0 eq.), 2,2'-bipyridine (78.1 mg, 0.5 mmol, 1.0 eq.), Pd(PPh₃)₄ (11.6 mg, 0.01 mmol, 0.02 eq.), The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=3:1) as white solid (113.1 mg, 81%); ¹H NMR (400 MHz, CDCl₃) δ 8.09 (s, 1H), 7.26-7.19 (m, 2H), 7.11-7.05 (m, 1H), 3.98-3.86 (m, 2H), 2.23 (d, *J* = 5.2 Hz, 6H).¹³C NMR (100 MHz, CDCl₃) δ 159.6, 137.5, 134.4, 134.0, 130.1, 125.1 (q, *J* = 327.8 Hz), 121.7, 118.0, 53.6, 19.8, 19.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -72.13; HRMS (ESI-TOF) m/z calculated for C₁₁H₁₂F₃NO₂SNa [M+Na]⁺: 302.0439, found: 302.0426.

(2r) 0.5 mmol scale: Prepared following the genernal procedure showed above using 1-(1-azidovinyl)-3,5-dimethylbenzene (86.5 mg, 0.5 mmol, 1.0 eq.), sodium trifluoromethanesulfinate (117.0 mg, 0.75 mmol, 1.5 eq.), BTC (148.4 mg, 0.5 mmol, 1.0 eq.), 2,2'-bipyridine (78.1 mg, 0.5 mmol, 1.0 eq.), Pd(PPh₃)₄ (11.6 mg, 0.01 mmol, 0.02 eq.), The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=3:1) as white solid (114.5 mg, 82%); ¹H NMR (400 MHz, CDCl₃) δ 8.02 (s, 1H), 7.13 (s, 2H), 6.81 (s, 1H), 3.91 (s, 2H), 2.30 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 143.2, 142.4, 131.1, 127.0 (q, *J* = 363.7 Hz), 122.4, 61.1, 26.1, 23.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -72.00; HRMS (ESI-TOF) m/z calculated for C₁₁H₁₂F₃NO₂SNa [M+Na]⁺: 302.0439, found: 302.0423.

IV. Crystallography of compound 2b

Single-crystal X-ray diffraction data for the reported complex was recorded at a temperature of 293(2) K on a Oxford Diffraction Gemini R Ultra diffractometer, using a ω scan technique with Mo-K α radiation ($\lambda = 0.71073$ Å). The structure was solved by Direct Method of SHELXS-97 and refined by full-matrix least-squares techniques using the SHELXL-97 program.1 Non-hydrogen atoms were refined with anisotropic temperature parameters, and hydrogen atoms of the ligands were refined as rigid groups. Basic information pertaining to crystal parameters and structure refinement is summarized in Table 1. 1 (a) G. M. Sheldrick, SHELXS-97, Program for Solution of Crystal Structures, University of Gottingen, Germany, 1997; (b) G. M. Sheldrick, SHELXL-97, Program for Refinement of Crystal Structures, University of Gottingen, Germany, 1997.

Table 1. Crystal data and structure refinement.

Empirical formula	C ₁₀ H ₁₀ F ₃ NO ₂ S	
Temperature	293(2) K	
Wavelength	1.54178 Å	
Unit cell dimensions	$a = 13.1954(9) \text{ Å}$ $alpha = 90.00 \circ$	
	$b = 10.2798(9) \text{ Å}$ $beta = 96.658(7) ^{\circ}$	
	c = 8.7100(8) Å gamma = 90.00 °	
Volume	1173.51(17) Å ³	
Z	4	
Calculated density	1.501 mg/mm ³	
Absorption coefficient	0.304 mm ⁻¹	
F(000)	544.0	
Crystal size	$0.24 \times 0.15 \times 0.07 \text{ mm}^3$	
Theta range for data	6.64 to 58.52°	
collection		
Reflections collected	7805	
/Independent reflections	$/2740 [R_{int} = 0.0276, R_{sigma} = 0.0329]$	
Data / restraints / parameters	2740 / 0 / 155	
Goodness-of-fit on F ²	1.051	
Final R indices	$R_1 = 0.0468, wR_2 = 0.1177$	
[I>2sigma(I)]		
Final R indices (all data)	$R_1 = 0.0647, wR_2 = 0.1349$	

2c CDCI₃ 400MHz

2e CDCI₃ 100MHz

-8.33 7.45 7.44 7.43 7.43 7.43 7.42 7.02 7.00 6.97

-0.00

2i CDCI₃ 400MHz

-0.00

2k CDCI₃ 400MHz

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

S38

2q CDCl₃ 400MHz

