# Blue Light Enhanced Heck Arylation at Room Temperature Applied to Allenes 

Polyssena Renzi, ${ }^{[a]}$ Emanuele Azzi, ${ }^{[a]}$ Enrico Bessone, ${ }^{[a]}$ Giovanni Ghigo, ${ }^{[a]}$ Stefano Parisotto, ${ }^{[a]}$ Francesco Pellegrino, ${ }^{[\text {a] }}$ Annamaria Deagostino*[a]

## Table of Contents

1. General ..... 3
2. Screening of reaction conditions ..... 4
2.1 Table S1: Thermal reactions ..... 4
2.2 Table S2: Base and Solvent Screening ..... 4
2.3 Table S3: Pd Catalyst Screening ..... 4
2.4 Table S4: Phosphine Screening ..... 4
2.5 Table S5 Screening of amount of catalyst, phosphine, base and 2 a ..... 5
3. Mechanistic Investigations ..... 6
3.1 Trapping Experiment with TEMPO ..... 6
3.2 Light/Dark experiment ..... 7
$3.3 \quad{ }^{31} \mathrm{P}-$ NMR analysis of the catalyst solution with and without illumination ..... 8
3.4 Electrochemical measurements ..... 11
3.5 Study on the stability of product 3 k ..... 12
4. Experimental Procedures ..... 13
4.1 General procedures for the synthesis of allenes $1 a-b$ ..... 13
4.3 General procedure for the synthesis of internal allenes $1 \mathrm{c}-\mathrm{d}^{[7]}$ ..... 16
4.4 General procedure for the photocatalysed reaction of allenes $1 \mathrm{a}, 1 \mathrm{~b}, 1 \mathrm{c}$ and 1 d ..... 17
4.4.1 Summary of halides employed in the reaction scope ..... 18
4.4.2 Characterization of vinyl pyrrolidine 3 ..... 19
4.4.3 Characterization of vinyl piperidines 5 ..... 28
4.4.4 Characterization of pyrrolidines 6-7 ..... 33
4.5 Characterization of dimer 4a ..... 37
4.6 Synthesis of compound 3 k in 1 mmol scale ..... 38
4.7 Procedure for the synthesis of compound 1a' ..... 39
References ..... 40
Copies of NMR spectra of starting materials and products ..... 41

## 1. General

Flasks and all equipment employed for moisture-sensitive reactions and compounds were dried by electric heat gun under $\mathrm{N}_{2}$. Analytical grade solvents were used as received. All commercially available reagents were used as received. Anhydrous solvents were purchased by Acros Organics or Sigma-Aldrich, or distilled according to the procedure reported by Armarego. ${ }^{[1]}$ Triflates were prepared according to the procedure reported by Uchiyama et al. ${ }^{[2]}$
Products were purified by preparative column chromatography on Sigma-Aldrich silica-gel for flash chromatography, 0.040 .063 $\mathrm{mm} / 230-400$ mesh. Reactions were monitored by TLC using silica-gel on TLC-PET foils Sigma Aldrich, $225 \mu \mathrm{~m}$, layer thickness 0.2 mm , medium pore diameter.
Photochemical reactions were carried out in a 10 ml Schlenk-tube. A Kessil Blue Lamp was used as the irradiation source, which emission band is centred at 450 nm with about 55 nm width to half height. The irradiation source was located at 4 cm from the reaction solution surface.
NMR spectra were recorded employing a Jeol ECZR instrument. ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ were recorded in $\mathrm{CDCl}_{3}$ or DMF-d7 at 600 MHz . ${ }^{13} \mathrm{C}$ NMR and ${ }^{31} \mathrm{P}$ NMR spectra were recorded in $\mathrm{CDCl}_{3}$ or DMF-d7 respectively at 150 MHz and 242.9 MHz . Chemical shifts were reported in ppm relative to the resonance of $\mathrm{CHCl}_{3}(\delta=7.26)$ for ${ }^{1} \mathrm{H}$ NMR, to the central peak of $\mathrm{CDCl}_{3}(\delta=77.0)$ for ${ }^{13} \mathrm{C}$ NMR, to $\mathrm{H}_{3} \mathrm{PO}_{4} 85 \%$ ( $\delta=$ 0.0 ) for ${ }^{31} \mathrm{P}$ NMR and to NaF for ${ }^{19} \mathrm{~F} .{ }^{13} \mathrm{C}$ NMR, ${ }^{31} \mathrm{P}$ and ${ }^{19} \mathrm{~F}$ spectra were measured with complete proton decoupling. DEPT experiments were carried out with a DEPT-135 sequence.
UV-vis spectra were carried out with a Varian Cary " 100 Scan" spectrophotometer. The extinctions were measured on freshly prepared and previously $\mathrm{N}_{2}$ sparged solutions. Optical path length: 1 cm . The solutions were stable during the timescales necessary for the measurements, and the results of repeated measures were reproducible.
Fluorescence emission spectra were collected with a Cary Eclipse Fluorescence Spectrophotometer, with excitation at 415 and 450 nm . Excitation and emission slits set both at 5 nm . Spectra were taken in a fluorescence fused silica cuvette with 1 cm optical path length.
IR spectra were recorded on a BrukerVertex 70 FT-IR.
The electrochemical measurements were performed using a standard photo-electrochemical setup, composed of a computer-controlled potentiostat, AUTOLAB PGSTAT12. The electrochemical cell was a conventional three-electrode cell with a 1 mm thick fused silica window. Cyclic Voltammetry (CV) was carried out in the following conditions:

- Electrodes: Pt (W), Glassy Carbon (A), Ag/AgCl/TEACI (C)
- $\quad 0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$ in DMF solution
- $\quad$ Scan Rate: $100 \mathrm{mV} \mathrm{s}^{-1}$
- Irradiation: KESSIL LAMP $1170 \mathrm{~W} \mathrm{~m}^{-2}$ and $\lambda=456 \mathrm{~nm}$
- Nitrogen Atmosphere

HRMS spectra were obtained on a mass selective detector Agilent 5970 B operating at an ionizing voltage of 70 eV connected to a HP 5890 GC equipped with a HP-1 MS capillary column ( 25 m length, 0.25 mm I.D., $0.33 \mu \mathrm{~m}$ film thickness). The MS flow-injection analyses were run on a high resolving power hybrid mass spectrometer (HRMS) Orbitrap Fusion (Thermo Scientific, Rodano, Italy) and a Bruker Daltonics microTOF Mass Spectrometer equipped with an h-ESI ion source. The samples were analysed in methanol or acetonitrile solution using a syringe pump at a flow rate of $10 \mu \mathrm{~L} / \mathrm{min}$. The tuning parameters adopted for the ESI source were as follows: source voltage 3.5 kV , RF lens $60 \%$ (positive ion mode $\mathrm{MH}^{+}$, $\mathrm{MNa}^{+}$); source voltage 2.5 kV , RF lens $60 \%$. The ion transfer tube was maintained at $270^{\circ} \mathrm{C}$. The mass accuracy of the recorded ions (vs the calculated ones) was $<5 \mathrm{ppm}$. Analyses were run using full $\mathrm{MS}(50-500 \mathrm{~m} / \mathrm{z}$ range) acquisition, at 240000 resolution ( $200 \mathrm{~m} / \mathrm{z}$ ).

## 2. Screening of reaction conditions



### 2.1 Table S1: Thermal reactions

| Entry | Pd catalyst | Phosphine | Base] | Solvent | T | $\mathbf{1 a}^{\text {a }}$ [\%] | $\mathbf{3 a}^{\text {a }}$ [\%] | $\mathbf{4 a}^{\text {a }}$ [\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | $\mathrm{Pd}(\mathrm{OAc})_{2}$ | $\mathrm{PPh}_{3}$ | $\mathrm{~K}_{2} \mathrm{CO}_{3}$ | DMF | $40^{\circ} \mathrm{C}$ | 0 | 34 | 4 |
| $\mathbf{2}$ | $\mathrm{Pd}(\mathrm{OAc})_{2}$ | $\mathrm{PPh}_{3}$ | $\mathrm{~K}_{2} \mathrm{CO}_{3}$ | DMF | $60^{\circ} \mathrm{C}$ | 0 | 45 | 4 |
| $\mathbf{3}$ | $\mathrm{Pd}(\mathrm{OAc})_{2}$ | $\mathrm{PPh}_{3}$ | $\mathrm{~K}_{2} \mathrm{CO}_{3}$ | DMF | $90^{\circ} \mathrm{C}$ | 0 | 46 | 5 |

Reactions conditions: $\mathbf{1 a}(0.2 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%), \mathrm{PPh}_{3}(10 \mathrm{~mol} \%)$ anhydrous $\mathrm{DMF}(5 \mathrm{~mL}), \mathrm{K}_{2} \mathrm{CO}_{3}(1.2 \mathrm{eq}), \mathbf{2 a}(1.5 \mathrm{eq})$ under irradiation with 456 nm light source - blue light. ${ }^{\text {a }}$ Determined on isolated product.

### 2.2 Table S2: Base and Solvent Screening

| Entry | Pd catalyst | Phosphine | Base] | Solvent | $1 \mathrm{a}^{\mathrm{a}}$ [\%] | $3 \mathrm{a}^{\mathrm{a}}$ [\%] | $4 \mathrm{a}^{\mathrm{a}}$ [\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathrm{Pd}(\mathrm{OAc})_{2}$ | $\mathrm{PPh}_{3}$ | KOH | DMF | 39 | 22 | 0 |
| 2 | $\mathrm{Pd}(\mathrm{OAc})_{2}$ | $\mathrm{PPh}_{3}$ | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ | DMF | 0 | 25 | 0 |
| 3 | $\mathrm{Pd}(\mathrm{OAc})_{2}$ | $\mathrm{PPh}_{3}$ | $\mathrm{Et}_{3} \mathrm{~N}$ | DMF |  | 0 | 14 |
| 4 | $\mathrm{Pd}(\mathrm{OAc})_{2}$ | $\mathrm{PPh}_{3}$ | AcOCs | DMF |  | 9 | 28 |
| 5 | $\mathrm{Pd}(\mathrm{OAc})_{2}$ | $\mathrm{PPh}_{3}$ | HCOONa | DMF |  | 11 | 28 |
| 6 | $\mathrm{Pd}(\mathrm{OAc})_{2}$ | $\mathrm{PPh}_{3}$ | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | DMSO | 89 | 2.4 | 0 |
| 7 | $\mathrm{Pd}(\mathrm{OAc})_{2}$ | $\mathrm{PPh}_{3}$ | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | DMA | 0 | 13 | 0 |

Reactions conditions: 1a ( 0.2 mmol ), $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%), \mathrm{PPh}_{3}(10 \mathrm{~mol} \%$ ) anhydrous solvent ( 5 mL ), base ( 1.2 eq ), 2a ( 1.5 eq ) under irradiation with 456 nm light source - blue light. ${ }^{\text {a }}$ Determined on isolated product.

### 2.3 Table S3: Pd Catalyst Screening

| Entry | Pd catalyst | Phosphine | Base] | Solvent | $1 \mathrm{a}^{\text {a }}$ [\%] | $3 \mathrm{a}^{\mathrm{a}}$ [\%] | 4a ${ }^{\text {a }}$ [\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathrm{PdCl}_{2}$ | $\mathrm{PPh}_{3}$ | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | DMF | 0 | 4 | 0 |
| 2 | $\mathrm{PdCl}_{2}$ | $\mathrm{PPh}_{3}$ | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | Toluene | 46 | 0 | 0 |
| 3 | $\mathrm{PdCl}_{2}$ | $\mathrm{PPh}_{3}$ | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | THF | 26 | 0 | 0 |
| 4 | $\mathrm{Pdl}_{2}$ | $\mathrm{PPh}_{3}$ | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | DMF | 0 | traces | 0 |
| 5 | $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ | $\mathrm{PPh}_{3}$ | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | DMF | 100 | 0 | 0 |
| 6 | $\mathrm{Pd}(\mathrm{dba})_{2}$ | $\mathrm{PPh}_{3}$ | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | DMF | 35 | 0 | 24 |

Reactions conditions: $\mathbf{1 a}$ ( 0.2 mmol ), Pd source ( $5 \mathrm{~mol} \%$ ), $\mathrm{PPh}_{3}$ ( $10 \mathrm{~mol} \%$ ) anhydrous solvent ( 5 mL ), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.2 \mathrm{eq})$, 2a ( 1.5 eq ) under irradiation with 456 nm light source - blue light. ${ }^{\text {a }}$ Determined on isolated product.

### 2.4 Table S4: Phosphine Screening

| Entry | Pd catalyst | Phosphine | Base] | Solvent | 1a $^{\mathrm{a}}$ [\%] | 3a ${ }^{\mathrm{a}}$ [\%] |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | $\mathrm{Pd}(\mathrm{OAc})_{2}$ | Xantphos | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | DMF | 0 | 29 |  |
| $\mathbf{2}$ | $\mathrm{Pd}(\mathrm{OAc})_{2}$ | Tris-2-Furylphosphine | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | DMF | 50 | $31^{\mathrm{b}}, 38$ |  |
| $\mathbf{3}$ | $\mathrm{Pd}(\mathrm{OAc})_{2}$ | Tris-p-Tolylphosphine | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | DMF | 0 | 46 |  |
| $\mathbf{4}$ | $\mathrm{Pd}(\mathrm{OAc})_{2}$ | Tris- | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | DMF | 0 | 0 |  |
| $\mathbf{5}$ | $\mathrm{Pd}(\mathrm{OAc})_{2}$ | $(\mathrm{tBu})_{3} \mathrm{P}$ | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | DMF | 17 | $7+$ degradation | 0 |

Reactions conditions: 1a ( 0.2 mmol ), $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%)$, Phosphine ( $10 \mathrm{~mol} \%$ ) anhydrous DMF ( 5 mL ), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.2 \mathrm{eq}), \mathbf{2 a}(1.5 \mathrm{eq})$ under irradiation with 456 nm light source - blue light. ${ }^{\text {a }}$ Determined on isolated product. ${ }^{\text {b }}$ Calculated by NMR using $\mathrm{CH}_{3} \mathrm{NO}_{2}$ or $t$-BuOH as internal standard.

### 2.5 Table S5 Screening of amount of catalyst, phosphine, base and 2a

| Entry | $\begin{gathered} \mathrm{Pd}(\mathrm{OAc})_{2} \\ {[\mathrm{~mol} \%]} \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{PPh}_{3} \\ {[\mathrm{~mol} \%]} \\ \hline \end{gathered}$ | 2a [Eq] | $\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3} \\ {[\mathrm{Eq}]} \\ \hline \end{gathered}$ | Vol. DMF | $1 \mathrm{a}^{\mathrm{a}}$ [\%] | $3 \mathrm{a}^{\mathrm{a}}$ [\%] | $4 \mathrm{a}^{\mathrm{a}}$ [\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5 \% | 15\% | 1.5 | 1.2 | 5 ml | 0 | 22 | 0 |
| 2 | 5 \% | 20\% | 1.5 | 1.2 | 5 ml | 0 | 30 | 20 |
| 3 | $3 \%$ | 6\% | 1.5 | 1.2 | 5 ml | 15 | 47 | 2 |
| 4 | 8 \% | 16\% | 1.5 | 1.2 | 5 ml | 0 | 34 | 8 |
| 5 | $5 \%$ | 10\% | 2 | 1.2 | 5 ml | 0 | 50 | 2 |
| 6 | $5 \%$ | 10\% | 3 | 1.2 | 5 ml | 0 | 50 | 8 |
| 7 | 5 \% | 10\% | 1.1 | 1.2 | 5 ml | 0 | 45 | 12 |
| 8 | 5 \% | 10\% | 1.5 | 1.5 | 5 ml | 0 | 48 | 9 |
| 9 | $5 \%$ | 10\% | 1.5 | 2.4 | 5 ml | 0 | 60 | traces |
| 10 | 5 \% | 16\% | 1.5 | 1.2 | 7 ml | 0 | 37 | 2 |

Reactions conditions: 1a ( 0.2 mmol ), $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{PPh}_{3}$, anhydrous $\mathrm{DMF}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathbf{2 a}$, under irradiation with 456 nm light source - blue light. ${ }^{\text {a }}$ Determined on isolated product.

## 3. Mechanistic Investigations

### 3.1 Trapping Experiment with TEMPO



In order to study the formation of radicals, two trapping experiments with TEMPO were realized. The reactions were carried out employing 1.5 Eq of TEMPO in the presence of catalytic (experiment $A$ ) or stoichiometric (experiment $B$ ) amounts of $\mathrm{Pd}(\mathrm{OAc})_{2}$.

Experiment A, procedure: A Schlenk tube, equipped with a magnetic stirring bar, was dried and placed under a flow of $\mathrm{N}_{2}$, then 5 ml of dry DMF were transferred into the tube and degassed with $\mathrm{N}_{2}$ for at least 10 minutes. Under a constant flow of $\mathrm{N}_{2}, \mathrm{Pd}(\mathrm{OAc})_{2}(2.24$ $\mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%$ ) was placed in the Schlenk tube and the mixture was degassed for additional 5 minutes until the solution turned an intense yellow. Then $\mathrm{PPh}_{3}(5.25 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$ ) was added and the solution was left under stirring under inert gas until the solution turned cherry red. Always under $\mathrm{N}_{2}$ flow, the other reagents were added in the following order: bromobenzene $\mathbf{2 a}$ ( 0.3 $\mathrm{mmol}, 1.5 \mathrm{Eq}), \mathrm{K}_{2} \mathrm{CO}_{3}(33 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{Eq})$, the allene $1 \mathrm{a}(0.2 \mathrm{mmol}, 1 \mathrm{Eq})$ and TEMPO ( $\left.0.3 \mathrm{mmol}, 1.5 \mathrm{Eq}\right)$. The Schlenk tube, saturated with $\mathrm{N}_{2}$, was closed with a septum and then stirred at 4 cm from a Kessil blue lamp ( 456 nm ) at room temperature for 21 h .
 dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After solvent removal, the crude mixture was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $7 / 1$ ) to afford product $\mathbf{1 a}$ in $15 \%$ yield. Around $40 \%$ of allene was recovered not reacted.
When TEMPO was added after 3 h of irradiation, product $\mathbf{3 a}$ was recovered in $43 \%$ yield, with only $\mathbf{1 5 \%}$ of allene $\mathbf{1 a}$ not reacted.
Experiment B, procedure: the same procedure and work-up reported in experiment A was applied. The following amounts of reagents were employed:
DMF dry 5 mL
$\mathrm{Pd}(\mathrm{OAc})_{2}(45 \mathrm{mg}, 0.2 \mathrm{mmol}, 1 \mathrm{Eq})$
$\mathrm{PPh}_{3}(105 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{Eq})$
bromobenzene $2 \mathrm{a}(0.3 \mathrm{mmol}, 1.5 \mathrm{Eq}), \mathrm{K}_{2} \mathrm{CO}_{3}(33 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{Eq})$
allene 1 a ( $0.2 \mathrm{mmol}, 1 \mathrm{Eq}$ )
TEMPO ( $0.3 \mathrm{mmol}, 1.5 \mathrm{Eq}$ ).
Product 1a was obtained in $20 \%$ yield.

### 3.2 Light/Dark experiment

In order to unveil the fundamental role of the light in promoting this Heck reaction at room temperature, we realised a light/dark experiment on the model reaction between allene 1a and bromobenzene $\mathbf{2 a}$. Thus we set up a model reaction according to the general procedure reported in Section 4.2. The reaction mixture under stirring was submitted to light/dark cycles of variable time length according to Table S1.

Table 1. Results in term of yield obtained for the light/dark experiment.

| Light/Dark cycle | Total reaction time [min] | Product yield [\%] |
| :---: | :---: | :---: |
| Start | 0 | 0 |
| Light ON for 30 min | 30 | 10 |
| Light OFF for 30 min | 60 | 10 |
| Light ON for 30 min | 90 | 15 |
| Light OFF for 30 min | 120 | 15 |
| Light ON for 60 min | 180 | 28 |
| Light OFF for 60 min | 240 | 28 |
| Light ON for 60 min | 300 | 40 |

For each point, 0.3 mL of crude reaction mixture were withdrawn under $\mathrm{N}_{2}$ with a syringe. The solution was transferred in a test tube, where it was diluted with 2 mL of $\mathrm{Et}_{2} \mathrm{O}$ and then washed with 1 mL of brine. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and after solvent removal, the crude was analysed by ${ }^{1} \mathrm{H}$ NMR employing 0.8 mL of $\mathrm{CDCl}_{3}$ containing $t-\mathrm{BuOH}(0.022 \mathrm{mmol})$ as internal standard.

## $3.3{ }^{31}$ P-NMR analysis of the catalyst solution with and without illumination

A Schlenk tube, equipped with a magnetic stirring bar, was dried and placed under a flow of $\mathrm{N}_{2}$, then 2.8 ml of DMF- $\mathrm{d}_{7}$ were transferred into the tube and degassed with $\mathrm{N}_{2}$ for at least 10 minutes. Under a constant flow of $\mathrm{N}_{2}, \mathrm{Pd}(\mathrm{OAc})_{2}(20 \mathrm{mg}, 0.08 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ was placed in the Schlenk tube and the mixture was degassed for additional 5 minutes until the solution turned an intense yellow. Then $\mathrm{PPh}_{3}(47 \mathrm{mg}, 0.180 \mathrm{mmol}, 10 \mathrm{~mol} \%$ ) was added and the solution was left under stirring under inert gas until the solution turned cherry red (catalyst solution). Starting from this solution, different NMR samples were prepared and analysed by ${ }^{31} \mathrm{P}-\mathrm{NMR}$. All NMR tubes employed were previously dried and placed under $\mathrm{N}_{2}$. Each sample was provided with a small capillary containing $85 \%$ aqueous $\mathrm{H}_{3} \mathrm{PO}_{4}$ as reference.
Solution A: 0.7 mL of the catalyst solution were withdrawn with a syringe and transferred in a NMR tube.
Solution B: 105 mg of bromobenzene 2a were transferred in the NMR tube, then 0.7 mL of the catalyst solution were added to constant $\mathrm{N}_{2}$ flow.
Solution A (hv): 0.7 mL of the catalyst solution were withdrawn with a syringe and transferred in a NMR tube. The NMR tube was placed under the Kessil blue LED and it was irradiated for 2 h before NMR analysis.
Solution B (hv): 105 mg of bromobenzene 2a were transferred in the NMR tube, then 0.7 mL of the catalyst solution were added to constant $\mathrm{N}_{2}$ flow. The NMR tube was placed under the Kessil blue LED and it was irradiated for 2 h before NMR analysis.
The full spectra are shown below.
Solution A: ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectrum of a mixture of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and $\mathrm{PPh}_{3}$ in 1:2 ratio in DMF-d7 without illumination

## Solution A:

$\mathrm{Pd}(\mathrm{OAc})_{2}+\mathrm{PPh}_{3}$ in DMF- $\mathrm{d}_{7}$


Solution B: ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectrum of a mixture of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and $\mathrm{PPh}_{3}$ in 1:2 ratio in DMF- $\mathrm{d}_{7}$ after the addition of bromobenzene 2a without illumination


Solution $\mathbf{A}(\mathbf{h v}):{ }^{31} \mathrm{P}-\mathrm{NMR}$ spectrum of a mixture of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and $\mathrm{PPh}_{3}$ in $1: 2$ ratio in DMF- $\mathrm{d}_{7}$ under illumination




Solution B (hu): ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectrum of a mixture of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and $\mathrm{PPh}_{3}$ in 1:2 ratio in DMF-d7 after the addition of bromobenzene $\mathbf{2 a}$ under illumination


### 3.4 Electrochemical measurements

The catalyst solution was characterised from an electrochemical point of view by cyclic voltammetry (CV) analysis. In Figure S1 are reported the CVs of a $\mathrm{Pd}(\mathrm{OAc})_{2}-\mathrm{PPh}_{3}$ solution in a molar ratio 1:2 before and after the addition of bromobenzene 2a. ${ }^{[3]}$ As already observed by Amatore, the redox activity of this catalytic system is not so high and unstable. ${ }^{[3]}$ However, two anodic peaks are clearly distinguishable at +0.10 V and $+0.95 \mathrm{~V}(\mathrm{vs} \mathrm{Ag} / \mathrm{AgCl})$. Interestingly, the addition of bromobenzene $\mathbf{2 a}$ in the solution influences the redox activity of the catalytic system, the peak at +0.10 V disappears while a shift at +1.20 V of the other one occurs. Moreover, a cathodic peak is now revealed at -0.35 V . Once again, the changes of the redox behaviour of the system are consistent with the oxidative addition of bromobenzene 2a.

Figure S1. Cyclic voltammogram analysis of a $\mathrm{Pd}(\mathrm{OAc})_{2}-\mathrm{PPh}_{3}$ solution in a molar ratio $1: 2$ before and after the addition of bromobenzene $\mathbf{2 a}$


### 3.5 Study on the stability of product 3k

In order to assess the stability of the products derived from the photocatalysed reaction of allene with aryl halides, we studied by NMR the stability of pyrrolidine $\mathbf{3 k}$ derived from 4-bromoacetophenone $\mathbf{2 k}$. The ${ }^{1} \mathrm{H}$-NMR spectra were recorded in DMF-d7 considering that the photocatalysed or thermal coupling reactions were realised in DMF. Figure S 2 shows the comparison between the ${ }^{1} \mathrm{H}$-NMR spectra of product $\mathbf{3 k}$ in three different conditions:
pure compound $\mathbf{3 k}$ after isolation by column chromatography (bottom);
compound $\mathbf{3 k}$ after irradiation for 24 h with a Kessil blue lamp (middle);
compound $\mathbf{3 k}$ after heating at $60^{\circ} \mathrm{C}$ for 24 h (top)
As it is possible to see in Figure S 2 , the ${ }^{1} \mathrm{H}$-NMR spectra after irradiation and heating at $60^{\circ} \mathrm{C}$ are superimposable with the one of pure compound $3 \mathbf{k}$ suggesting the stability of the pyrrolidine both under the conditions of the photocatalysed and thermal reactions. Some negligible traces of degradation can be observed under heating.

Figure S2. Comparison between the ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 k}$ at $\mathrm{t}=0 \mathrm{~h}$ (bottom); after 24 h under blue light irradiation (middle); after 24 h at $60^{\circ} \mathrm{C}$ (top).
$1 \mathrm{H}-$ NMR of compound $\mathbf{3 k}$ at $60^{\circ} \mathrm{C}$ for 24 h


1H-NMR of compound $\mathbf{3 k}$ under irradiation with Kessil blue LED for 24 h


## 4. Experimental Procedures

### 4.1 General procedures for the synthesis of allenes $1 \mathrm{a}-\mathrm{b}$



## Step 1: Protection of tosylamine. Synthesis of t-butyl tosylcarbamate $8^{[4]}$



8
$t$-Butyl tosylcarbamate 8 was prepared according to the procedure reported in Ref. 4. White solid (yield $91 \%) .{ }^{\mathbf{1}} \mathrm{H}$ NMR (600 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=1.38\left(\mathrm{~s}, 9 \mathrm{H} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.44\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}\right), 7.33(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz} ; \mathrm{Ar}-\mathrm{H}), 7.89(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz} ; \mathrm{Ar}-\mathrm{H}$ ).

## Step 2: Mitsunobu reaction ${ }^{[5]}$

A Schlenk tube, equipped with a magnetic stirring bar, was dried and placed under a constant flow of $\mathrm{N}_{2}$, then $t$-butyl tosylcarbamate 8 $(4.27 \mathrm{~g}, 15.7 \mathrm{mmol}, 1.05 \mathrm{Eq})$ and $\mathrm{PPh}_{3}(5.11 \mathrm{~g}, 19.5 \mathrm{mmol}, 1.30 \mathrm{eq})$ were added. The solids were then dissolved with a mixture $3 / 1 \mathrm{of}$ dry toluene/THF. When the solids were dissolved, the alkynol ( $15 \mathrm{mmol}, 1.0 \mathrm{eq}$ ) was dripped into the reaction mixture. After the addition, the mixture was placed in a cooling bath in order to maintain the temperature between $0^{\circ} \mathrm{C}$ and $-10^{\circ} \mathrm{C}$. Then a solution of $\mathrm{DEAD}, 40 \% \mathrm{in} \mathrm{THF},(8.0$ $\mathrm{g}, 18 \mathrm{mmol}, 1.2 \mathrm{Eq}$ ) was slowly added to the reaction mixture. The temperature was kept between $0^{\circ} \mathrm{C}$ and $-10^{\circ} \mathrm{C}$ for at least 30 minutes after DEAD addition. The mixture was then allowed to warm and left under stirring at room temperature for 12 h or until the alkynol was totally consumed. Then, the solvent was removed under reduced pressure to obtain a white solid, which was purified by column chromatography on silica gel to give $9 a$ in $97 \%$ yield from pent-4-yn-1-ol and $9 b$ in $94 \%$ yield from hex-5-yn-1-ol.

$\boldsymbol{t}$-Butyl pent-4-yn-1-yl(tosyl)carbamate 9a Following the described procedure, 1.29 g ( 15 mmol ) of pent4 -yn-1-ol were reacted with $t$-butyl tosylcarbamate $8(4.27 \mathrm{~g}, 15.7 \mathrm{mmol}, 1.05 \mathrm{Eq})$ to afford 4.90 g of $t$-butyl pent-4-yn-1-yl(tosyl)carbamate 9a as a light yellow oil (EP/EE 9/1, yield 97\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=1.35\left(\mathrm{~s}, 9 \mathrm{H} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.96-2.02\left(\mathrm{~m}, 3 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right.$ and $\left.\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}\right)$, 2.28 (td, 2H, J=7.1, 2.7 Hz; CH2-C =CH), $2.44\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}\right), 3.91-3.93\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 7.30(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.0$ Ts-H), 7.78 (d, 2H, J= 8.3 Hz ; Ts-H).

$t$-Butyl hexa-4,5-dien-1-yl(tosyl)carbamate 9b Following the described procedure, 1.53 g ( 15 mmol ) of hex-5-yn-1-ol were reacted with $t$-butyl tosylcarbamate $\mathbf{8}(4.27 \mathrm{~g}, 15.7 \mathrm{mmol}, 1.05 \mathrm{Eq})$ to afford 4.96 g of $t$-butyl hexa-4,5-dien-1-yl(tosyl)carbamate 9 b as a light yellow oil (EP/EE 9/1, yield 94\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.34$ (s, $9 \mathrm{H} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$ ), 1.59 (quint, $2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C} \equiv$ ), $1.85-1.90\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 1.97(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=2.7 \mathrm{~Hz} ; \mathrm{C} \equiv \mathrm{CH}), 2.26\left(\mathrm{td}, 2 \mathrm{H}, \mathrm{J}=7.0,2.6 \mathrm{~Hz} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\right.$ $\mathrm{C} \equiv$ ), 2.43 (s, 3H; Ar-CH3), 3.85 (m 2H; N-CH2-CH2), 7.30 (d, 2H, J= $8.3 \mathrm{~Hz} ; \mathrm{Ts}-\mathrm{H}$ ), 7.78 (d, 2H, J= 8.3 Hz; Ts-H).

## Step 3: Crabbé reaction ${ }^{[6]}$

Compounds 10a-b were obtained by a modification of the procedure reported by Yang and Li.
Four Pyrex tubes, equipped with a magnetic stirring bar, were dried and placed under a flow of $\mathrm{N}_{2}$, then each tube was charged with alkyne 9 a or 9 b ( $1.41 \mathrm{mmol}, 1.0 \mathrm{Eq}$ ), paraformaldehyde ( $85 \mathrm{mg}, 2.8 \mathrm{mmol}, 2.0 \mathrm{eq}$ ), $\mathrm{CuBr}(142 \mathrm{mg}, 0.99 \mathrm{mmol}, 0.7 \mathrm{eq}$ ) and dissolved with 15 ml of dry dioxane each. The mixture was left under stirring for 30 minutes at room temperature under inert atmosphere, then 0.4 ml of DIPA ( $2.82 \mathrm{mmol}, 2 \mathrm{eq}$ ) were added dropwise in each tube. After saturating with $\mathrm{N}_{2}$, each flask was closed and the reaction mixture was left under stirring for 1 h at room temperature. During this time the color of the solution turned from light blue to green. Later, the reaction mixture, under stirring, was heated at $115^{\circ} \mathrm{C}$ overnight. During the heating, the solution turned orange.
The reaction was monitored by TLC, when compound 9 was totally consumed, it was quenched with $\mathrm{HCl} 2 \mathrm{M}(8 \mathrm{ml}$ per mmol of DIPA). Then an aqueous solution of $\mathrm{NH}_{3}$, ( $12.5 \%$ ) in ratio $1 / 20$ with compound 9 , was added. The organic and the aqueous layers were separated in a separation funnel. The blue aqueous phase was extracted with diethyl ether several times until the organic phase did not turn yellow any more.
The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed in vacuum to obtain a red oil. The residual dioxane was eliminated under high vacuum and the crude product 10a or 10b was used without further purification in the step 4.


$\boldsymbol{t}$-Butyl hepta-5,6-dien-1-yl(tosyl)carbamate 10b Following the described procedure, $1.98 \mathrm{~g}(5.64$
 mmol ) of $t$-butyl hexa-4,5-dien-1-yl(tosyl)carbamate $\mathbf{9 b}$ were reacted with paraformaldehyde ( 85 mg , $2.8 \mathrm{mmol}, 2.0 \mathrm{eq}$ ) to afford $t$-butyl hepta-5,6-dien-1-yl(tosyl)carbamate $\mathbf{1 0 b}$ as a red oil which was used without further purification in step 4.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : crude reaction mixture; $\delta=1.33\left(\mathrm{~s}, 9 \mathrm{H} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.45-1.50\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}{ }^{-}\right.$ $\mathrm{CH}_{2}-\mathrm{CH}_{2}$ ), 1.77-1.82 (m, 2H; $\left.\mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 2.03-2.08\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}\right.$ ), $2.44\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}\right), 3.70$ (residue of dioxane), $3.82\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right.$ ), 4.67 (dt, $2 \mathrm{H}, \mathrm{J}=6.6,3.3 \mathrm{~Hz}$; $=\mathrm{C}=\mathrm{CH}_{2}$ ), 5.10 (quint, 1 H , $\left.J=6.8 \mathrm{~Hz} ; \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{C}\right), 7.29(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz} ; \mathrm{Ts}-H), 7.77(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz} ;$ Ts-H).

## Step 4: Boc deprotection ${ }^{[6]}$

Compound 10a or $\mathbf{1 0 b}$ ( $5.1 \mathrm{mmol}, 1 \mathrm{eq}$ ) was dissolved in 2.4 ml of DCM in a round bottom flask which was placed in an ice bath. Then 6 Eq of TFA ( 2.4 ml ) were slowly added and the reaction mixture was stirred for at least 1 h . The reaction was monitored by TLC and when compound 10a-b was totally consumed, the excess of TFA was neutralized with $\mathrm{NaHCO}_{3}$.
The mixture was transferred in a separation funnel, the organic and aqueous layers were separated. The organic phase was further washed with brine ( $2 \times 20 \mathrm{ml}$ ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuum to obtain a yellow oil. The latter was purified by column chromatography on silica gel to give 1a in $85 \%$ yield or $\mathbf{1 b}$ in $57 \%$ yield over two steps.

$N$-tosylhexa-4,5-dien-1-ylamine 1a Following the described procedure, $1.80 \mathrm{~g}(5.11 \mathrm{mmol})$ of $t$-butyl hexa-4,5-dien-1-yl(tosyl)carbamate 10a were reacted with TFA to afford 1.09 g of $N$-tosylhexa-4,5-dien1 -ylamine 1a as a yellow oil (EP/EE 9/1, yield $85 \%$ ).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=1.59\left(\mathrm{p}, 2 \mathrm{H}+\mathrm{H}_{2} \mathrm{O}, \mathrm{J}=7.1 \mathrm{~Hz} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 1.99\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}\right)$, 2.43 (s, 3H; Ar-CH3), 2.99 ( $\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz} ; \mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ ), 4.30 ( s broad, $1 \mathrm{H} ; \mathrm{NH}$ ), 4.64 (dt, $2 \mathrm{H}, \mathrm{J}=6.7$, $3.2 \mathrm{~Hz} ; \mathrm{CH}=\mathrm{C}=\mathrm{CH}_{2}$ ), 5.02 (quint, $1 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz} ; \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{C}$ ), $7.31(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz} ; \mathrm{Ts}-H$ ), $7.74(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}$; Ts-H).

$N$-tosylhepta-5,6-dien-1-ylamine 1b Following the described procedure, 1.86 g ( 5.11 mmol ) of $t$-butyl hepta-5,6-dien-1-yl(tosyl)carbamate 10b were reacted with TFA to afford 0.771 mg of N -tosylhepta-5,6-dien-1-ylamine 1b as a yellow oil (EP/EE 9/1, yield 57\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): $\delta=1.39$ (quint, $2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ ), 1.50 (quint, $2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}$; $\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ ), $1.94\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}\right), 2.95\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz} ; \mathrm{NH}^{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 4.27(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz} ; \mathrm{NH})$, $4.64\left(\mathrm{dt}, 2 \mathrm{H}, \mathrm{J}=6.7,3.3 \mathrm{~Hz} ;=\mathrm{C}=\mathrm{CH}_{2}\right), 5.02\left(\mathrm{p}, 1 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz} ; \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{C}\right), 7.31(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz} ; \mathrm{Ts}-\mathrm{H}), 7.74(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}$; TsH).

### 4.3 General procedure for the synthesis of internal allenes $1 \mathrm{c}-\mathrm{d}^{[7]}$



Compounds 1c-d were obtained by a modification of the procedure reported by Ma et al. ${ }^{[7]}$
A Schlenk tube, equipped with a magnetic stirring bar, was dried and placed under a flow of $\mathrm{N}_{2}$, then the reagents were added in the following order: $\mathrm{CuBr}(15 \mathrm{mg}, 0.1 \mathrm{mmol}, 0.06 \mathrm{Eq}$ ), $4 \AA \AA$ molecular sieves $(0.60 \mathrm{~g}), 4 \mathrm{ml}$ of dry toluene, alkyne 9 a ( $0.56 \mathrm{~g}, 1.55 \mathrm{mmol}, 1$ $\mathrm{Eq}), 1 \mathrm{Eq}$ of aldehyde and pyrrolidine ( $121 \mathrm{mg}, 1.7 \mathrm{mmol}, 1.1 \mathrm{Eq}$ ). The reaction mixture was left under stirring at room temperature for 12 h .
After the 12 h , the reaction was monitored by TLC and when compound 9 a was totally consumed, the solvent was removed under high vacuum. The solid residue was solved in $\mathrm{Et}_{2} \mathrm{O}$ and the organic phase was washed with an aqueous solution of $\mathrm{NH}_{3} / \mathrm{H}_{2} \mathrm{O}(12 \%)$. The washings were continued until the aqueous layer remained colourless. The organic layer was additionally washed with brine twice. The crude mixture obtained was employed in the next step without any further purification. Thus, compound 11a or 11b was solved in dry toluene and transferred under nitrogen flow in a dried Schlenk tube, equipped with a magnetic stirring bar.
For step 2, $\mathrm{Znl}_{2}$ was purified by sublimation under vacuum at $300^{\circ} \mathrm{C}$, while Nal was dried under vacuum at elevated temperature. After the drying process, $\mathrm{Znl}_{2}(0.247 \mathrm{~g}, 0.45 \mathrm{Eq})$ and $\mathrm{Nal}(0.129 \mathrm{~g}, 0.5 \mathrm{Eq})$ were weighted and transferred in a dried Pyrex tube. At this point, the toluene solution containing crude compound 11 was transferred with a syringe in the Pyrex tube containing $\mathrm{Znl}_{2}$ and Nal and the mixture was stirred at $110^{\circ} \mathrm{C}$ for 6 h . Then, the crude mixture was cooled, the solvent was removed under vacuum and the latter was purified by column chromatography.


4-Methyl- $N$-(6-phenylhexa-4,5-dien-1-yl)benzenesulfonamide $\mathbf{1 c}^{[8]}$ Following the described procedure, $0.56 \mathrm{~g}(1.55 \mathrm{mmol})$ of $t$-butyl pent-4-yn-1-yl(tosyl)carbamate 9 a and 164 mg of benzaldehyde were reacted to afford 304 mg of 4 -methyl- $N$-(6-phenylhexa-4,5-dien-1yl)benzenesulfonamide 1c as a yellow oil (EP/Acetone 9/1, yield 60\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.60-1.71\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 2.12\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}\right)$, $2.41\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}^{2} \mathrm{CH}_{3}\right), 3.05\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 4.31(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz} ; \mathrm{NH}), 5.51\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz} ; \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{C}\right), 6.11$ (dt, $1 \mathrm{H}, \mathrm{J}=6.5$, $3.3 \mathrm{~Hz} ; \mathrm{CH}=\mathrm{C}=\mathrm{CH}$ ), $7.18-7.21(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{Ar}-\mathrm{H}), 7.22-7.25(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{Ar}-\mathrm{H}), 7.27(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz} ; \mathrm{Ts}-\mathrm{H}), 7.28-7.31(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{Ar}-\mathrm{H}), 7.71(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}$; Ts-H).
${ }^{13} \mathrm{C}-$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=21.5\left(\mathrm{CH}_{3}\right)$, $25.5\left(\mathrm{CH}_{2}\right)$, $28.8\left(\mathrm{CH}_{2}\right), 42.6\left(\mathrm{CH}_{2}\right), 93.7(\mathrm{CH}), 95.4(\mathrm{CH}), 126.6(\mathrm{CH}), 126.9(\mathrm{CH}), 127.1$ $(\mathrm{CH}), 128.6(\mathrm{CH}), 129.7(\mathrm{CH}), 134.5(\mathrm{Cq}), 137.0(\mathrm{Cq}), 143.0(\mathrm{Cq}), 205.1(\mathrm{Cq})$.

$N$-(6-(4-methoxyphenyl)hexa-4,5-dien-1-yl)-4-methylbenzenesulfonamide
1d
Following the described procedure, $0.56 \mathrm{~g}(1.55 \mathrm{mmol})$ of $t$-butyl pent-4-yn-1yl(tosyl)carbamate 9a and 211 mg of 4-methoxybenzaldehyde were reacted to afford 221 mg of $N$-(6-(4-methoxyphenyl)hexa-4,5-dien-1-yl)-4-methylbenzenesulfonamide 1d as a yellow oil (EP/Acetone 9/1, yield 40\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=1.58-1.66\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 2.05-2.20\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}\right), 2.39\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}\right)$, 2.93-3.01(m, $2 \mathrm{H} ; \mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ ), 3.78 (s, 3H; $\mathrm{OCH}_{3}$ ), 4.69 (t, $1 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}$; NH), 5.46 (q, $1 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz} ; \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{C}$ ), 6.05 (dt, $1 \mathrm{H}, \mathrm{J}=6.3,3.1 \mathrm{~Hz}$; C=CH-Ph), 6.82 (d, 2H, J= 8.9 Hz ; Ar-H), 7.14 (d, 2H, J= 8.7 Hz ; Ar-H), $7.25(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz} ; \mathrm{Ts}-\mathrm{H}$ ), $7.71(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}$; Ts-H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.4\left(\mathrm{CH}_{3}\right)$, $25.7\left(\mathrm{CH}_{2}\right)$, $28.7\left(\mathrm{CH}_{2}\right)$, $42.6\left(\mathrm{CH}_{2}\right), 55.3\left(\mathrm{CH}_{3}\right), 93.7(\mathrm{CH}), 94.7(\mathrm{CH}), 114.1(\mathrm{CH}), 126.8$ (Cq), 127.0 (CH), $127.6(\mathrm{CH}), 129.6(\mathrm{CH}), 136.9(\mathrm{Cq}), 143.3(\mathrm{Cq}), 158.7(\mathrm{Cq}), 204.5(\mathrm{Cq})$.
IR: $549 \mathrm{~cm}^{-1}, 662 \mathrm{~cm}^{-1}, 705 \mathrm{~cm}^{-1}, 813 \mathrm{~cm}^{-1}, 833 \mathrm{~cm}^{-1}, 878 \mathrm{~cm}^{-1}, 1030 \mathrm{~cm}^{-1}, 1092 \mathrm{~cm}^{-1}, 1155 \mathrm{~cm}^{-1}, 1243 \mathrm{~cm}^{-1}, 1302 \mathrm{~cm}^{-1}, 1322 \mathrm{~cm}^{-1}$, $1440 \mathrm{~cm}^{-1}, 1509 \mathrm{~cm}^{-1}, 1605 \mathrm{~cm}^{-1}, 1679 \mathrm{~cm}^{-1}, 2934 \mathrm{~cm}^{-1}, 3276 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S},[\mathbf{M}+\mathrm{H}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 357.1399$, found $\mathrm{m} / \mathrm{z} 357.1395$.

### 4.4 General procedure for the photocatalysed reaction of allenes $\mathbf{1 a}, \mathbf{1 b}, 1 \mathrm{c}$ and 1 d



A Schlenk tube, equipped with a magnetic stirring bar, was dried and placed under $\mathrm{N}_{2}$, then 5 ml of dry DMF were transferred into the tube and degassed with $\mathrm{N}_{2}$ for at least 10 minutes. Under a constant flow of $\mathrm{N}_{2}, \mathrm{Pd}(\mathrm{OAc})_{2}(2.24 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ was added and the mixture was degassed for additional 5 minutes until the solution turned an intense yellow. Then $\mathrm{PPh}_{3}(5.25 \mathrm{mg}, 0.02 \mathrm{mmol}, 10$ $\mathrm{mol} \%$ ) was added and the solution was left under stirring until it turned cherry red (see Figure S3 left for optimal colour shade). When the colour change is not spontaneous, the reaction mixture can be gently warmed with the hands. The other reagents were added in the following order: the aromatic compound $2(0.3 \mathrm{mmol}, 1.5 \mathrm{Eq}), \mathrm{K}_{2} \mathrm{CO}_{3}(33 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{Eq})$ and the allene $\mathbf{1}$ ( $0.2 \mathrm{mmol}, 1 \mathrm{Eq}$ ). The Schlenk tube, saturated with $\mathrm{N}_{2}$, was closed with a septum and stirred at 4 cm from a Kessil blue lamp ( 456 nm ) at room temperature for 21 h for starting material $\mathbf{1 a} \mathbf{- b}$ or 48 h for internal allenes $\mathbf{1 c} \mathbf{c}$. Reaction work-up: the reaction mixture was diluted with 25 ml of $\mathrm{Et}_{2} \mathrm{O}$ and the organic phase was washed with brine ( $5 \times 10 \mathrm{ml}$ ) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After solvent removal, the crude mixture was purified by flash chromatography to afford product 3, 5-7.

Figure S3. Picture of the reaction set-up before and during illumination.

4.4.1 Summary of halides employed in the reaction scope

2a

2b

2c

2d

$2 e$

2f

2g

2h

2i




21

2m




2p

2q

2r

2s

$2 t$

2u

2v

2w







2ac

2ad



2q"

### 4.4.2 Characterization of vinyl pyrrolidine 3



2-(1-Phenylvinyl)-1-tosylpyrrolidine 3a Following the described procedure, $47 \mathrm{mg}(0.3 \mathrm{mmol})$ of bromobenzene $\mathbf{2 a}$ (or 61 mg of iodobenzene $\mathbf{2 a}$ ') and $50 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 a}$ were reacted under the optimized conditions to afford 46 mg ( 21 mg from 2a') of 2-(1-phenylvinyl)-1-tosylpyrrolidine 3a as a white solid (EP/AcOEt 7/1, yield $70 \%$ or $30 \%$ from 2a').
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=1.54-1.66\left(\mathrm{~m}, 3 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}\right.$ and $\mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}_{-} \mathrm{CH}_{2}$ ), 1.76-1.84 (m, $\mathrm{H} ; \mathrm{CH}_{2}-$ $\left.\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}\right), 3.28$ (td, $\left.1 \mathrm{H} ; \mathrm{J}=10.2,6.4 \mathrm{~Hz} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 3.54$ (ddd, $1 \mathrm{H} ; J=10.2,8.7,2.5$ Hz ; $\mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), 4.75 (dd broad, $1 \mathrm{H}, \mathrm{J}=7.7,3.2 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}-\mathrm{CH}_{2}$ ), 5.25 (s broad, $1 \mathrm{H}, \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-\mathrm{CH}$ ), 5.39 ( t narrow, $1 \mathrm{H} ; \mathrm{J}=1.4 \mathrm{~Hz} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-\mathrm{CH}), 7.26-7.30(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{Ar}-\mathrm{H}), 7.32-7.34(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.37-7.39(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{Ar}-\mathrm{H})$, 7.78 (d, 2H, J=8.4 Hz; Ts-H).
${ }^{13} \mathrm{C}-$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=22.0\left(\mathrm{CH}_{3}\right)$, $23.9\left(\mathrm{CH}_{2}\right)$, $32.2\left(\mathrm{CH}_{2}\right), 49.4\left(\mathrm{CH}_{2}\right), 63.4(\mathrm{CH}), 114.3\left(\mathrm{CH}_{2}\right), 127.4(\mathrm{CH}), 128.0(\mathrm{CH}), 128.1$ (CH), 128.8 (CH), 130.1 (CH), 135.6 (Cq), $140.3(\mathrm{Cq}), 143.8(\mathrm{Cq}), 149.3(\mathrm{Cq})$.
IR: $541 \mathrm{~cm}^{-1}, 588 \mathrm{~cm}^{-1}, 656 \mathrm{~cm}^{-1}, 716 \mathrm{~cm}^{-1}, 790 \mathrm{~cm}^{-1}, 824 \mathrm{~cm}^{-1}, 857 \mathrm{~cm}^{-1}, 918 \mathrm{~cm}^{-1}, 1019 \mathrm{~cm}^{-1}, 1066 \mathrm{~cm}^{-1}, 1093 \mathrm{~cm}^{-1}, 1153 \mathrm{~cm}^{-1}, 1187$ $\mathrm{cm}^{-1}, 1348 \mathrm{~cm}^{-1}, 1450 \mathrm{~cm}^{-1}, 1490 \mathrm{~cm}^{-1}, 1604 \mathrm{~cm}^{-1}, 2877 \mathrm{~cm}^{-1}, 2924 \mathrm{~cm}^{-1}, 2971 \mathrm{~cm}^{-1}$
MS (ESI): Chemical formula $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S},[\mathbf{M}+\mathrm{H}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 328.1366$, found $\mathrm{m} / \mathrm{z} 328.1365$; [M+Na] theoretical $\mathrm{m} / \mathrm{z} 350.1185$, found $m / z 350.1184$.
Mp: $94.2-95.6^{\circ} \mathrm{C}$


2-(1-(4-Tolyl)vinyl)-1-tosylpyrrolidine $\mathbf{3 b}$ Following the described procedure, 51 mg ( 0.3 mmol ) of 4bromotoluene $\mathbf{2 b}$ and $50 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 a}$ were reacted under the optimized conditions to afford 30 mg of 2-(1-(4-tolyl)vinyl)-1-tosylpyrrolidine 3b as a yellow/brown solid (EP/AcOEt 7/1, yield 44\%).
${ }^{1} \mathrm{H}$-NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=1.55-1.65\left(\mathrm{~m}, 3 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}\right.$ and $\left.\mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right)$, 1.76-1.84 (m, $1 \mathrm{H} ; \mathrm{CH}_{2}-$ $\left.\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 2.35\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}\right), 3.28$ (td, $\left.1 \mathrm{H} ; \mathrm{J}=9.2,6.7 \mathrm{~Hz} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 3.53$ (ddd, $1 \mathrm{H} ; \mathrm{J}=9.8,7.3,2.8 \mathrm{~Hz} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), 4.74 (dd broad, $\left.1 \mathrm{H} ; \mathrm{J}=7.7,3.5 \mathrm{~Hz} ; \mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}\right), 5.32(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-$ CH), 5.34 (t narrow, 1H; J=1.3 Hz; C(H)H=C-CH), 7.14 (d, 2H; J= $8.3 \mathrm{~Hz} ; \mathrm{Ar}-\mathrm{H}$ ), 7.26 (d, 2H; J= $8.2 \mathrm{~Hz} ; \mathrm{Ar}-\mathrm{H}$ ), 7.32 (d, 2H; J=7.9 Hz; Ar-H), 7.78 (d, 2H; J= 8.3 Hz ; Ar-H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=21.1\left(\mathrm{CH}_{3}\right), 21.5\left(\mathrm{CH}_{3}\right), 23.5\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 48.9\left(\mathrm{CH}_{2}\right), 62.9(\mathrm{CH}), 113.1$ $\left(\mathrm{CH}_{2}\right), 126.7(\mathrm{CH}), 127.5(\mathrm{CH}), 129.0(\mathrm{CH}), 129.6(\mathrm{CH}), 135.2(\mathrm{Cq}), 136.9(\mathrm{Cq}), 137.4(\mathrm{Cq}), 143.3(\mathrm{Cq}), 148.6(\mathrm{Cq})$.
IR: $3025 \mathrm{~cm}^{-1}, 2930 \mathrm{~cm}^{-1}, 2856 \mathrm{~cm}^{-1}, 1586 \mathrm{~cm}^{-1}, 1448 \mathrm{~cm}^{-1}, 1332 \mathrm{~cm}^{-1}, 1152 \mathrm{~cm}^{-1}, 1089 \mathrm{~cm}^{-1}, 962 \mathrm{~cm}^{-1}, 909 \mathrm{~cm}^{-1}, 814 \mathrm{~cm}^{-1}, 739 \mathrm{~cm}^{-1}$, $665 \mathrm{~cm}^{-1}, 538 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 342.1522$, found $\mathrm{m} / \mathrm{z} 342.1525$; $[\mathrm{M}+\mathrm{Na}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 364.1342$, found $m / z$ 364.1344. Mp: $91.2-92.3^{\circ} \mathrm{C}$


2-(1-(3-Tolyl)vinyl)-1-tosylpyrrolidine 3c Following the described procedure, 51 mg ( 0.3 mmol ) of 3bromotoluene $\mathbf{2 c}$ and $50 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene 1a were reacted under the optimized conditions to afford 23 mg of 2 -(1-(3-tolyl)vinyl)-1-tosylpyrrolidine $\mathbf{3 c}$ as a light yellow solid (EP/AcOEt 7/1, yield 33\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.56-1.66\left(\mathrm{~m}, 3 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}\right.$ and $\left.\mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 1.76-1.85\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\right.$ $\left.\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 2.36$ (s, 3H; Ar-CH3), 2.43 (s, 3H; Ar-CH3), 3.28 (td broad, $\left.1 \mathrm{H}, \mathrm{J}=9.1,6.9 \mathrm{~Hz} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 3.53$ (ddd broad, $1 \mathrm{H}, \mathrm{J}=10.0, \mathrm{~J}_{2}=7.3,3.1 \mathrm{~Hz}$; $\mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), 4.75 (d broad, $1 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}$; N-CH-CH2), 5.31 (s broad, $1 \mathrm{H} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-\mathrm{CH}), 5.35(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=1.7 \mathrm{~Hz} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-\mathrm{CH}), 7.09(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.13-7.17(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{Ar}-\mathrm{H}), 7.21$ (t, 1H, J=7.6 Hz; Ar-H), 7.32 (d, 2H, J= 7.7 Hz ; Ts-H), 7.78 (d, 2H, J=8.0 Hz; Ts-H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=21.5\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right), 23.6\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 48.9\left(\mathrm{CH}_{2}\right), 63.1(\mathrm{CH}), 113.7$ $\left(\mathrm{CH}_{2}\right), 124.1(\mathrm{CH}), 127.6(\mathrm{CH}), 127.8(\mathrm{CH}), 128.3(\mathrm{CH}), 128.5(\mathrm{CH}), 129.7(\mathrm{CH}), 135.4(\mathrm{Cq}), 138.0(\mathrm{Cq}), 140.0(\mathrm{Cq}), 143.4(\mathrm{Cq}), 149.1$ (Cq).
IR: $3041.1 \mathrm{~cm}^{-1}$, $2981.9 \mathrm{~cm}^{-1}, 2951.9 \mathrm{~cm}^{-1}, 2919.0 \mathrm{~cm}^{-1}, 2874.3 \mathrm{~cm}^{-1}, 1597.2 \mathrm{~cm}^{-1}, 1492.0 \mathrm{~cm}^{-1}, 1447.4 \mathrm{~cm}^{-1}, 1332.2 \mathrm{~cm}^{-1}, 1293.7 \mathrm{~cm}^{-}$ ${ }^{1}, 1186.3 \mathrm{~cm}^{-1}, 1157.0 \mathrm{~cm}^{-1}, 1118.2 \mathrm{~cm}^{-1}, 1089.6 \mathrm{~cm}^{-1}, 1070.5 \mathrm{~cm}^{-1}, 1006.8 \mathrm{~cm}^{-1}, 901.3 \mathrm{~cm}^{-1}, 852.3 \mathrm{~cm}^{-1}, 812.8 \mathrm{~cm}^{-1}, 793.9 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 342.1522$, found $\mathrm{m} / \mathrm{z} 342.1526$; $[\mathrm{M}+\mathrm{Na}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 364.1342$, found $m / z 364.1347$. Mp: $73.8-75.3^{\circ} \mathrm{C}$


2-(1-(2-Tolyl)vinyl)-1-tosylpyrrolidine 3d Following the described procedure, $51 \mathrm{mg}(0.3 \mathrm{mmol})$ of 2-bromotoluene 2d and $50 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene 1a were reacted under the optimized conditions to afford 12 mg of 2-(1-(2-tolyl)vinyl)-1-tosylpyrrolidine $\mathbf{3 c}$ as a light yellow oil (EP/AcOEt 7/1, yield 18\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta=1.31-1.37\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}\right), 1.61-1.65\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 1.81-1.89(\mathrm{~m}$, $\left.1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 2.38\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}\right), 2.42\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}\right), 3.23$ (dt broad, $\left.1 \mathrm{H}, \mathrm{J}=9.7,6.3 \mathrm{~Hz} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right)$, 3.55 (ddd broad, $1 \mathrm{H}, \mathrm{J}=10.1,8.7,2.8 \mathrm{~Hz}$; N-C(H)H-CH2), 4.49 (bd, $\left.1 \mathrm{H} ; J=8.3 \mathrm{~Hz} \mathrm{~N}-\mathrm{CH}-\mathrm{CH}_{2}\right), 5.07$ (s broad, 1 H ; $\mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-\mathrm{CH}), 5.58$ (t narrow, $1 \mathrm{H}, \mathrm{J}=1.6 \mathrm{~Hz} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-\mathrm{CH}), 7.09-7.21$ (m, 4H; Ar-H), 7.31 (d, 2H, J=8.3 Hz; TsH), 7.76 (d, 2H, J= 8.3 Hz ; Ts-H).
${ }^{13} \mathrm{C}$-NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=19.8\left(\mathrm{CH}_{3}\right), 21.5\left(\mathrm{CH}_{3}\right), 23.4\left(\mathrm{CH}_{2}\right), 30.2\left(\mathrm{CH}_{2}\right), 48.9\left(\mathrm{CH}_{2}\right), 64.1(\mathrm{CH}), 115.4\left(\mathrm{CH}_{2}\right)$, $125.5(\mathrm{CH}), 127.3(\mathrm{CH}), 127.45(\mathrm{CH}), 129.32(\mathrm{CH}), 129.64(\mathrm{CH}), 130.2(\mathrm{CH}), 135.1(\mathrm{Cq}), 135.7(\mathrm{Cq}), 140.2(\mathrm{Cq}), 143.3(\mathrm{Cq}), 148.6$ (Cq).
IR: $2943 \mathrm{~cm}^{-1}, 2879 \mathrm{~cm}^{-1}, 1345 \mathrm{~cm}^{-1}, 1154 \mathrm{~cm}^{-1}, 1101 \mathrm{~cm}^{-1}, 1017 \mathrm{~cm}^{-1}, 911 \mathrm{~cm}^{-1}, 827 \mathrm{~cm}^{-1}, 731 \mathrm{~cm}^{-1}, 667 \mathrm{~cm}^{-1}, 583 \mathrm{~cm}^{-1}, 540 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S},\left[\mathrm{M}_{+} \mathrm{H}^{+}\right.$theoretical $\mathrm{m} / \mathrm{z} 342.1522$, found $\mathrm{m} / \mathrm{z} 342.1523$; $[\mathrm{M}+\mathrm{Na}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 364.1342$, found $m / z 364.1341$.


2-(1-(4-Methoxyphenyl)vinyl)-1-tosylpyrrolidine 3e Following the described procedure, $56 \mathrm{mg}(0.3 \mathrm{mmol})$ of 4 -bromoanisole $\mathbf{2 e}$ and $50 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 a}$ were reacted under the optimized conditions to afford 14 mg of 2-(1-(4-methoxyphenyl)vinyl)-1-tosylpyrrolidine 3 e as a light yellow oil (EP/AcOEt 7/1, yield 20\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.58-1.64\left(\mathrm{~m}, 3 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}\right.$ and $\left.\mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right)$, 1.75-1.84 ( $\mathrm{m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-$ $\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), $2.44\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}\right.$ ), 3.28 (td broad, $1 \mathrm{H}, \mathrm{J}=9.4,6.7 \mathrm{~Hz}$; $\mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), 3.53 (ddd broad, $1 \mathrm{H}, \mathrm{J}=$ $10.3,9.1,3.2 \mathrm{~Hz} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), 3.81 (s, 3H; OCH ${ }_{3}$ ), 4.71 (dbd, $1 \mathrm{H} ; \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}-\mathrm{CH}_{2}$ ), 5.28 (s broad, $1 \mathrm{H} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-\mathrm{CH}$ ), 5.30 (t narrow, $1 \mathrm{H}, \mathrm{J}=1.4 \mathrm{~Hz} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-\mathrm{CH}), 6.86$ (d, 2H, J=8.2 Hz; Ar-H), 7.30-7.33 (m, $4 \mathrm{H} ; \mathrm{Ar}-\mathrm{H}), 7.77(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz} ; \mathrm{Ar}-\mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.5\left(\mathrm{CH}_{3}\right)$, $23.5\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 48.9\left(\mathrm{CH}_{2}\right), 55.2\left(\mathrm{OCH}_{3}\right), 62.9(\mathrm{CH}), 112.5$ $\left(\mathrm{CH}_{2}\right), 113.7(\mathrm{CH}), 127.5(\mathrm{CH}), 127.9(\mathrm{CH}), 129.6(\mathrm{CH}), 132.2(\mathrm{Cq}), 135.2(\mathrm{Cq}), 143.3(\mathrm{Cq}), 148.1(\mathrm{Cq}), 159.1(\mathrm{Cq})$.
IR: $2969.8 \mathrm{~cm}^{-1}, 2925.5 \mathrm{~cm}^{-1}, 2871.6 \mathrm{~cm}^{-1}, 2836.7 \mathrm{~cm}^{-1}, 1605.9 \mathrm{~cm}^{-1}, 1510.2 \mathrm{~cm}^{-1}, 1455.5 \mathrm{~cm}^{-1}, 1336.6 \mathrm{~cm}^{-1}, 1302.1 \mathrm{~cm}^{-1}, 1243.9 \mathrm{~cm}$ ${ }^{1}, 1182.7 \mathrm{~cm}^{-1}, 1155.3 \mathrm{~cm}^{-1}, 1092.1 \mathrm{~cm}^{-1}, 1029.9 \mathrm{~cm}^{-1}, 1005.8 \mathrm{~cm}^{-1}, 901.9 \mathrm{~cm}^{-1}, 833.3 \mathrm{~cm}^{-1}, 814.4 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S},\left[\mathrm{M}_{+} \mathrm{H}\right]^{+}$theoretical $\mathrm{m} / \mathrm{z} 358.1471$, found $\mathrm{m} / \mathrm{z} 358.1481$; $[\mathrm{M}+\mathrm{Na}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 380.1296$, found $m / z 380.1306$.


2-(1-(3-Methoxyphenyl)vinyl)-1-tosylpyrrolidine 3f Following the described procedure, 56 mg ( 0.3 mmol ) of 3-bromoanisole $\mathbf{2 f}$ and $50 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 a}$ were reacted under the optimized conditions to afford 25 mg of 2-(1-(3-methoxyphenyl)vinyl)-1-tosylpyrrolidine $\mathbf{3 f}$ as a yellow oil (EP/AcOEt 7/1, yield 35\%). ${ }^{1} \mathrm{H}-$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.55-1.65\left(\mathrm{~m}, 3 \mathrm{H}+\mathrm{H}_{2} \mathrm{O} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}\right.$ and $\left.\mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right)$, 1.76-1.83 (m, $1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), 2.43 (s, 3H; Ar-CH3 ), 3.27 (td broad, $1 \mathrm{H}, \mathrm{J}=9.5,6.4 \mathrm{~Hz}$; $\mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), 3.53 (ddd broad, $1 \mathrm{H}, \mathrm{J}=9.6,7.2,2.7 \mathrm{~Hz}$; $\mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}_{-\mathrm{CH}}^{2}$ ), $3.82\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCH}_{3}\right.$ ), 4.72 (dd broad, $1 \mathrm{H}, \mathrm{J}=7.5,3.2 \mathrm{~Hz}$; N-CH$\mathrm{CH}_{2}$ ), 5.35 (s broad, $1 \mathrm{H} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-\mathrm{CH}$ ), 5.39 (t narrow, $1 \mathrm{H}, \mathrm{J}=1.1 \mathrm{~Hz} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-\mathrm{CH}$ ), 6.83 (ddd, $1 \mathrm{H}, \mathrm{J}=8.3$, $2.6,0.8 \mathrm{~Hz}$; Ar-H), 6.90-6.91 (m, 1H; Ar-H), 6.95-6.96 (m, 1H; Ar-H), 7.23-7.24 (m, 1H; Ar-H), 7.32 (d, 2H, J= $8.5 \mathrm{~Hz} ;$ Ts-H), 7.77 (d, 2H, J= 8.5 Hz ; Ts-H).
${ }^{13} \mathrm{C}$-NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=21.5\left(\mathrm{CH}_{3}\right), 23.5\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 48.9\left(\mathrm{CH}_{2}\right)$, $55.2\left(\mathrm{OCH}_{3}\right), 62.9(\mathrm{CH}), 112.7(\mathrm{CH}), 113.0(\mathrm{CH}), 113.9$ $\left(\mathrm{CH}_{2}\right), 119.4(\mathrm{CH}), 127.5(\mathrm{CH}), 129.3(\mathrm{CH}), 129.6(\mathrm{CH}), 135.1(\mathrm{Cq}), 141.3(\mathrm{Cq}), 143.3(\mathrm{Cq}), 148.7(\mathrm{Cq}), 159.5(\mathrm{Cq})$.
IR: $2949.2 \mathrm{~cm}^{-1}, 2870.4 \mathrm{~cm}^{-1}, 2834.9 \mathrm{~cm}^{-1}, 1596.6 \mathrm{~cm}^{-1}, 1574.4 \mathrm{~cm}^{-1}, 1510.5 \mathrm{~cm}^{-1}, 1487.9 \mathrm{~cm}^{-1}, 1447.3 \mathrm{~cm}^{-1}, 1342.6 \mathrm{~cm}^{-1}, 1288.2 \mathrm{~cm}^{-1}$ ${ }^{1}, 1244.8 \mathrm{~cm}^{-1}, 1156.6 \mathrm{~cm}^{-1}, 1092.4 \mathrm{~cm}^{-1}, 1043.2 \mathrm{~cm}^{-1}, 1006.7 \mathrm{~cm}^{-1}, 907.5 \mathrm{~cm}^{-1}, 815.5 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 358.1471$, found $\mathrm{m} / \mathrm{z} 358.1469$; $[\mathrm{M}+\mathrm{Na}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 380.1296$, found $m / z 380.1291$.


2-(1-(2-Naphtyl)vinyl)-1-tosylpyrrolidine 3 g Following the described procedure, $62 \mathrm{mg}(0.3 \mathrm{mmol})$ of 2bromonaphthalene 2 g and $50 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 a}$ were reacted under the optimized conditions to afford 45 mg of 2-(1-(2-naphtylvinyl)-1-tosylpyrrolidine 3 g as a yellow solid (EP/AcOEt 7/1, yield 60\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.60-1.70\left(\mathrm{~m}, 3 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}\right.$ and $\left.\mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 1.79-1.89\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\right.$ $\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), 2.44 (s, 3H; Ar-CH3 ), 3.32 (td broad, $1 \mathrm{H}, \mathrm{J}=10.2,6.4 \mathrm{~Hz}$; $\mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), 3.57 (ddd broad, $1 \mathrm{H}, \mathrm{J}=$ $\left.10.5,6.9,2.8 \mathrm{~Hz} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 4.90$ (d broad, $\left.1 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz} ; \mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}\right), 5.48$ (s, $\left.1 \mathrm{H} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-\mathrm{CH}\right), 5.49$ (s, 1H; C(H)H=C-CH), 7.34 (d, 2H, J= $7.7 \mathrm{~Hz} ; \mathrm{Ts}-H$ ), 7.48 (qd, $2 \mathrm{H}, \mathrm{J}=6.8,1.9 \mathrm{~Hz} ; \mathrm{Ar}-\mathrm{H}$ ), 7.55 (dd, 1H, J=8.6, $1.8 \mathrm{~Hz} ; \mathrm{Ar}-\mathrm{H}$ ), 7.82 (m, 6H; Ts-H + Ar-H).
${ }^{13} \mathrm{C}-$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=21.6\left(\mathrm{CH}_{3}\right)$, $23.6\left(\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 49.0\left(\mathrm{CH}_{2}\right), 63.1(\mathrm{CH}), 114.5\left(\mathrm{CH}_{2}\right), 125.4$ $(\mathrm{CH}), 125.6(\mathrm{CH}), 126.1(\mathrm{CH}), 126.4(\mathrm{CH}), 127.6(\mathrm{CH}), 128.0(\mathrm{CH}), 128.2(\mathrm{CH}), 129.8(\mathrm{CH}), 132.9(\mathrm{Cq}), 132.9(\mathrm{Cq}), 133.3(\mathrm{Cq}), 135.3$ (Cq), 137.3 (Cq), $143.5(\mathrm{Cq}), 148.9(\mathrm{Cq})$.
IR: $3061.8 \mathrm{~cm}^{-1}, 2979.3 \mathrm{~cm}^{-1}, 2952.2 \mathrm{~cm}^{-1}, 2916.4 \mathrm{~cm}^{-1}, 2864.1 \mathrm{~cm}^{-1}, 1625.7 \mathrm{~cm}^{-1}, 1595.7 \mathrm{~cm}^{-1}, 1490.9 \mathrm{~cm}^{-1}, 1443.8 \mathrm{~cm}^{-1}, 1338.6 \mathrm{~cm}^{-}$ ${ }^{1}, 1299.7 \mathrm{~cm}^{-1}, 1185.5 \mathrm{~cm}^{-1}, 1155.9 \mathrm{~cm}^{-1}, 1116.8 \mathrm{~cm}^{-1}, 1087.9 \mathrm{~cm}^{-1}, 1061.6 \mathrm{~cm}^{-1}, 1003.8 \mathrm{~cm}^{-1}, 905.2 \mathrm{~cm}^{-1}, 884.9 \mathrm{~cm}^{-1}, 824.4 \mathrm{~cm}^{-1}, 750.5$ $\mathrm{cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S},[\mathbf{M}+\mathrm{H}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 378.1528$, found $\mathrm{m} / \mathrm{z} 378.1529$. $\mathbf{M p}$ : 86.3-88.0 ${ }^{\circ} \mathrm{C}$


2-(1-(6-Methoxynapht-2-yl)vinyl)-1-tosylpyrrolidine $\mathbf{3 h}$ Following the described procedure, 71 mg ( 0.3 mmol ) of 6-methoxy-2-bromonaphthalene $\mathbf{2 h}$ and 50 mg ( 0.2 mmol ) of allene $\mathbf{1 a}$ were reacted under the optimized conditions to afford 36 mg of 2-(1-(6-methoxynapht-2-yl)vinyl)-1-tosylpyrrolidine 3 h as a yellow oil (EP/AcOEt 7/1, yield 44\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.60-1.72\left(\mathrm{~m}, 3 \mathrm{H}+\mathrm{H}_{2} \mathrm{O} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}\right.$ and $\left.\mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right)$, 1.79-1.88 (m, $1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), 2.44 (s, 3 H ; $\mathrm{Ar}-\mathrm{CH}_{3}$ ), 3.32 (td broad, $1 \mathrm{H}, \mathrm{J}=9.6,6.3 \mathrm{~Hz} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), 3.56 (ddd broad, $1 \mathrm{H}, \mathrm{J}=9.9,7.3,2.9 \mathrm{~Hz}$; N-C(H)H-CH2), $3.92\left(\mathrm{~s}, 3 \mathrm{H} ;-\mathrm{OCH}_{3}\right.$ ), 4.89 (d broad, $1 \mathrm{H}, \mathrm{J}=7.7 \mathrm{~Hz}$; N-CH$\mathrm{CH}_{2}$ ), 5.44 (s, 1H; C(H)H=C-CH), 5.45 (s, 1H; C(H)H=C-CH), 7.12-7.13 (m, 1H; Ar-H), 7.15 (dd, $1 \mathrm{H}, \mathrm{J}=$ 8.8, 2.5 Hz; Ar-H), 7.33 (d, 2H, J=7.9 Hz; Ts-H), 7.51 (dd, $1 \mathrm{H}, \mathrm{J}=8.4,1.9 \mathrm{~Hz} ; \mathrm{Ar}-\mathrm{H}$ ), 7.69-7.73 (m, 3H; Ar-H), 7.81 (d, 2H, J= 8.3 Hz ; Ts-H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.5\left(\mathrm{CH}_{3}\right)$, $23.5\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 48.9\left(\mathrm{CH}_{2}\right), 55.3\left(\mathrm{OCH}_{3}\right), 62.9(\mathrm{CH}), 105.5(\mathrm{CH}), 113.6\left(\mathrm{CH}_{2}\right), 119.0$ $(\mathrm{CH}), 125.2(\mathrm{CH}), 125.8(\mathrm{CH}), 126.8(\mathrm{CH}), 127.5(\mathrm{CH}), 128.6(\mathrm{Cq}), 129.55(\mathrm{CH}), 129.64(\mathrm{CH}), 133.9(\mathrm{Cq}), 134.9(\mathrm{Cq}), 135.2(\mathrm{Cq})$, $143.3(\mathrm{Cq}), 148.7(\mathrm{Cq}), 157.8(\mathrm{Cq})$.
IR: $2975.2 \mathrm{~cm}^{-1}, 2950.8 \mathrm{~cm}^{-1}, 2879.1 \mathrm{~cm}^{-1}, 1626.9 \mathrm{~cm}^{-1}, 1598.2 \mathrm{~cm}^{-1}, 1482.4 \mathrm{~cm}^{-1}, 1446.5 \mathrm{~cm}^{-1}, 1391.7 \mathrm{~cm}^{-1}, 1341.1 \mathrm{~cm}^{-1}, 1322.3 \mathrm{~cm}^{-1}$ ${ }^{1}$, $1271.5 \mathrm{~cm}^{-1}, 1200.5 \mathrm{~cm}^{-1}, 1187.2 \mathrm{~cm}^{-1}, 1155.4 \mathrm{~cm}^{-1}, 1092.4 \mathrm{~cm}^{-1}, 1006.9 \mathrm{~cm}^{-1}, 909.2 \mathrm{~cm}^{-1}, 894.7 \mathrm{~cm}^{-1}, 813.4 \mathrm{~cm}^{-1}, 754.2 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 408.1628$, found $\mathrm{m} / \mathrm{z} 408.1627$; $[\mathrm{M}+\mathrm{Na}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 430.1447$, found $m / z 430.1448$.


2-(1-(1-Naphtyl)vinyl)-1-tosylpyrrolidine $\mathbf{3 i}$ Following the described procedure, 62 mg ( 0.3 mmol ) of 1 bromonaphthalene $\mathbf{2 i}$ and $50 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1}$ a were reacted under the optimized conditions to afford 40 mg of 2-(1-(1-naphtylvinyl)-1-tosylpyrrolidine $3 \mathbf{i}$ as an orange/yellow oil (EP/AcOEt 7/1, yield 53\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta=1.25-1.33\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}\right), 1.57-1.67\left(\mathrm{~m}, 2 \mathrm{H}+\mathrm{H}_{2} \mathrm{O} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}\right.$ and $\left.\mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 1.87-1.95\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 2.39\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}\right.$ ), 3.23 (td, $1 \mathrm{H}, \mathrm{J}=9.9,6.7 \mathrm{~Hz} ; \mathrm{N}-$ $\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), 3.62 (ddd broad, $1 \mathrm{H}, \mathrm{J}=10.0,7.2,2.6 \mathrm{~Hz}$; $\left.\mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 4.67$ (d broad, $1 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}$; N-CH$\mathrm{CH}_{2}$ ), 5.30 (s broad, $\left.1 \mathrm{H} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-\mathrm{CH}\right), 5.82$ (t, $1 \mathrm{H}, J=1.6 \mathrm{~Hz} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-\mathrm{CH}$ ), 7.29 (d, 2H, J= $8.6 \mathrm{~Hz} ; \mathrm{Ts}-H$ ), 7.32 (d, $1 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz} ; \mathrm{Ar}-H$ ), 7.44 (dd, $1 \mathrm{H}, \mathrm{J}=8.3,6.8 \mathrm{~Hz}$; Ar-H), 7.50-7.53 (m, 1H, Ar-H), 7.56-7.60 (m, 1H; Ar-H), 7.77-7.82 (m, 3H; Ts-H and Ar-H), 7.87 (d, 1H, J= 8.3 Hz ; Ar-H), 8.30 (d, 1H, J=8.5 Hz; Ar-H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=21.5\left(\mathrm{CH}_{3}\right), 23.3\left(\mathrm{CH}_{2}\right), 30.7\left(\mathrm{CH}_{2}\right), 49.2\left(\mathrm{CH}_{2}\right), 64.4(\mathrm{CH}), 116.5\left(\mathrm{CH}_{2}\right), 125.2(\mathrm{CH}), 125.9(\mathrm{CH}), 126.29$ $(\mathrm{CH}), 126.3(\mathrm{CH}), 127.5(\mathrm{CH}), 127.8(\mathrm{CH}), 128.2(\mathrm{CH}), 129.7(\mathrm{CH}), 131.7(\mathrm{Cq}), 133.6(\mathrm{Cq}), 134.8(\mathrm{Cq}), 138.6(\mathrm{Cq}), 143.3(\mathrm{Cq}), 148.2$ (Cq).
IR: $3038.26 \mathrm{~cm}^{-1}, 2975.7 \mathrm{~cm}^{-1}, 2944.7 \mathrm{~cm}^{-1}, 2891.7 \mathrm{~cm}^{-1}, 2870.5 \mathrm{~cm}^{-1}, 1597.0 \mathrm{~cm}^{-1}, 1492.9 \mathrm{~cm}^{-1}, 1446.6 \mathrm{~cm}^{-1}, 1397.3 \mathrm{~cm}^{-1}, 1340.9 \mathrm{~cm}$ ${ }^{1}$, $1243.3 \mathrm{~cm}^{-1}, 1183.9 \mathrm{~cm}^{-1}, 1155.4 \mathrm{~cm}^{-1}, 1112.2 \mathrm{~cm}^{-1}, 1087.2 \mathrm{~cm}^{-1}, 1045.9 \mathrm{~cm}^{-1}, 992.7 \mathrm{~cm}^{-1}, 911.2 \mathrm{~cm}^{-1}, 815.7 \mathrm{~cm}^{-1}, 782.8 \mathrm{~cm}^{-1}, 754.9$ $\mathrm{cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S},[\mathbf{M}+\mathrm{H}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 378.1528$, found $\mathrm{m} / \mathrm{z} 378.1530$.


2-(1-(N,N-Dimethylaminophenyl)vinyl)-1-tosylpyrrolidine $3 \mathbf{j}$ Following the described procedure, 60 mg ( 0.3 mmol ) of 4-bromo- $\mathrm{N}, \mathrm{N}$-dimethyaniline $\mathbf{2 j}$ and $50 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 a}$ were reacted under the optimized conditions to afford 26 mg of 2-(1-( $N, N$-dimethylaminophenyl)vinyl)-1-tosylpyrrolidine 3 j as an amber oil (EP/AcOEt 7/1, yield 37\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.59-1.66\left(\mathrm{~m}, 3 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}\right.$ and $\left.\mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right)$, 1.78-1.87 (m, $1 \mathrm{H} ; \mathrm{CH}_{2}-$ $\left.\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}\right), 2.96\left(\mathrm{~s}, 6 \mathrm{H} ; \mathrm{N}-\left(\mathrm{CH}_{3}\right)_{2}\right), 3.27-3.32\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 3.53(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{N}-$ $\left.\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 4.75-4.77\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}\right), 5.21(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-\mathrm{CH}), 5.26(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-\mathrm{CH}), 6.68$ (d broad, 2H, J= 8.3 Hz ; Ar-H), 7.27 (d, 2H+CDCl 3 , J= 8.7 Hz ; Ts-H), 7.31 (d, 2H, J= 7.9 Hz ; Ar-H), 7.77 (d, 2H, $J=8.2$; Ts $-H$ ).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=21.5\left(\mathrm{CH}_{3}\right)$, $23.5\left(\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 40.5\left(\mathrm{CH}_{3}\right), 48.9\left(\mathrm{CH}_{2}\right), 62.8(\mathrm{CH}), 110.7$ $\left(\mathrm{CH}_{2}\right), 121.1(\mathrm{CH}), 127.4(\mathrm{CH}), 127.5(\mathrm{CH}), 129.6(\mathrm{CH}), 135.3(\mathrm{Cq}), 143.2(\mathrm{Cq}), 148.1(\mathrm{Cq}), 150.0(\mathrm{Cq})$.
IR: $2873.7 \mathrm{~cm}^{-1}, 1607.8 \mathrm{~cm}^{-1}, 1520.5 \mathrm{~cm}^{-1}, 1479.8 \mathrm{~cm}^{-1}, 1444.9 \mathrm{~cm}^{-1}, 1342.5 \mathrm{~cm}^{-1}, 1303.1 \mathrm{~cm}^{-1}, 1190.0 \mathrm{~cm}^{-1}, 1156.1 \mathrm{~cm}^{-1}, 1092.5 \mathrm{~cm}^{-}$ ${ }^{1}, 1060.8 \mathrm{~cm}^{-1}, 1006.8 \mathrm{~cm}^{-1}, 946.5 \mathrm{~cm}^{-1}, 895.2 \mathrm{~cm}^{-1}, 852.7 \mathrm{~cm}^{-1}, 816.2 \mathrm{~cm}^{-1}, 754.7 \mathrm{~cm}^{-1}, 709.7 \mathrm{~cm}^{-1}, 664.1 \mathrm{~cm}^{-1}, 589.6 \mathrm{~cm}^{-1}, 551.9 \mathrm{~cm}^{-}$ 1.

MS (ESI): Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S},[\mathrm{M}+\mathrm{Na}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 393.1607$, found $\mathrm{m} / \mathrm{z} 393.1603$.


2-(1-(4-Acetylphenyl)vinyl)-1-tosylpyrrolidine 3 k Following the described procedure, $60 \mathrm{mg}(0.3 \mathrm{mmol})$ of 4bromoacetophenone $\mathbf{2 k}$ (or 74 mg of 4 -iodoacetophenone $\mathbf{4} \mathbf{k}^{\prime}$ ) and $50 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1}$ a were reacted under the optimized conditions to afford 73 mg ( 38 mg from $\mathbf{4 k}$ ') of 2-(1-(4-acetylphenyl)vinyl)-1-tosylpyrrolidine $\mathbf{3 k}$ as a light yellow solid (gradient: EP/AcOEt 7/1 to 7/3, yield 85\%, $52 \%$ from $\mathbf{4 k}$ ').
 (m, 1H; CH $\mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), $2.43\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}\right), 2.60\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CO}_{3}-\mathrm{CH}_{3}\right.$ ), 3.27 (td broad, $1 \mathrm{H}, \mathrm{J}=9.4,6.8 \mathrm{~Hz} ; \mathrm{N}-$ $\left.\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 3.52$ (ddd, $1 \mathrm{H}, \mathrm{J}=9.8,8.5,3.4 \mathrm{~Hz} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), 4.73 (dd broad, $1 \mathrm{H}, \mathrm{J}=8.5,3.2 \mathrm{~Hz}$; $\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}$ ), 5.44 (s, 1H; C(H)H=C-CH), 5.50 (s broad, 1H; C(H)H=C-CH), 7.33 (d, 2H, J= $8.3 \mathrm{~Hz} ; \mathrm{Ts}-\mathrm{H}$ ), 7.47 (d, 2H, J= 8.5 $\mathrm{Hz} ; \mathrm{Ar}-\mathrm{H}$ ), 7.77 (d, 2H, J= 8.3 Hz ; Ts-H), 7.92 (d, 2H, J= 8.5 Hz ; Ar-H).
${ }^{13} \mathrm{C}-$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.5\left(\mathrm{CH}_{3}\right)$, $23.5\left(\mathrm{CH}_{2}\right)$, $26.6\left(\mathrm{CH}_{3}\right)$, $31.9\left(\mathrm{CH}_{2}\right)$, $48.9\left(\mathrm{CH}_{2}\right)$, $62.7(\mathrm{CH}), 115.6$ $\left(\mathrm{CH}_{2}\right), 127.1(\mathrm{CH}), 127.5(\mathrm{CH}), 128.4(\mathrm{CH}), 129.7(\mathrm{CH}), 134.9(\mathrm{Cq}), 136.2(\mathrm{Cq}), 143.5(\mathrm{Cq}), 144.5(\mathrm{Cq}), 148.1(\mathrm{Cq}), 197.6(\mathrm{Cq})$.
IR: $3051.7 \mathrm{~cm}^{-1}, 3029.6 \mathrm{~cm}^{-1}, 2977.4 \mathrm{~cm}^{-1}, 2956.7 \mathrm{~cm}^{-1}, 2876.3 \mathrm{~cm}^{-1}, 1676.3 \mathrm{~cm}^{-1}, 1598.9 \mathrm{~cm}^{-1}, 1556.7 \mathrm{~cm}^{-1}, 1447.7 \mathrm{~cm}^{-1}, 1405.7 \mathrm{~cm}^{-}$ ${ }^{1}, 1344.5 \mathrm{~cm}^{-1}, 1266.8 \mathrm{~cm}^{-1}, 1189.1 \mathrm{~cm}^{-1}, 1157.8 \mathrm{~cm}^{-1}, 1087.0 \mathrm{~cm}^{-1}, 1059.5 \mathrm{~cm}^{-1}, 998.6 \mathrm{~cm}^{-1}, 958.5 \mathrm{~cm}^{-1}, 905.1 \mathrm{~cm}^{-1}, 854.3 \mathrm{~cm}^{-1}, 824.9$ $\mathrm{cm}^{-1}, 811.9 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 370.1471$, found $\mathrm{m} / \mathrm{z} 370.1477$. $\mathbf{M p}: 85.5-86.1^{\circ} \mathrm{C}$


2-(1-(3-Acetylphenyl)vinyl)-1-tosylpyrrolidine 31 Following the described procedure, 60 mg ( 0.3 mmol ) of 3 -bromoacetophenone $\mathbf{2 l}$ and $50 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 a}$ were reacted under the optimized conditions to afford 33 mg of 2-(1-(3-acetylphenyl)vinyl)-1-tosylpyrrolidine 31 as a yellow oil (gradient: EP/AcOEt $7 / 1$ to $7 / 3$, yield 44\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.54-1.70\left(\mathrm{~m}, 3 \mathrm{H}+\mathrm{H}_{2} \mathrm{O} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}\right.$ and $\left.\mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}_{-} \mathrm{CH}_{2}\right)$, 1.75-1.82 ( $\mathrm{m}, 1 \mathrm{H}$; $\left.\mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 2.44\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}^{2} \mathrm{CH}_{3}\right), 2.62\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CO}_{3}-\mathrm{CH}_{3}\right), 3.28\left(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}=9.5,6.6 \mathrm{~Hz} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 3.52$ (ddd, $\left.1 \mathrm{H}, \mathrm{J}=10.2,8.1,3.9 \mathrm{~Hz} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 4.72$ (m broad, $\left.1 \mathrm{H} ; \mathrm{N}-\mathrm{CH}_{-} \mathrm{CH}_{2}\right), 5.40(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-\mathrm{CH})$, 5.47 (s broad, $1 \mathrm{H} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-\mathrm{CH}$ ), 7.34 (d, $2 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz} ; \mathrm{Ts}-\mathrm{H}$ ), $7.44(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.9 \mathrm{~Hz} ; \mathrm{Ar}-\mathrm{H}$ ), 7.60 (d, 1H, J= 7.6 Hz ; Ar-H), 7.78 (d, 2H, J= 8.3 Hz ; Ts-H), 7.87 (d, 1H, J= 7.6 Hz ; Ar-H), 7.95(s, 1H; Ar-H).
${ }^{13} \mathrm{C}-$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=21.5\left(\mathrm{CH}_{3}\right), 23.6\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{3}\right), 31.9\left(\mathrm{CH}_{2}\right), 48.9\left(\mathrm{CH}_{2}\right), 62.9(\mathrm{CH}), 115.1\left(\mathrm{CH}_{2}\right), 126.7(\mathrm{CH}), 127.5$ $(\mathrm{CH}), 127.6(\mathrm{CH}), 128.6(\mathrm{CH}), 131.6(\mathrm{CH}), 135.0(\mathrm{Cq}), 137.2(\mathrm{Cq}), 140.3(\mathrm{Cq}), 143.5(\mathrm{Cq}), 148.2(\mathrm{Cq}), 198.1(\mathrm{Cq})$.
IR: $2973.2 \mathrm{~cm}^{-1}, 2949.6 \mathrm{~cm}^{-1}, 2872.9 \mathrm{~cm}^{-1}, 1682.4 \mathrm{~cm}^{-1}, 1596.2 \mathrm{~cm}^{-1}, 1492.9 \mathrm{~cm}^{-1}, 1446.2 \mathrm{~cm}^{-1}, 1423.5 \mathrm{~cm}^{-1}, 1343.0 \mathrm{~cm}^{-1}, 1233.7 \mathrm{~cm}^{-}$ ${ }^{1}, 1190.0 \mathrm{~cm}^{-1}, 1156.4 \mathrm{~cm}^{-1}, 1092.1 \mathrm{~cm}^{-1}, 1006.8 \mathrm{~cm}^{-1}, 910.6 \mathrm{~cm}^{-1}, 813.9 \mathrm{~cm}^{-1}, 755.2 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S},[\mathbf{M}+\mathrm{H}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 370.1471$, found $\mathrm{m} / \mathrm{z} 370.1475$.


2-(1-(4-Formylphenyl)vinyl)-1-tosylpyrrolidine 3 m Following the described procedure, $56 \mathrm{mg}(0.3 \mathrm{mmol})$ of 4-bromobenzaldehyde $\mathbf{2 m}$ and $50 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 a}$ were reacted under the optimized conditions to afford 48 mg of 2-(1-(4-formylphenyl)vinyl)-1-tosylpyrrolidine 3 m as a yellow solid (EP/AcOEt 6/4, yield 67\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.51-1.56\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}\right), 1.60-1.70\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}\right.$ and $\mathrm{CH}_{2}{ }^{-}$
 $3.55\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 4.72\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz} ; \mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}\right), 5.47(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-\mathrm{CH}), 5.53(\mathrm{~s}, 1 \mathrm{H}$; $\mathrm{C}(\mathrm{H}) H=\mathrm{C}-\mathrm{CH}), 7.33(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}$; Ts-H), $7.54(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}$; Ar-H), 7.76 (d, 2H, J= 8.2 Hz ; Ts-H), 7.84 (d, 2H, J= $8.3 \mathrm{~Hz} ; \mathrm{Ar}-\mathrm{H}$ ), 9.99 (s, 1H; CHO).
${ }^{13} \mathrm{C}$-NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.5\left(\mathrm{CH}_{3}\right), 23.5\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 48.9\left(\mathrm{CH}_{2}\right), 62.6(\mathrm{CH}), 116.1\left(\mathrm{CH}_{2}\right), 127.4$ (CH), $127.5(\mathrm{CH}), 129.7(\mathrm{CH}), 129.8(\mathrm{CH}), 134.8(\mathrm{Cq}), 135.5(\mathrm{Cq}), 143.5(\mathrm{Cq}), 145.9(\mathrm{Cq}), 148.1(\mathrm{Cq}), 191.7$
(CHO).
IR: $2959.5 \mathrm{~cm}^{-1}, 2877.6 \mathrm{~cm}^{-1}, 2818.7 \mathrm{~cm}^{-1}, 2734.6 \mathrm{~cm}^{-1}, 1687.9 \mathrm{~cm}^{-1}, 1602.2 \mathrm{~cm}^{-1}, 1563.6 \mathrm{~cm}^{-1}, 1447.4 \mathrm{~cm}^{-1}, 1331.3 \mathrm{~cm}^{-1}, 1259.9 \mathrm{~cm}^{-}$ ${ }^{1}, 1221.1 \mathrm{~cm}^{-1}, 1088.3 \mathrm{~cm}^{-1}, 1039.2 \mathrm{~cm}^{-1}, 1003.3 \mathrm{~cm}^{-1}, 905.6 \mathrm{~cm}^{-1}, 812.3 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 356.1315$, found $\mathrm{m} / \mathrm{z} 356.1325$. Mp : 81.3-84.0 ${ }^{\circ} \mathrm{C}$


Methyl 4-(1-(1-tosylpyrrolidin-2-yl)vinyl)benzoate 3n Following the described procedure, 65 mg ( 0.3 $\mathrm{mmol})$ of methyl 4-bromobenzoate $\mathbf{2 n}$ and $50 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 a}$ were reacted under the optimized conditions to afford 36 mg of methyl 4 -(1-(1-tosylpyrrolidin-2-yl)vinyl)benzoate $\mathbf{3 n}$ as a yellow oil (EP/AcOEt $7 / 1$, yield $47 \%$ ).
${ }^{1} \mathrm{H}-$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta=1.51-1.55\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(H)-\mathrm{CH}\right), 1.59-1.67\left(\mathrm{~m}, 2 \mathrm{H}+\mathrm{H}_{2} \mathrm{O} ; \mathrm{CH}_{2}-\mathrm{C}(H)-\mathrm{CH}\right.$ and $\mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), 1.73-1.84 (m, 1H; $\mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), $2.43\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}\right), 3.27$ (td broad, $1 \mathrm{H}, \mathrm{J}=10.9,7.4$ $\mathrm{Hz} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), 3.53 (ddd broad, $1 \mathrm{H}, \mathrm{J}=9.1,8.6,3.6 \mathrm{~Hz}$; $\mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), 3.91 ( $\mathrm{s}, 3 \mathrm{H} ;-\mathrm{OCH}_{3}$ ), 4.71-4.74 (dd, $1 \mathrm{H}, \mathrm{J}=8.3,3.6 \mathrm{~Hz}$; $\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}$ ), 5.43 (s, $1 \mathrm{H} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-\mathrm{CH}$ ), 5.49 (t narrow, $1 \mathrm{H}, \mathrm{J}=1.4 \mathrm{~Hz}$; C(H)H=CCH), 7.33 (d, 2H, J= 8.3 Hz ; Ts-H), 7.44 (d, 2H, J= 8.6 Hz ; Ar-H), 7.77 (d, 2H, J= 8.3 Hz ; Ts-H), 7.99 (d, 2H, $J=8.6 \mathrm{~Hz}$; Ar-H).
${ }^{13} \mathrm{C}$-NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=21.5\left(\mathrm{CH}_{3}\right)$, $23.5\left(\mathrm{CH}_{2}\right)$, $31.9\left(\mathrm{CH}_{2}\right), 48.9\left(\mathrm{CH}_{2}\right), 52.1\left(\mathrm{OCH}_{3}\right), 62.7(\mathrm{CH}), 115.5\left(\mathrm{CH}_{2}\right), 126.9(\mathrm{CH}), 127.5$ $(\mathrm{CH}), 129.3(\mathrm{Cq}), 129.66(\mathrm{CH}), 129.71(\mathrm{CH}), 135.0(\mathrm{Cq}), 143.5(\mathrm{Cq}), 144.3(\mathrm{Cq}), 148.2(\mathrm{Cq}), 166.8(\mathrm{Cq})$.
IR: $2951.9 \mathrm{~cm}^{-1}, 2874.6 \mathrm{~cm}^{-1}, 2253.3 \mathrm{~cm}^{-1}, 1716.4 \mathrm{~cm}^{-1}, 1606.8 \mathrm{~cm}^{-1}, 1434.9 \mathrm{~cm}^{-1}, 1403.5 \mathrm{~cm}^{-1}, 1344.7 \mathrm{~cm}^{-1}, 1276.2 \mathrm{~cm}^{-1}, 1188.8 \mathrm{~cm}^{-}$ ${ }^{1}, 1155.8 \mathrm{~cm}^{-1}, 1092.7 \mathrm{~cm}^{-1}, 1007.2 \mathrm{~cm}^{-1}, 911.3 \mathrm{~cm}^{-1}, 863.9 \mathrm{~cm}^{-1}, 814.5 \mathrm{~cm}^{-1}, 781.8 \mathrm{~cm}^{-1}, 723.5 \mathrm{~cm}^{-1}, 665.1 \mathrm{~cm}^{-1}, 586.6 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S},[\mathrm{M}+\mathrm{Na}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 408.1240$, found $\mathrm{m} / \mathrm{z} 408.1236$.


Methyl 3-(1-(1-tosylpyrrolidin-2-yl)vinyl)benzoate 3o Following the described procedure, 65 mg ( 0.3 mmol ) of methyl 3-bromobenzoate $\mathbf{2 n}$ and $50 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene 1 a were reacted under the optimized conditions to afford 33 mg of methyl 3-(1-(1-tosylpyrrolidin-2-yl)vinyl)benzoate 30 as a light yellow oil (EP/AcOEt 7/1, yield 43\%).
${ }^{1} \mathrm{H}-$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=1.52-1.58\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(H)-\mathrm{CH}\right), 1.59-1.68\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(H)-\mathrm{CH}\right.$ and $\mathrm{CH}_{2}-$ $\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), 1.74-1.84 (m, 1H; $\mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), $2.43\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}\right.$ ), 3.27 (td broad, $1 \mathrm{H}, \mathrm{J}=9.8,7.1 \mathrm{~Hz}$; $\mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), 3.53 (ddd broad, $1 \mathrm{H}, \mathrm{J}=10.0,8.9,3.2 \mathrm{~Hz} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), 3.93 (s,3H; OCH3), 4.74 (dd, 1H, $J=8.7,3.0 \mathrm{~Hz} ; \mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}$ ), 5.40 (s broad, $1 \mathrm{H} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-\mathrm{CH}$ ), 5.46 (t broad, $\left.1 \mathrm{H}, \mathrm{J}=1.3 \mathrm{~Hz} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-\mathrm{CH}\right)$, $7.33(\mathrm{~d}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz} ; \mathrm{Ts}-H), 7.41(\mathrm{t}, 1 \mathrm{H}, J=8.1$; Ar-H), $7.59(\mathrm{ddd}, 1 \mathrm{H}, J=7.6,1.3,0.8 \mathrm{~Hz} ; \mathrm{Ts}-H), 7.78(\mathrm{~d}$, $2 H, J=8.3 ; A r-H), 7.95(d t, 1 H, J=7.7,1.2 \mathrm{~Hz} ; \mathrm{Ar}-H), 8.0(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=1.8 \mathrm{~Hz} ; \mathrm{Ar}-H)$.
${ }^{13} \mathbf{C}-$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.5\left(\mathrm{CH}_{3}\right), 23.5\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 48.9\left(\mathrm{CH}_{2}\right), 52.2\left(\mathrm{OCH}_{3}\right), 62.8(\mathrm{CH}), 114.9\left(\mathrm{CH}_{2}\right), 127.5(\mathrm{CH}), 128.0$ $(\mathrm{CH}), 128.5(\mathrm{CH}), 128.7(\mathrm{CH}), 129.7(\mathrm{CH}), 130.3(\mathrm{Cq}), 131.4(\mathrm{CH}), 135.0(\mathrm{Cq}), 140.1(\mathrm{Cq}), 143.4(\mathrm{Cq}), 148.0(\mathrm{Cq}), 166.9(\mathrm{Cq})$.
IR: $2982.5 \mathrm{~cm}^{-1}, 2956.4 \mathrm{~cm}^{-1}, 2878.5 \mathrm{~cm}^{-1}, 2867.3 \mathrm{~cm}^{-1}, 1720.6 \mathrm{~cm}^{-1}, 1596.8 \mathrm{~cm}^{-1}, 1580.1 \mathrm{~cm}^{-1}, 1449.2 \mathrm{~cm}^{-1}, 1439.9 \mathrm{~cm}^{-1}, 1383.2 \mathrm{~cm}^{-1}$, $1323.4 \mathrm{~cm}^{-1}, 1303.5 \mathrm{~cm}^{-1}, 1270.8 \mathrm{~cm}^{-1}, 1244.9 \mathrm{~cm}^{-1}, 1191.9 \mathrm{~cm}^{-1}, 1150.4 \mathrm{~cm}^{-1}, 1091.6 \mathrm{~cm}^{-1}, 1011.6 \mathrm{~cm}^{-1}, 965.3 \mathrm{~cm}^{-1}, 907.3 \mathrm{~cm}^{-1}, 850.1$ $\mathrm{cm}^{-1}, 814.7 \mathrm{~cm}^{-1}, 762.6 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}$, [M+Na] theoretical $m / z 408.1240$, found $m / z 408.1238$.


Methyl 2-(1-(1-tosylpyrrolidin-2-yl)vinyl)benzoate 3p Following the described procedure, 65 mg ( 0.3 mmol ) of methyl 2 -bromobenzoate $\mathbf{2 n}$ and $50 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene 1 a were reacted under the optimized conditions to afford 31 mg of methyl 2-(1-(1-tosylpyrrolidin-2-yl)vinyl)benzoate 3 p as a yellow oil (EP/AcOEt 7/1, yield 40\%). ${ }^{1} \mathrm{H}$-NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=1.31-1.38\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H})-\mathrm{CH}\right), 1.58-1.66\left(\mathrm{~m}, 1 \mathrm{H}+\mathrm{H} 2 \mathrm{O} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 1.70-$ 1.78 (m, 1H; CH $2-\mathrm{C}(H)-\mathrm{CH}$ ), 1.80-1.88 (m, 1H; CH2-C(H)H-CH2), $2.42\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}\right), 3.23$ (td broad, $1 \mathrm{H}, \mathrm{J}=$ $9.6,7.0 \mathrm{~Hz} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), 3.51 (ddd broad, $1 \mathrm{H}, \mathrm{J}=10.2,9.2,2.8 \mathrm{~Hz} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}_{-} \mathrm{CH}_{2}$ ), 3.87 (s, 3H; OCH3), 4.69 (d broad, $1 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz} ; \mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}$ ), 5.05 (s broad, $1 \mathrm{H} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-\mathrm{CH}$ ), 5.47 (t narrow, $1 \mathrm{H}, \mathrm{J}=1.4 \mathrm{~Hz} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-$ CH), 7.31 (d, 2H, J= 7.9 Hz ; Ts-H), $7.32-7.37$ (m, 2H; Ar-H), 7.46 (td, $1 \mathrm{H}, \mathrm{J}_{1}=7.5 \mathrm{~Hz}, \mathrm{~J}_{2}=1.4 \mathrm{~Hz} ; \mathrm{Ar}-\mathrm{H}$ ), 7.74 (dd, $1 \mathrm{H}, J=7.8,1.4 \mathrm{~Hz} ; \mathrm{Ar}-H$ ), 7.77 (d, 2H, J=7.9; Ts-H).
${ }^{13} \mathbf{C}-$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.5\left(\mathrm{CH}_{3}\right), 23.4\left(\mathrm{CH}_{2}\right), 30.3\left(\mathrm{CH}_{2}\right), 48.8\left(\mathrm{CH}_{2}\right), 52.2\left(\mathrm{OCH}_{3}\right), 64.3(\mathrm{CH}), 115.6\left(\mathrm{CH}_{2}\right), 127.3(\mathrm{CH}), 127.4$ $(\mathrm{CH}), 129.62(\mathrm{CH}), 129.65(\mathrm{CH}), 130.0(\mathrm{CH}), 131.0(\mathrm{Cq}), 131.1(\mathrm{Cq}), 135.1(\mathrm{Cq}), 140.8(\mathrm{Cq}), 143.3(\mathrm{Cq}), 148.1(\mathrm{Cq}), 168.7(\mathrm{Cq})$. IR: $3051.6 \mathrm{~cm}^{-1}, 3029.5 \mathrm{~cm}^{-1}, 2977.7 \mathrm{~cm}^{-1}, 2955.7 \mathrm{~cm}^{-1}, 2876.1 \mathrm{~cm}^{-1}, 1724.3 \mathrm{~cm}^{-1}, 1676.1 \mathrm{~cm}^{-1}, 1597.6 \mathrm{~cm}^{-1}, 1556.8 \mathrm{~cm}^{-1}, 1446.9 \mathrm{~cm}^{-}$ ${ }^{1}, 1343.3 \mathrm{~cm}^{-1}, 1300.2 \mathrm{~cm}^{-1}, 1266.1 \mathrm{~cm}^{-1}, 1189.9 \mathrm{~cm}^{-1}, 1157.2 \mathrm{~cm}^{-1}, 1087.4 \mathrm{~cm}^{-1}, 1060.1 \mathrm{~cm}^{-1}, 998.6 \mathrm{~cm}^{-1}, 958.5 \mathrm{~cm}^{-1}, 905.1 \mathrm{~cm}^{-1}, 853.9$ $\mathrm{cm}^{-1}, 811.9 \mathrm{~cm}^{-1}, 751.3 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}$, $[\mathbf{M + N a}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 408.1240$, found $\mathrm{m} / \mathrm{z} 408.1241$.


4-(1-(1-Tosylpyrrolidin-2-yl)vinyl)benzonitrile 3q Following the described procedure, $54 \mathrm{mg}(0.3 \mathrm{mmol})$ of 4bromobenzonitrile $\mathbf{2 q}$ (or 75 mg of 4-cyanophenyl trifluoromethanesulfonate $\mathbf{2 q}{ }^{\prime \prime}$ ) and $50 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene 1a were reacted under the optimized conditions to afford $49 \mathrm{mg}(36 \mathrm{mg}$ from 2q") of 4-(1-(1-tosylpyrrolidin-2-yl)vinyl)benzonitrile $\mathbf{3 q}$ as a yellow oil (gradient EP/AcOEt $7 / 1$ to $7 / 3$, yield $70 \%$, $51 \%$ from 2q"). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.50-1.54\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}\right), 1.58-1.71\left(\mathrm{~m}, 2 \mathrm{H}+\mathrm{H}_{2} \mathrm{O} ; \mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}\right.$ and $\mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}_{-} \mathrm{CH}_{2}$ ), 1.73-1.82 (m, 1H; $\mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), $2.43\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}\right), 3.27$ (td broad, $1 \mathrm{H}, \mathrm{J}=9.5,7.1 \mathrm{~Hz}$;
 $\left.\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}\right), 5.43(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-\mathrm{CH}), 5.54(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-\mathrm{CH}), 7.33(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz} ; \mathrm{Ts}-\mathrm{H}), 7.48(\mathrm{~d}, 2 \mathrm{H}$, $J=8.3 \mathrm{~Hz} ; \mathrm{Ar}-H), 7.62(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz} ; \mathrm{Ar}-H), 7.75(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz} ; \mathrm{Ts}-H)$.
${ }^{13} \mathbf{C}-$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=21.5\left(\mathrm{CH}_{3}\right)$, $23.5\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 48.9\left(\mathrm{CH}_{2}\right), 62.9(\mathrm{CH}), 111.3(\mathrm{Cq}), 116.5(\mathrm{CH}), 118.7(\mathrm{Cq}), 127.4$ $(\mathrm{CH}), 127.6(\mathrm{CH}), 129.7(\mathrm{CH}), 132.2(\mathrm{CH}), 134.7(\mathrm{Cq}), 143.6(\mathrm{Cq}), 144.4(\mathrm{Cq}), 147.7(\mathrm{Cq})$.
IR: $2972.9 \mathrm{~cm}^{-1}, 2884.1 \mathrm{~cm}^{-1}, 2224.2 \mathrm{~cm}^{-1}, 1605.7 \mathrm{~cm}^{-1}, 1509.5 \mathrm{~cm}^{-1}, 1450.3 \mathrm{~cm}^{-1}, 1327.7 \mathrm{~cm}^{-1}, 1305.4 \mathrm{~cm}^{-1}, 1154.0 \mathrm{~cm}^{-1}, 1090.4 \mathrm{~cm}^{-}$ ${ }^{1}$, $1073.7 \mathrm{~cm}^{-1}, 1010.7 \mathrm{~cm}^{-1}, 989.5 \mathrm{~cm}^{-1}, 929.0 \mathrm{~cm}^{-1}, 847.9 \mathrm{~cm}^{-1}, 812.3 \mathrm{~cm}^{-1}, 766.3 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$, [M+Na] theoretical $m / z 375.1138$, found $m / z 375.1135$.


3-(1-(1-Tosylpyrrolidin-2-yl)vinyl)benzonitrile 3 r Following the described procedure, 54 mg ( 0.3 mmol ) of 3bromobenzonitrile $2 \mathbf{q}$ and $50 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 a}$ were reacted under the optimized conditions to afford 52 mg of 3-(1-(1-tosylpyrrolidin-2-yl)vinyl)benzonitrile 3 r as a white solid (gradient EP/AcOEt 7/1 to 7/3, yield $74 \%$ ).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=1.49-1.54\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(H)-\mathrm{CH}\right)$, 1.59-1.70 (m, 2H; CH2-C(H)-CH and $\mathrm{CH}_{2}-$ $\left.\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right)$, 1.71-1.80 (m, 1H; CH $\left.2-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}\right), 3.27\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right)$, 3.51 (ddd broad, $1 \mathrm{H}, \mathrm{J}=10.1,6.8,3.3 \mathrm{~Hz}$, $\mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}_{-}-\mathrm{CH}_{2}$ ), 4.62 (dd broad, $1 \mathrm{H}, J=7.7,2.6 \mathrm{~Hz} ; \mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}$ ), 5.39 (s, 1 H ; $\mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-\mathrm{CH}), 5.51$ (s, 1H; C(H)H=C-CH), 7.34 (d, 2H, J= $8.3 \mathrm{~Hz} ; \mathrm{Ts}-H$ ), 7.45 (t, 1H, J= 8.6 Hz ; Ar-H), 7.57 (dt, $1 \mathrm{H}, J=7.8,1.4 \mathrm{~Hz} ; \mathrm{Ar}-\mathrm{H}), 7.61(\mathrm{t}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz} ; \mathrm{Ar}-\mathrm{H}), 7.64(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=7.8,1.5 \mathrm{~Hz} ; \mathrm{Ar}-\mathrm{H}), 7.76(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$
8.3 Hz ; Ts-H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.6\left(\mathrm{CH}_{2}\right), 23.5\left(\mathrm{CH}_{3}\right), 31.8(\mathrm{CH}), 48.9(\mathrm{CH}), 62.7\left(\mathrm{CH}_{2}\right), 112.5(\mathrm{Cq}), 116.1\left(\mathrm{CH}_{2}\right), 118.7(\mathrm{Cq}), 127.4$ (CH), 129.2 (CH), 129.8 (CH), $130.5(\mathrm{CH}), 131.1(\mathrm{CH}), 131.4(\mathrm{CH}), 134.7(\mathrm{Cq}), 141.0(\mathrm{Cq}), 143.6(\mathrm{Cq}), 147.2(\mathrm{Cq})$.
IR: $2977.1 \mathrm{~cm}^{-1}, 2954.2 \mathrm{~cm}^{-1}, 2893.1 \mathrm{~cm}^{-1}, 2231.3 \mathrm{~cm}^{-1}, 1596.4 \mathrm{~cm}^{-1}, 1485.3 \mathrm{~cm}^{-1}, 1443.8 \mathrm{~cm}^{-1}, 1333.2 \mathrm{~cm}^{-1}, 1298.8 \mathrm{~cm}^{-1}, 1289.7 \mathrm{~cm}^{-1}$ ${ }^{1}, 1198.6 \mathrm{~cm}^{-1}, 1179.5 \mathrm{~cm}^{-1}, 1155.5 \mathrm{~cm}^{-1}, 1116.6 \mathrm{~cm}^{-1}, 1087.6 \mathrm{~cm}^{-1}, 1060.4 \mathrm{~cm}^{-1}, 1003.8 \mathrm{~cm}^{-1}, 909.6 \mathrm{~cm}^{-1}, 885.8 \mathrm{~cm}^{-1}, 850.4 \mathrm{~cm}^{-1}, 808.8$ $\mathrm{cm}^{-1}$.
MS (ESI): Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S},[\mathbf{M}+\mathrm{Na}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 375.1138$, found $\mathrm{m} / \mathrm{z} 375.1133 . \mathrm{Mp}: 99.0-100.8^{\circ} \mathrm{C}$


1-Tosyl-2-(1-(4-trifluoromethylphenyl)vinyl)pyrrolidine 3s Following the described procedure, $68 \mathrm{mg}(0.3$ mmol ) of 4 -bromobenzotrifluoride $\mathbf{2 s}$ and $50 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 a}$ were reacted under the optimized conditions to afford 62 mg of 1 -tosyl-2-(1-(4-(trifluoromethyl)phenyl)vinyl)pyrrolidine 3 s as a yellow solid (EP/AcOEt 7/1, yield 78\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=1.49-1.56\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(H)-\mathrm{CH}\right)$, 1.58-1.69 (m, 2H; $\mathrm{CH}_{2}-\mathrm{C}(H)-\mathrm{CH}$ and $\mathrm{CH}_{2}-$ $\left.\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right)$, 1.73-1.82 (m, 1H; CH2-C(H)H-CH2), 2.38-2.46 (s, $3 \mathrm{H} ; \mathrm{At}-\mathrm{CH}_{3}$ ), 3.28 (td broad, $1 \mathrm{H}, \mathrm{J}=9.7,6.6 \mathrm{~Hz}$; $\mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), 3.52 (ddd broad, $1 \mathrm{H}, \mathrm{J}=10.2,7.0,3.1 \mathrm{~Hz}$; $\mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), 4.69 (d broad, $1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}$; N-CH$\mathrm{CH}_{2}$ ), 5.40 (s, 1H; C(H)H=C-CH), 5.49 (s, 1H; C(H)H=C-CH), 7.33 (d, 2H, J=8.3 Hz; Ts-H), 7.48 (d, 2H, J= 8.6 Hz; Ar-H), 7.58 (d, 2H, J= 8.6 Hz ; Ar-H), 7.77 (d, 2H, J= 8.3 Hz ; Ts-H).
${ }^{13} \mathrm{C}-$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=21.5\left(\mathrm{CH}_{3}\right), 23.8\left(\mathrm{CH}_{2}\right)$, $31.6\left(\mathrm{CH}_{2}\right), 48.9\left(\mathrm{CH}_{2}\right), 62.7(\mathrm{CH}), 115.6\left(\mathrm{CH}_{2}\right), 124.2\left(\mathrm{Cq}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=271 \mathrm{~Hz}\right)$, $125.2\left(\mathrm{CH}, J_{\mathrm{C}-\mathrm{F}}=3.7 \mathrm{~Hz}\right), 127.3(\mathrm{CH}), 129.7(\mathrm{CH}), 129.6\left(\mathrm{Cq}, J_{\mathrm{C}-\mathrm{F}}=32.3 \mathrm{~Hz}\right), 134.9(\mathrm{Cq}), 143.5(\mathrm{Cq}), 143.7(\mathrm{Cq}), 148.1(\mathrm{Cq})$.
${ }^{19} \mathrm{~F}-\mathrm{NMR}$ ( 600 MHz ; $\mathrm{CDCl}_{3}, \mathrm{NaF}$ ): $\delta$ - 62.43 (3F, s).
IR: $2976.1 \mathrm{~cm}^{-1}, 2948.7 \mathrm{~cm}^{-1}, 2871.2 \mathrm{~cm}^{-1}, 1614.9 \mathrm{~cm}^{-1}, 1597.6 \mathrm{~cm}^{-1}, 1404.9 \mathrm{~cm}^{-1}, 1374.3 \mathrm{~cm}^{-1}, 1322.5 \mathrm{~cm}^{-1}, 1244.1 \mathrm{~cm}^{-1}, 1188.4 \mathrm{~cm}$ ${ }^{1}, 1092.6 \mathrm{~cm}^{-1}, 1082.3 \mathrm{~cm}^{-1}, 1062.3 \mathrm{~cm}^{-1}, 1004.5 \mathrm{~cm}^{-1}, 908.5 \mathrm{~cm}^{-1}, 851.7 \mathrm{~cm}^{-1}, 814.5 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}$, $[\mathrm{M}+\mathrm{H}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 396.1240$, found $\mathrm{m} / \mathrm{z} 396.1245$. Mp: $93.6-94.5^{\circ} \mathrm{C}$


1-Tosyl-2-(1-(3-trifluoromethylphenyl)vinyl)pyrrolidine 3t Following the described procedure, $68 \mathrm{mg}(0.3$ mmol ) of 3-bromobenzotrifluoride $\mathbf{2 t}$ and $50 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 a}$ were reacted under the optimized conditions to afford 56 mg of 1-tosyl-2-(1-(3-(trifluoromethyl)phenyl)vinyl)pyrrolidine 3 ht as a yellow oil (EP/AcOEt 7/1, yield 71\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.54-1.57\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(H)-\mathrm{CH}\right)$, 1.61-1.71 (m,2H; $\mathrm{CH}_{2}-\mathrm{C}(H)-\mathrm{CH}$ and $\mathrm{CH}_{2}-$ $\left.\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 1.75-1.83\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right)$, $2.43\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}\right), 3.30\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 3.53$ (ddd broad, $1 \mathrm{H}, \mathrm{J}=9.9,8.1,3.5 \mathrm{~Hz}$; N-C(H)H-CH2), 4.70 (dd broad, $1 \mathrm{H}, \mathrm{J}=8.5,3.8 \mathrm{~Hz} ; \mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}$ ), 5.39 (s, 1 H ; $\mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-\mathrm{CH}), 5.48$ (t narrow, $1 \mathrm{H}, \mathrm{J}=1.0 \mathrm{~Hz} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-\mathrm{CH}), 7.33(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz} ; \mathrm{Ts}-\mathrm{H}$ ), 7.44-7.47 (m, 1H; Ar-H), 7.54-7.58 (m, 3H; Ar-H), 7.77 (d, 2H, J= 8.3 Hz ; Ts-H).
${ }^{13} \mathrm{C}-$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=21.5\left(\mathrm{CH}_{3}\right), 23.5\left(\mathrm{CH}_{2}\right)$, $31.8\left(\mathrm{CH}_{2}\right), 48.9\left(\mathrm{CH}_{2}\right), 62.8(\mathrm{CH}), 115.5\left(\mathrm{CH}_{2}\right), 123.7\left(\mathrm{CH}, J_{\mathrm{C}-\mathrm{F}}=4.1 \mathrm{~Hz}\right)$, $124.3\left(\mathrm{CH}, J_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}\right), 124.0\left(\mathrm{Cq}, J_{\mathrm{C}-\mathrm{F}}=270 \mathrm{~Hz}\right), 127.5(\mathrm{CH}), 128.8(\mathrm{CH}), 129.7(\mathrm{CH}), 130.3(\mathrm{CH}), 130.7\left(\mathrm{CH}, J_{\mathrm{C}-\mathrm{F}}=32.3 \mathrm{~Hz}\right), 135.0$ (Cq), 140.6 (Cq), 143.5 (Cq), 147.9 (Cq).
${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(600 \mathrm{MHz}\right.$; $\left.\mathrm{CDCl}_{3}, \mathrm{NaF}\right): \delta-62.47(3 \mathrm{~F}, \mathrm{~s})$.
IR: $2872.6 \mathrm{~cm}^{-1}, 2195.5 \mathrm{~cm}^{-1}, 2041.4 \mathrm{~cm}^{-1}, 1596.9 \mathrm{~cm}^{-1}, 1489.0 \mathrm{~cm}^{-1}, 1434.8 \mathrm{~cm}^{-1}, 1328.8 \mathrm{~cm}^{-1}, 1248.0 \mathrm{~cm}^{-1}, 1156.9 \mathrm{~cm}^{-1}, 1121.1 \mathrm{~cm}^{-1}$ ${ }^{1}, 1092.9 \mathrm{~cm}^{-1}, 1071.5 \mathrm{~cm}^{-1}, 1006.8 \mathrm{~cm}^{-1}, 906.6 \mathrm{~cm}^{-1}, 846.1 \mathrm{~cm}^{-1}, 812.5 \mathrm{~cm}^{-1}, 757.4 \mathrm{~cm}^{-1}, 738.2 \mathrm{~cm}^{-1}, 707.0 \mathrm{~cm}^{-1}, 664.6 \mathrm{~cm}^{-1}, 587.1 \mathrm{~cm}$ ${ }^{1}, 548.4 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 396.1240$, found $\mathrm{m} / \mathrm{z} 396.1246$.


1-Tosyl-2-(1-(4-nitrophenyl)vinyl)pyrrolidine 3u Following the described procedure, $61 \mathrm{mg}(0.3 \mathrm{mmol})$ of 1-bromo-4-nitrobenzene $\mathbf{2 u}$ and $50 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 a}$ were reacted under the optimized conditions to afford 42 mg of 1 -tosyl-2-(1-(4-(nitrophenylvinyl)pyrrolidine 3 u as a yellow solid (gradient EP/AcOEt $7 / 1$ to $6 / 4$, yield $56 \%$ ).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.51-1.56\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right)$, $1.62-1.83\left(\mathrm{~m}, 3 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}\right.$ and $\mathrm{CH}_{2}-$ $\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), 2.24 (s, 3H; Ar-CH3), 3.28 (dbd broad, $1 \mathrm{H}, \mathrm{J}=9.8,6.7 \mathrm{~Hz}$; $\mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), 3.53 (ddd broad, 1 H , $J=10.3,7.3,3.5 \mathrm{~Hz}$; $\mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), 4.68 (dd broad, $1 \mathrm{H}, \mathrm{J}=8.3,3.8 \mathrm{~Hz}$; $\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}$ ), 5.48 (s broad, 1 H ; $\mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-\mathrm{CH}), 5.58$ (s broad, $1 \mathrm{H} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-\mathrm{CH}), 7.34(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}$; Ts-H ), $7.55(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.9 \mathrm{~Hz}$; Ar-H), 7.76 (d, 2H, J=8.3 Hz; Ts-H), 8.19 (d, 2H, J=8.9 Hz; Ar-H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=21.5\left(\mathrm{CH}_{3}\right)$, $23.6\left(\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 49.0\left(\mathrm{CH}_{2}\right), 62.7(\mathrm{CH}), 117.1\left(\mathrm{CH}_{2}\right), 123.7(\mathrm{CH}), 127.6(\mathrm{CH}), 127.8$ (CH), $129.8(\mathrm{CH}), 134.7(\mathrm{Cq}), 143.7(\mathrm{Cq}), 146.4(\mathrm{Cq}), 147.2(\mathrm{Cq}), 147.5(\mathrm{Cq})$.
IR: $2987.0 \mathrm{~cm}^{-1}, 2952.5 \mathrm{~cm}^{-1}, 2928.8 \mathrm{~cm}^{-1}, 2859.2 \mathrm{~cm}^{-1}, 1593.7 \mathrm{~cm}^{-1}, 1506.5 \mathrm{~cm}^{-1}, 1455.1 \mathrm{~cm}^{-1}, 1260.4 \mathrm{~cm}^{-1}, 1216.3 \mathrm{~cm}^{-1}, 1155.9 \mathrm{~cm}^{-}$ ${ }^{1}, 1089.5 \mathrm{~cm}^{-1}, 1061.9 \mathrm{~cm}^{-1}, 1005.2 \mathrm{~cm}^{-1}, 931.9 \mathrm{~cm}^{-1}, 846.5 \mathrm{~cm}^{-1}, 836.1 \mathrm{~cm}^{-1}, 812.1 \mathrm{~cm}^{-1}, 768.7 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 373.1217$, found $\mathrm{m} / \mathrm{z} 373.1217$. Mp : $140.8-141.6^{\circ} \mathrm{C}$


1-Tosyl-2-(1-(3-pyridyl)vinyl)pyrrolidine 3 v Following the described procedure, $48 \mathrm{mg}(0.3 \mathrm{mmol})$ of 3 bromopyridine $2 \mathbf{v}$ and $50 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 a}$ were reacted under the optimized conditions to afford 31 mg of 1-tosyl-2-(1-(3-pyridyl)vinyl)pyrrolidine $3 v$ as a yellow oil (gradient EP/AcOEt $7 / 1$ to $6 / 4$, yield $46 \%$ ).
${ }^{1} \mathrm{H}-$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta=1.50-1.58\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 1.58-1.73\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}\right), 1.75-1.80(\mathrm{~m}$, $1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), $2.43\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}^{2} \mathrm{CH}_{3}\right.$ ), 3.28 (td broad, $\left.1 \mathrm{H}, \mathrm{J}=10.2,6.7 \mathrm{~Hz} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 3.52$ (ddd broad, $1 \mathrm{H}, \mathrm{J}=10.2,8.4,3.7 \mathrm{~Hz}$; $\mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), 4.64 (dd, $\left.1 \mathrm{H}, \mathrm{J}=8.3,3.4 \mathrm{~Hz} ; \mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}\right), 5.39(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-\mathrm{CH}), 5.50$ (s, 1H; C(H)H=C-CH), 7.26-7.28 (m, 1H; Pyr-H), 7.33 (d, 2H, J= 8.0 Hz ; Ts-H), 7.72-7.74 (dt, 1H, J= 8.6, 1.6 Hz; Pyr-H), 7.76 (d, 2H, J= 8.3 Hz ; Ts-H), 8.52-8.53 (dd, $1 \mathrm{H}, \mathrm{J}=4.9,1.6 \mathrm{~Hz}$; Pyr- -H ), 8.59 (d, $1 \mathrm{H}, \mathrm{J}=2.9 \mathrm{~Hz}$; Pyr- -H ).
${ }^{13} \mathrm{C}-$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=21.5\left(\mathrm{CH}_{3}\right), 23.5\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 49.0\left(\mathrm{CH}_{2}\right), 62.8(\mathrm{CH}), 115.8\left(\mathrm{CH}_{2}\right), 123.2(\mathrm{CH}), 127.5(\mathrm{CH}), 129.7$ (CH), 134.4 (CH), 134.7 (Cq), 135.3 (Cq), 143.6 (Cq), 146.0 (Cq), 148.1 (Cq), 148.9 (Cq).
IR: $2979.6 \mathrm{~cm}^{-1}, 2953.6 \mathrm{~cm}^{-1}, 2877.2 \mathrm{~cm}^{-1}, 1710.7 \mathrm{~cm}^{-1}, 1630.9 \mathrm{~cm}^{-1}, 1596.3 \mathrm{~cm}^{-1}, 1456.8 \mathrm{~cm}^{-1}, 1335.2 \mathrm{~cm}^{-1}, 1189.8 \mathrm{~cm}^{-1}, 1155.4 \mathrm{~cm}$ ${ }^{1}$, $1093.0 \mathrm{~cm}^{-1}, 1063.4 \mathrm{~cm}^{-1}, 1007.6 \mathrm{~cm}^{-1}, 910.6 \mathrm{~cm}^{-1}, 848.7 \mathrm{~cm}^{-1}, 814.5 \mathrm{~cm}^{-1}, 755.9 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S},[\mathrm{M}+\mathrm{Na}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 351.1138$, found $\mathrm{m} / \mathrm{z} 351.1136$.


1-Tosyl-2-(1-(2-pyridyl)vinyl)pyrrolidine 3 w Following the described procedure, 48 mg ( 0.3 mmol ) of 2bromopyridine $2 \mathbf{w}$ and $50 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 a}$ were reacted under the optimized conditions to afford 7 mg of 1-tosyl-2-(1-(2-pyridyl)vinyl)pyrrolidine $3 w$ as a pinkish solid (gradient EP/AcOEt 7/1 to 6/4, yield 10\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=1.59-1.68\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}\right), 1.73-1.86\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)$, $2.43(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-$ $\mathrm{CH}_{3}$ ), 3.25 (ddd broad, $1 \mathrm{H}, J=9.6 \mathrm{~Hz}, 7.2,2.0 \mathrm{~Hz}$; $\left.\mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 3.61$ (ddd broad, $1 \mathrm{H}, J=9.9,8.4,3.8 \mathrm{~Hz}$; N $\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), 5.19 (d broad, $1 \mathrm{H}, \mathrm{J}=7.7 \mathrm{~Hz} ; \mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}$ ), 5.71 (s, $1 \mathrm{H} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-\mathrm{CH}$ ), 5.86 (s broad, $1 \mathrm{H} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-$ CH), 7.15 (m, 1H; Pyr-H), 7.32 (d, 2H, J= 7.92 Hz ; Ts-H), 7.54-7.57 (m, 1H; Pyr-H), 7.60-7.65 (m, 1H; Pyr-H), 7.78 (d, 2H, J= 8.34 Hz ; Ts-H), 8.51-8.55 (m, 1H; Pyr-H).
${ }^{13} \mathrm{C}-$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.5\left(\mathrm{CH}_{3}\right), 23.8\left(\mathrm{CH}_{2}\right), 32.8\left(\mathrm{CH}_{2}\right), 49.3\left(\mathrm{CH}_{2}\right), 61.4(\mathrm{CH}), 115.6\left(\mathrm{CH}_{2}\right), 120.8(\mathrm{CH})$, $122.4(\mathrm{CH}), 127.7(\mathrm{CH}), 130.1(\mathrm{CH}), 135.0(\mathrm{Cq}), 136.2(\mathrm{CH}), 143.0(\mathrm{Cq}), 148.6(\mathrm{CH}), 157.2(\mathrm{Cq})$.
IR: $2979.7 \mathrm{~cm}^{-1}, 2954.2 \mathrm{~cm}^{-1}, 2876.3 \mathrm{~cm}^{-1}, 1631.6 \mathrm{~cm}^{-1}, 1583.1 \mathrm{~cm}^{-1}, 1562.7 \mathrm{~cm}^{-1}, 1461.8 \mathrm{~cm}^{-1}, 1431.6 \mathrm{~cm}^{-1}, 1379.7 \mathrm{~cm}^{-1}, 1333.5 \mathrm{~cm}^{-}$ ${ }^{1}, 1254.3 \mathrm{~cm}^{-1}, 1190.1 \mathrm{~cm}^{-1}, 1156.0 \mathrm{~cm}^{-1}, 1093.9 \mathrm{~cm}^{-1}, 1020.8 \mathrm{~cm}^{-1}, 1000.0 \mathrm{~cm}^{-1}, 989.0 \mathrm{~cm}^{-1}, 919.6 \mathrm{~cm}^{-1}, 852.9 \mathrm{~cm}^{-1}, 805.8 \mathrm{~cm}^{-1}, 757.5$ $\mathrm{cm}^{-1}$.
MS (ESI): Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S},[\mathbf{M}+\mathrm{Na}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 351.1138$, found $m / z$ 351.1139. $\mathbf{M p}$ : $136.1-136.6^{\circ} \mathrm{C}$


1-Tosyl-2-(1-(2-thienyl)vinyl)pyrrolidine $3 \mathbf{x}$ Following the described procedure, 49 mg ( 0.3 mmol ) of 2bromothiophene $\mathbf{2 x}$ and $50 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 a}$ were reacted under the optimized conditions to afford 41 mg of 1 -tosyl-2-(1-(2-thienyl)vinyl)pyrrolidine $3 \mathbf{x}$ as a pale yellow solid (EP/AcOEt 7/1, yield $65 \%$ ).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=1.63-1.69\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right)$, 1.74-1.79 (m, 2H; $\left.\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}\right), 1.80-1.88(\mathrm{~m}$, $1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), 2.44 ( $\mathrm{s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}$ ), 3.28-3.32 (m, $1 \mathrm{H} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), 3.54-3.58 (ddd broad, $1 \mathrm{H}, \mathrm{J}=10.1$, $\left.8.6,3.4 \mathrm{~Hz} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 4.65\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}\right), 5.30(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.4 \mathrm{~Hz} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-\mathrm{CH}), 5.51(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-$ CH ), 6.96-6.70 (m, 1H; Thio--H), 7.03-7.04 (dd, $1 \mathrm{H}, \mathrm{J}=3.6,1.1 \mathrm{~Hz}$; Thio--H), 7.18-7.20 (dd, $1 \mathrm{H}, \mathrm{J}=5.2,1.3 \mathrm{~Hz}$; Thio- - ), 7.33 (d, 2H, J= 8.2 Hz ; Ts-H), 7.76 (d, 2H, $J=8.2 \mathrm{~Hz}$; Ts-H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=21.5\left(\mathrm{CH}_{3}\right)$, $23.7\left(\mathrm{CH}_{2}\right), 32.5\left(\mathrm{CH}_{2}\right), 49.1\left(\mathrm{CH}_{2}\right), 62.6(\mathrm{CH}), 112.3\left(\mathrm{CH}_{2}\right), 123.7(\mathrm{CH}), 124.5(\mathrm{CH}), 127.2$ $(\mathrm{CH}), 127.5(\mathrm{CH}), 129.6(\mathrm{CH}), 134.9(\mathrm{Cq}), 142.0(\mathrm{Cq}), 142.3(\mathrm{Cq}), 143.4(\mathrm{Cq})$.
IR: $3089.9 \mathrm{~cm}^{-1}, 2970.2 \mathrm{~cm}^{-1}, 2948.4 \mathrm{~cm}^{-1}, 2874.4 \mathrm{~cm}^{-1}, 1739.1 \mathrm{~cm}^{-1}, 1617.7 \mathrm{~cm}^{-1}, 1448,0 \mathrm{~cm}^{-1}, 1381.7 \mathrm{~cm}^{-1}, 1320.9 \mathrm{~cm}^{-1}, 1251.5 \mathrm{~cm}^{-}$ ${ }^{1}, 1228.5 \mathrm{~cm}^{-1}, 1137.0 \mathrm{~cm}^{-1}, 1150.6 \mathrm{~cm}^{-1}, 1101.0 \mathrm{~cm}^{-1}, 1092.1 \mathrm{~cm}^{-1}, 1071.9 \mathrm{~cm}^{-1}, 1011.0 \mathrm{~cm}^{-1}, 917.3 \mathrm{~cm}^{-1}, 886.4 \mathrm{~cm}^{-1}, 853.6 \mathrm{~cm}^{-1}, 838.8$ $\mathrm{cm}^{-1}, 814.6 \mathrm{~cm}^{-1}$.
MS (ESI): Formula $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}_{2},[\mathrm{M}+\mathrm{H}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 334.0930$, found $\mathrm{m} / \mathrm{z} 334.0929$; [M+Na] ${ }^{+}$theoretical $\mathrm{m} / \mathrm{z} 356.0749$, found $\mathrm{m} / \mathrm{z}$ 356.0748. Mp: $103-104.7^{\circ} \mathrm{C}$


5-(1-(1-Tosylpyrrolidin-2-yl)vinyl)furan-2-carbaldehyde 3y Following the described procedure, 56 mg ( 0.3 $\mathrm{mmol})$ of 5 -bromo-2-furaldehyde $2 \mathbf{y}$ and $50 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 a}$ were reacted under the optimized conditions to afford 35 mg of 5 -(1-(1-tosylpyrrolidin-2-yl)vinyl)furan-2-carbaldehyde 3 y as a yellow solid (EP/AcOEt 7/1, yield 54\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.64-1.71\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}_{-} \mathrm{CH}_{2}\right), 1.72-1.78\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}\right), 1.79-$ $1.90\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}\right.$ and $\left.\mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}\right), 3.27-3.31\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right)$, $3.54-3.58\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 4.65\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=7.4,3.5 \mathrm{~Hz} ; \mathrm{N}-\mathrm{CH}_{-}-\mathrm{CH}_{2}\right), 5.61(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.4 \mathrm{~Hz} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-$ CH), 5.96 (s, 1H; C(H)H=C-CH), 6.56 (d, 1H, J=3.7 Hz; Fu-H), 7.22 (d, 1H, J=3.7 Hz; Fu-H), 7.32 (d, 2H, J= 8.4 Hz ; Ts-H), 7.72 (d, 2H, J= 8.4 Hz ; Ts-H), 9.59 (s, 1H).
${ }^{13}$ C-NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=21.5\left(\mathrm{CH}_{3}\right)$, $23.6\left(\mathrm{CH}_{2}\right), 32.7\left(\mathrm{CH}_{2}\right), 49.0\left(\mathrm{CH}_{2}\right), 60.4(\mathrm{CH}), 109.0(\mathrm{CH}), 116.1\left(\mathrm{CH}_{2}\right), 127.4(\mathrm{CH}), 129.7$ (CH), 134.6 (Cq), 137.8 (Cq), $143.6(\mathrm{Cq}), 151.7(\mathrm{Cq}), 157.8(\mathrm{Cq}), 177.3(\mathrm{CHO})$.
IR: $3134.1 \mathrm{~cm}^{-1}, 3115.7 \mathrm{~cm}^{-1}, 2957.1 \mathrm{~cm}^{-1}, 2925.9 \mathrm{~cm}^{-1}, 2873.1 \mathrm{~cm}^{-1}, 2798.1 \mathrm{~cm}^{-1}, 1673.3 \mathrm{~cm}^{-1}, 1500,3 \mathrm{~cm}^{-1}, 1340.9 \mathrm{~cm}^{-1}, 1258.6 \mathrm{~cm}$ ${ }^{1}, 1154.3 \mathrm{~cm}^{-1}, 1090.8 \mathrm{~cm}^{-1}, 1005.6 \mathrm{~cm}^{-1}, 968.9 \mathrm{~cm}^{-1}, 927.5 \mathrm{~cm}^{-1}, 907.2 \mathrm{~cm}^{-1}, 825.2 \mathrm{~cm}^{-1}, 771.8 \mathrm{~cm}^{-1}, 748.0 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}$, [M+H] ${ }^{+}$theoretical $\mathrm{m} / \mathrm{z} 346.1108$, found $\mathrm{m} / \mathrm{z} 346.1111$. Mp: 118.8-119.9 ${ }^{\circ} \mathrm{C}$


1-Methyl-5-(1-(1-tosylpyrrolidin-2-yl)vinyl)-1H-indole $3 z$ Following the described procedure, 63 mg ( 0.3 mmol ) of 5 -bromo- 1 -methyl- 1 H -indole $\mathbf{2 z}$ and $50 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 a}$ were reacted under the optimized conditions to afford 32 mg of 1-methyl-5-(1-(1-tosylpyrrolidin-2-yl)vinyl)-1H-indole $3 z$ as a yellow oil (EP/AcOEt $7 / 3$, yield $42 \%$ ).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.53-1.66\left(\mathrm{~m}, 3 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}\right.$ and $\left.\mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right)$, 1.77-1.87 (m, 1H), 2.402.46 (s, 3H; Ar-CH3), 3.30 (td broad, $1 \mathrm{H}, \mathrm{J}=9.7,6.7 \mathrm{~Hz}$; $\mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), 3.59 (ddd broad, $1 \mathrm{H}, \mathrm{J}=10.2,7.1,3.2$ $\left.\mathrm{Hz} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 4.87$ (d broad, $1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}$; $\mathrm{N}-\mathrm{CH}^{2}-\mathrm{CH}_{2}$ ), 5.33 (s broad, $1 \mathrm{H} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-$ CH), 5.34 (s, 1H; C(H)H=C-CH), 6.48 (d, 1H, J=3.2 Hz; Ar-H), 7.06 (d, $1 \mathrm{H}, \mathrm{J}=3.0 \mathrm{~Hz}$; Ar-H), 7.28 (d, 2H, J= $8.2 \mathrm{~Hz} ; \mathrm{Ts}-H$ ), 7.33 (d, 1H, J= $8.6 \mathrm{~Hz} ;$ Ar-H), 7.60 (s, 1H; Ar-H), 7.81 (d, 2H, J=7.8 Hz; Ts-H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=21.5\left(\mathrm{CH}_{2}\right)$, $23.4\left(\mathrm{CH}_{3}\right), 31.8\left(\mathrm{CH}_{3}\right), 33.1\left(\mathrm{CH}_{2}\right), 49.1(\mathrm{CH}), 63.8\left(\mathrm{CH}_{2}\right), 101.2$ $(\mathrm{CH}), 109.1(\mathrm{CH}), 112.6\left(\mathrm{CH}_{2}\right), 119.2(\mathrm{CH}), 121.2(\mathrm{CH}), 127.5(\mathrm{CH}), 129.5(\mathrm{CH}), 131.5(\mathrm{Cq}), 135.5(\mathrm{Cq}), 136.3(\mathrm{Cq}), 143.4(\mathrm{Cq}), 149.7$ (Cq).
IR: $2976.2 \mathrm{~cm}^{-1}, 2950.3 \mathrm{~cm}^{-1}, 2920.4 \mathrm{~cm}^{-1}, 2230.8 \mathrm{~cm}^{-1}, 1596.9 \mathrm{~cm}^{-1}, 1512.5 \mathrm{~cm}^{-1}, 1488.6 \mathrm{~cm}^{-1}, 1444.1 \mathrm{~cm}^{-1}, 1332.5 \mathrm{~cm}^{-1}, 1244.1 \mathrm{~cm}$ ${ }^{1}$, $1154.3 \mathrm{~cm}^{-1}$, $1088.4 \mathrm{~cm}^{-1}, 1004.2 \mathrm{~cm}^{-1}, 908.7 \mathrm{~cm}^{-1}, 885.5 \mathrm{~cm}^{-1}, 849.8 \mathrm{~cm}^{-1}, 808.6 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S},[\mathbf{M}+\mathrm{H}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 381.1631$, found $\mathrm{m} / \mathrm{z} 381.1643$.


1-Tosyl-2-(1-(4-bromophenyl)vinyl)pyrrolidine 3aa Following the described procedure, 92 mg ( 0.3 mmol ) of 4-bromophenyl trifluoromethanesulfonate 2aa (or 85 mg of 1-bromo-4-iodobenzene 2ab) and 50 mg ( 0.2 mmol ) of allene 1a were reacted under the optimized conditions to afford 41 mg or 46 mg of 1-tosyl-2-(1-(4bromophenyl)vinyl)pyrrolidine 3aa from 2aa or 2ab respectively as a yellow oil (EP/AcOEt 7/1, yield 50\% and 57\% from 2aa and 2ab respectively).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.52-1.57\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}\right)$, 1.58-1.67 (m,2H+H2O; $\mathrm{CH}_{2}-\mathrm{C}(H)-\mathrm{CH}$ and $\left.\mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 1.75-1.82\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}\right), 3.25-3.30\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right)$, 3.51 (ddd broad, $1 \mathrm{H}, \mathrm{J}=9.9,8.1,3.3 \mathrm{~Hz}$; $\mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), 4.66 (dd broad, $1 \mathrm{H}, \mathrm{J}=8.1,3.7 \mathrm{~Hz}$; N-CH-CH2 ), 5.33 (s, $1 \mathrm{H} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-\mathrm{CH}), 5.40(\mathrm{t}$ narrow, $1 \mathrm{H}, \mathrm{J}=1.3 \mathrm{~Hz} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-\mathrm{CH}), 7.24(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz} ; \mathrm{Ar}-\mathrm{H}), 7.33(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ 8.6 Hz ; Ts-H), 7.45 (d, 2H, J= 8.0 Hz ; Ar-H), 7.76 (d, 2H, J= 8.4 Hz ; Ts-H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.5\left(\mathrm{CH}_{3}\right), 23.5\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 48.9\left(\mathrm{CH}_{2}\right), 62.9(\mathrm{CH}), 114.5\left(\mathrm{CH}_{2}\right), 121.6(\mathrm{Cq}), 127.5(\mathrm{CH}), 128.6$ (CH), 129.7 (CH), 131.4 (CH), $135.0(\mathrm{Cq}), 138.7(\mathrm{Cq}), 143.5(\mathrm{Cq}), 147.9(\mathrm{Cq})$.
IR: $2975.5 \mathrm{~cm}^{-1}, 1487.7 \mathrm{~cm}^{-1}, 1343.6 \mathrm{~cm}^{-1}, 1189.1 \mathrm{~cm}^{-1}, 1154.5 \mathrm{~cm}^{-1}, 1058.0 \mathrm{~cm}^{-1}, 1005.0 \mathrm{~cm}^{-1}, 909.7 \mathrm{~cm}^{-1}, 813.4 \mathrm{~cm}^{-1}, 731.3 \mathrm{~cm}^{-1}$, $707.8 \mathrm{~cm}^{-1}, 665.2 \mathrm{~cm}^{-1}, 586.5 \mathrm{~cm}^{-1}, 546.6 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BrNO}_{2} \mathrm{~S}$, [M+Na] ${ }^{+}$theoretical $\mathrm{m} / \mathrm{z} 428.0296,430.0275$ found $\mathrm{m} / \mathrm{z} 428.0291,430.0270$.


1-Tosyl-2-(1-(4-trifluoromethylsulfonylphenyl)vinyl)pyrrolidine 3ab Following the described procedure, $106 \mathrm{mg}(0.3 \mathrm{mmol})$ of 4-iodophenyl trifluoromethanesulfonate 2 ac and $50 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene 1a were reacted under the optimized conditions to afford 57 mg of 1-tosyl-2-(1-(4trifluoromethylsulfonylphenyl) vinyl)pyrrolidine 3ab as a yellow oil (EP/AcOEt 7/1, yield 59\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=1.53-1.56\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 1.59-1.69\left(\mathrm{~m}, 2 \mathrm{H}+\mathrm{H}_{2} \mathrm{O} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}\right)$, 1.741.81 (m, 1H; CH $-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), 2.44 (s, 3H; Ar-CH3), 3.26-3.30 (m, 1H; N-C(H)H-CH2), 3.51 (ddd broad, $1 \mathrm{H}, \mathrm{J}=$ $\left.10.1,8.1,3.5 \mathrm{~Hz} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 4.64$ (dd broad, $\left.1 \mathrm{H}, \mathrm{J}=8.0,2.2 \mathrm{~Hz} ; \mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}\right), 5.36$ (s, $1 \mathrm{H} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}-\mathrm{CH}$ ), 5.46 (t narrow, 1H, J= 1.0 Hz C C(H)H=C-CH), 7.24 (d, 2H, J= 8.9 Hz ; Ar-H), 7.33 (d, 2H, J=7.8 Hz; Ts-H), 7.46 (d, 2H, J= $9.0 \mathrm{~Hz} ; \mathrm{Ar}-\mathrm{H}$ ), 7.76 (d, 2H, J= 8.0 Hz ; Ts-H).
${ }^{13} \mathrm{C}$-NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=21.5\left(\mathrm{CH}_{3}\right), 23.5\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 49.0\left(\mathrm{CH}_{2}\right), 62.9(\mathrm{CH}), 115.6\left(\mathrm{CH}_{2}\right), 117.7(\mathrm{Cq}, \mathrm{J}$ C-F $=319 \mathrm{~Hz}), 119.8$ $(\mathrm{Cq}), 121.2(\mathrm{CH}), 127.5(\mathrm{CH}), 128.8(\mathrm{CH}), 129.7(\mathrm{CH}), 134.9(\mathrm{Cq}), 140.3(\mathrm{Cq}), 143.6(\mathrm{Cq}), 147.5(\mathrm{Cq}), 148.9(\mathrm{Cq})$.
${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}, \mathrm{NaF}\right): \delta-72.67(3 \mathrm{~F}, \mathrm{~s})$.
IR: $2948.2 \mathrm{~cm}^{-1}, 2032.4 \mathrm{~cm}^{-1}, 1596.9 \mathrm{~cm}^{-1}, 1498.7 \mathrm{~cm}^{-1}, 1420.7 \mathrm{~cm}^{-1}, 1344.1 \mathrm{~cm}^{-1}, 1304.4 \mathrm{~cm}^{-1}, 1248.5 \mathrm{~cm}^{-1}, 1206.6 \mathrm{~cm}^{-1}, 1157.3 \mathrm{~cm}$ ${ }^{1}, 1137.9 \mathrm{~cm}^{-1}, 1093.5 \mathrm{~cm}^{-1}, 1011.0 \mathrm{~cm}^{-1}, 886.2 \mathrm{~cm}^{-1}, 848.6 \mathrm{~cm}^{-1}, 816.0 \mathrm{~cm}^{-1}, 765.2 \mathrm{~cm}^{-1}, 709.1 \mathrm{~cm}^{-1}, 665.1 \mathrm{~cm}^{-1}, 607.7 \mathrm{~cm}^{-1}, 588.9 \mathrm{~cm}^{-}$ ${ }^{1}, 547.9 \mathrm{~cm}^{-1}$. MS (ESI): Chemical formula $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{~S}_{2},[\mathrm{M}+\mathrm{Na}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 498.0627$, found $\mathrm{m} / \mathrm{z} 498.0624$.

(8R,9S,13S,14S)-13-Methyl-3-(1-(1-tosylpyrrolidin-2-yl)vinyl)-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one 3 Following the described procedure, 121 mg ( 0.3 mmol ) of ( $8 R, 9 \mathrm{~S}, 13 \mathrm{~S}, 14 \mathrm{~S}$ )-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl trifluoromethanesulfonate 2ad and $50 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene 1a were reacted under the optimized conditions to afford 20 mg of ( $8 R, 9 S, 13 S, 14 \mathrm{~S}$ )-13-Methyl-3-(1-(1-tosylpyrrolidin-2-yl)vinyl)-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17one 3ac as a transparent oil (EP/AcOEt 7/1, yield 20\%).
${ }^{1} \mathrm{H}$-NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=1.25\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 1.52-1.43(\mathrm{~m}, 3 \mathrm{H}), 1.57-1.68(\mathrm{~m}, 6 \mathrm{H}), 1.81(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.98(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H})$, 2.15 (dt, $1 \mathrm{H}, \mathrm{J}=19,9.1 \mathrm{~Hz}$; CO-C(H)H-CH2$), 2.31\left(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}=11,3.9 \mathrm{~Hz} ; \mathrm{CO}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 2.41(\mathrm{~m}, 1 \mathrm{H}), 2.43\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}\right), 2.51(\mathrm{~m}$, $1 \mathrm{H}), 2.91(\mathrm{~d}, 1 \mathrm{H} ; J=4.2 \mathrm{~Hz}), 2.93(\mathrm{~d}, 1 \mathrm{H} ; \mathrm{J}=4.2 \mathrm{~Hz}), 3.29\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 3.52\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 4.76\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}\right)$, 5.31 (s broad, $2 \mathrm{H} ; \mathrm{C}=\mathrm{CH}_{2}$ ), $7.10(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{Ar}-\mathrm{H}$ ), $7.14(\mathrm{~d}, 1 \mathrm{H} ; J=7.7 \mathrm{~Hz} ; \mathrm{Ar}-\mathrm{H}), 7.25(\mathrm{~d}, 1 \mathrm{H} ; J=7.7 \mathrm{~Hz} ; \mathrm{Ar}-\mathrm{H}), 7.32(\mathrm{~d}, 2 \mathrm{H} ; \mathrm{J}=8.3 \mathrm{~Hz} ; \mathrm{Ts}-$ H), 7.77 (d, 2H; J= 8.3 Hz ; Ts-H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=14.1\left(\mathrm{CH}_{3}\right)$, $21.7\left(\mathrm{CH}_{2}\right)$, $21.7\left(\mathrm{CH}_{2}\right)$, $23.7\left(\mathrm{CH}_{2}\right)$, $25.8\left(\mathrm{CH}_{2}\right)$, $26.6\left(\mathrm{CH}_{2}\right)$, $29.6\left(\mathrm{CH}_{2}\right)$, $29.8\left(\mathrm{CH}_{2}\right)$, 31.7 $\left(\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 36.0\left(\mathrm{CH}_{2}\right), 38.3\left(\mathrm{CH}_{3}\right), 44.5\left(\mathrm{CH}_{2}\right), 44.5\left(\mathrm{CH}_{2}\right), 48.1(\mathrm{CH}), 49.0\left(\mathrm{CH}_{2}\right), 50.7(\mathrm{CH}), 63.0(\mathrm{CH}), 63.2(\mathrm{CH}), 77.5,113.3$ $\left(\mathrm{CH}_{2}\right), 124.3(\mathrm{CH}), 124.5(\mathrm{CH}), 127.7(\mathrm{CH}), 129.8(\mathrm{CH}), 135.5(\mathrm{Cq}), 136.6(\mathrm{Cq}), 137.4(\mathrm{Cq}), 137.5(\mathrm{Cq}), 139.4(\mathrm{Cq}), 143.4(\mathrm{Cq}), 148.7$ (Cq), 221.1 (Cq).
IR: $2924 \mathrm{~cm}^{-1}, 1735 \mathrm{~cm}^{-1}, 1597 \mathrm{~cm}^{-1}, 1496 \mathrm{~cm}^{-1}, 1452 \mathrm{~cm}^{-1}, 1404 \mathrm{~cm}^{-1}, 1343 \mathrm{~cm}^{-1}, 1303 \mathrm{~cm}^{-1}, 1256 \mathrm{~cm}^{-1}, 1191 \mathrm{~cm}^{-1}, 1157 \mathrm{~cm}^{-1}, 1091 \mathrm{~cm}^{-}$ ${ }^{1}, 1051 \mathrm{~cm}^{-1}, 1006 \mathrm{~cm}^{-1}, 906 \mathrm{~cm}^{-1}, 815 \mathrm{~cm}^{-1}, 729 \mathrm{~cm}^{-1}, 659 \mathrm{~cm}^{-1}, 588 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{NO}_{3} \mathrm{~S},[\mathbf{M + N a}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 526.2392$, found $\mathrm{m} / \mathrm{z} 526.2390$.

### 4.4.3 Characterization of vinyl piperidines 5



2-(1-Phenylvinyl)-1-tosylpiperidine 5a Following the described procedure, $47 \mathrm{mg}(0.3 \mathrm{mmol})$ of bromobenzene $\mathbf{2 a}$ (or 61 mg iodobenzene $\mathbf{2 a}$ ') and $53 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 b}$ were reacted under the optimized conditions to afford 30 mg ( 22 mg from 2a') of 2-(1-phenylvinyl)-1-tosylpiperidine $\mathbf{5 a}$ as a light yellow solid (EP/AcOEt 7/1, yield $44 \%, 32 \%$ from $2 \mathbf{a}^{\prime}$ ).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=1.27-1.34\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(H)-\mathrm{CH}_{2}\right)$, $1.35-1.42\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{N}-\mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}\right.$ and $\mathrm{CH}_{2}-\mathrm{C}(H)-$ $\left.\mathrm{CH}_{2}\right), 1.43-1.52\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}-\mathrm{C}(H)-\mathrm{CH}_{2}\right.$ and $\left.\mathrm{N}-\mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}\right), 1.67-1.74\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}-\mathrm{C}(H)-\mathrm{CH}_{2}\right), 2.41\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}\right)$, 3.17 (td broad, $1 \mathrm{H}, \mathrm{J}=13.7,3.5 \mathrm{~Hz}$; N-C(H)H-CH2), 3.69 (dd broad, $1 \mathrm{H}, \mathrm{J}=12.6,3.1 \mathrm{~Hz}$; N-C(H) $\left.\mathrm{H}-\mathrm{CH}_{2}\right), 5.19$ (d narrow, $1 \mathrm{H}, \mathrm{J}=1.3 \mathrm{~Hz}$; $\mathrm{C}(H) \mathrm{H}=\mathrm{C}), 5.25-5.29\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{C}(H) \mathrm{H}=\mathrm{C}-\right.$ and $\left.\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}\right), 7.24(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}$; Ts-H$)$, 7.27-7.33 (m, 5H; Ar-H), 7.66 (d, 2H, J= 8.3 Hz ; Ts-H).
${ }^{13} \mathrm{C}-$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=18.8\left(\mathrm{CH}_{2}\right), 21.5\left(\mathrm{CH}_{3}\right), 24.5\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{2}\right), 41.5\left(\mathrm{CH}_{2}\right), 55.4(\mathrm{CH}), 116.2\left(\mathrm{CH}_{2}\right), 127.09(\mathrm{CH})$, $127.12(\mathrm{CH}), 127.4(\mathrm{CH}), 128.3(\mathrm{CH}), 129.5(\mathrm{CH}), 138.3(\mathrm{Cq}), 141.1(\mathrm{Cq}), 142.9(\mathrm{Cq}), 146.8(\mathrm{Cq})$.
IR: $2940.1 \mathrm{~cm}^{-1} 2867.5 \mathrm{~cm}^{-1}, 1597.2 \mathrm{~cm}^{-1}, 1501.0 \mathrm{~cm}^{-1}, 1459.2 \mathrm{~cm}^{-1}, 1332.4 \mathrm{~cm}^{-1}, 1152.5 \mathrm{~cm}^{-1}, 1109.0 \mathrm{~cm}^{-1}, 972.2 \mathrm{~cm}^{-1}, 909.5 \mathrm{~cm}^{-1}$, $813.2 \mathrm{~cm}^{-1}, 782.8 \mathrm{~cm}^{-1}, 749.6 \mathrm{~cm}^{-1}, 665.4 \mathrm{~cm}^{-1}, 570.1 \mathrm{~cm}^{-1}, 548.6 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S},\left[\mathrm{M}_{+} \mathrm{H}\right]^{+}$theoretical $\mathrm{m} / \mathrm{z} 342.1522$, found $\mathrm{m} / \mathrm{z} 324.1523$; $[\mathrm{M}+\mathrm{Na}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 364.1342$, found $m / z$ 364.1342. Mp: 116.8-119.0 ${ }^{\circ} \mathrm{C}$


2-(1-(4-Tolyl)vinyl)-1-tosylpiperidine $\mathbf{5 b}$ Following the described procedure, $52 \mathrm{mg}(0.3 \mathrm{mmol})$ of 4bromotoluene $\mathbf{2 b}$ and $53 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 b}$ were reacted under the optimized conditions to afford 30 mg of 2-(1-(4-tolyl)vinyl)-1-tosylpiperidine $\mathbf{5 b}$ as a light yellow oil (EP/AcOEt 7/1, yield 42\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.20-1.40\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 1.43-1.54\left(\mathrm{~m}, 3 \mathrm{H} ; \mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right.$ and $\mathrm{N}-\mathrm{CH}_{2}-$ $\mathrm{C}(H) \mathrm{H})$, 1.68-1.74 (m, 1H; $\left.\mathrm{N}-\mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}\right), 2.34\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}\right.$ ), $2.40\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}\right.$ ), 3.17 (ddd, $1 \mathrm{H}, \mathrm{J}=13.8$, $\left.12.4,3.32 \mathrm{~Hz} ; \mathrm{N}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 3.65-3.73\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 5.15(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.3 \mathrm{~Hz} ; \mathrm{C}(H) \mathrm{H}=\mathrm{C}), 5.22-5.26$ (m, 2H; C(H)H=C- and N-CH-CH2), 7.12 (d, 2H, J= $7.7 \mathrm{~Hz} ; \mathrm{Ar}-\mathrm{H}$ ), 7.18 (d, 2H, J= $8.2 \mathrm{~Hz} ; \mathrm{Ar}-\mathrm{H}$ ), 7.24 (d, 2H, $J=7.9$; Ts-H), 7.64 (d, 2H, J= 8.3 Ts-H).
${ }^{13} \mathrm{C}$-NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=18.8\left(\mathrm{CH}_{2}\right), 21.1\left(\mathrm{CH}_{3}\right)$, $25.5(\mathrm{CH} 3), 24.6\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{2}\right), 41.6\left(\mathrm{CH}_{2}\right), 55.5$ $(\mathrm{CH}), 115.7\left(\mathrm{CH}_{2}\right), 127.0(\mathrm{CH}), 127.1(\mathrm{CH}), 129.0(\mathrm{CH}), 129.5(\mathrm{CH}), 137.2(\mathrm{Cq}), 138.2(\mathrm{Cq}), 138.4(\mathrm{Cq}), 142.8(\mathrm{Cq}), 146.6(\mathrm{Cq})$. IR: $2951.9 \mathrm{~cm}^{-1}, 2867.3 \mathrm{~cm}^{-1}, 1459.5 \mathrm{~cm}^{-1}, 1343.2 \mathrm{~cm}^{-1}, 1163.4 \mathrm{~cm}^{-1}, 1089.9 \mathrm{~cm}^{-1}, 962.7 \mathrm{~cm}^{-1}, 909.0 \mathrm{~cm}^{-1}, 813.3 \mathrm{~cm}^{-1}, 718.8 \mathrm{~cm}^{-1}, 655.1$ $\mathrm{cm}^{-1}, 538.6 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{2}$ S Exact Mass: 355.1606, [M+H] ${ }^{+}$theoretical $\mathrm{m} / \mathrm{z} 356.1679$, found $\mathrm{m} / \mathrm{z} 356.1683$.


2-(1-(2-Tolyl)vinyl)-1-tosylpiperidine $\mathbf{5 c}$ Following the described procedure, 52 mg ( 0.3 mmol ) of 2bromotoluene $\mathbf{2 d}$ and $53 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 b}$ were reacted under the optimized conditions to afford 20 mg of 2-(1-(2-tolyl)vinyl)-1-tosylpiperidine $5 \mathbf{c}$ as a yellow oil (EP/AcOEt 7/1, yield 28\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.23-1.32\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}\right), 1.33-1.41\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right)$, 1.41-1.47 ( $\mathrm{m}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ ), 1.47-1.52 (m, 1H; N-CH2-C(H)H), 1.52-1.61 (m, 1H; CH-C(H)H-CH2), $2.33\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}\right)$, 2.41 (s, 3H; Ar-CH3), 3.23 (td broad, $\left.1 \mathrm{H}, \mathrm{J}=13.5,2.9 \mathrm{~Hz} ; \mathrm{N}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 3.75$ (dd broad, $1 \mathrm{H}, \mathrm{J}=14.2,2.8 \mathrm{~Hz}$; $\mathrm{N}-$ $\left.\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 5.02-5.09\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}\right), 5.13$ (s broad, $\left.1 \mathrm{H} ; \mathrm{C}(H) \mathrm{H}=\mathrm{C}\right), 5.39$ (s broad, $\left.1 \mathrm{H} ; \mathrm{C}(H) \mathrm{H}=\mathrm{C}\right), 7.05-7.20$ ( $\mathrm{m}, 4 \mathrm{H} ; \mathrm{Ar}-\mathrm{H}$ ), 7.24 (d, 2H, J=8.2 Hz; Ts-H), 7.65 (d, 2H, J=8.3 Hz; Ts-H).
${ }^{13} \mathrm{C}$-NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=19.2\left(\mathrm{CH}_{2}\right), 19.7\left(\mathrm{CH}_{3}\right), 21.4\left(\mathrm{CH}_{3}\right)$, $24.5\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2}\right), 41.6\left(\mathrm{CH}_{2}\right), 56.0(\mathrm{CH})$, $116.8\left(\mathrm{CH}_{2}\right), 125.5(\mathrm{CH}), 127.0(\mathrm{CH}), 127.1(\mathrm{CH}), 128.7(\mathrm{CH}), 129.5(\mathrm{CH}), 130.2(\mathrm{CH}), 135.2(\mathrm{Cq}), 138.4(\mathrm{Cq}), 140.7(\mathrm{Cq}), 142.8(\mathrm{Cq})$, 146.5 (Cq).

IR: $3037.1 \mathrm{~cm}^{-1}, 2924.3 \mathrm{~cm}^{-1}, 2868.4 \mathrm{~cm}^{-1}, 1597.1 \mathrm{~cm}^{-1}, 1511.1 \mathrm{~cm}^{-1}, 1446.4 \mathrm{~cm}^{-1}, 1398.5 \mathrm{~cm}^{-1}, 1333.1 \mathrm{~cm}^{-1}, 1210.6 \mathrm{~cm}^{-1}, 1183.3 \mathrm{~cm}$ ${ }^{1}, 1153.4 \mathrm{~cm}^{-1}, 1111.2 \mathrm{~cm}^{-1}, 1090.2 \mathrm{~cm}^{-1}, 992.6 \mathrm{~cm}^{-1}, 959.2 \mathrm{~cm}^{-1}, 927.9 \mathrm{~cm}^{-1}, 910.9 \mathrm{~cm}^{-1}, 869.4 \mathrm{~cm}^{-1}, 815.5 \mathrm{~cm}^{-1}, 782.8 \mathrm{~cm}^{-1}, 755.1 \mathrm{~cm}$ ${ }^{1}$.
MS (ESI): Chemical formula $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{2}$ S Exact Mass: 355.1606, [M+H $]^{+}$theoretical $\mathrm{m} / \mathrm{z} 356.1679$, found $\mathrm{m} / \mathrm{z} 356.1675$.



2-(1-(4-Methoxyphenyl)vinyl)-1-tosylpiperidine 5d Following the described procedure, 56 mg ( 0.3 $\mathrm{mmol})$ of 4 -bromoanisole $\mathbf{2 e}$ and $53 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 b}$ were reacted under the optimized conditions to afford 28 mg of 2-(1-(4-methoxyphenyl)vinyl)-1-tosylpiperidine $5 \mathbf{d}$ as a transparent oil (EP/AcOEt 7/3, yield 38\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=1.25-1.41\left(\mathrm{~m}, 3 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right.$ and $\left.\mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)$, 1.42-1.51 (m, 2H; CH$\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}$ and $\left.\mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 1.72-1.75\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 3.18$ (ddd, $1 \mathrm{H}, \mathrm{J}=14.6,13.9,3.3$ $\left.\mathrm{Hz} ; \mathrm{N}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 3.69$ (bd broad, $1 \mathrm{H}, \mathrm{J}=11.8 \mathrm{~Hz} ; \mathrm{N}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}$ ), $3.81\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCH}_{3}\right), 5.12(\mathrm{~s}, 1 \mathrm{H}$; $\mathrm{C}(H) \mathrm{H}=\mathrm{C}), 5.22$ (s broad, 2H; C(H)H=C and N-CH-CH2), $6.84(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}$; Ar-H), 7.22 (d, 2H, J=8.6 Hz ; Ar-H), ), 7.24 (d, 2H, J=8.3 Hz; Ts-H), ), 7.67 (d, 2H, J=8.3 Hz; Ts-H).
${ }^{13} \mathrm{C}-$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=18.7\left(\mathrm{CH}_{2}\right), 21.5\left(\mathrm{CH}_{3}\right), 24.5\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{2}\right), 41.6\left(\mathrm{CH}_{2}\right), 55.2\left(\mathrm{OCH}_{3}\right), 55.5(\mathrm{CH}), 113.6(\mathrm{CH}), 115.3$ $\left(\mathrm{CH}_{2}\right), 127.1(\mathrm{CH}), 128.2(\mathrm{CH}), 129.5(\mathrm{CH}), 133.5(\mathrm{Cq}), 138.4(\mathrm{Cq}), 142.8(\mathrm{Cq}), 146.2(\mathrm{Cq}), 159.0(\mathrm{Cq})$.
IR: $2936.3 \mathrm{~cm}^{-1}, 2856.9 \mathrm{~cm}^{-1}, 1606.5 \mathrm{~cm}^{-1}, 1509.7 \mathrm{~cm}^{-1}, 1443.9 \mathrm{~cm}^{-1}, 1334.6 \mathrm{~cm}^{-1}, 1303.6 \mathrm{~cm}^{-1}, 1244.0 \mathrm{~cm}^{-1}, 1180.9 \mathrm{~cm}^{-1}, 1153.3 \mathrm{~cm}$ ${ }^{1}, 1112.7 \mathrm{~cm}^{-1}, 1092.3 \mathrm{~cm}^{-1}, 1029.4 \mathrm{~cm}^{-1}, 958.8 \mathrm{~cm}^{-1}, 930.3 \mathrm{~cm}^{-1}, 908.1 \mathrm{~cm}^{-1}, 868.8 \mathrm{~cm}^{-1}, 836.4 \mathrm{~cm}^{-1}, 815.6 \mathrm{~cm}^{-1}, 769.9 \mathrm{~cm}^{-1}, 714.1 \mathrm{~cm}$ ${ }^{1}, 699.5 \mathrm{~cm}^{-1}, 658.5 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S},[\mathbf{M}+\mathrm{Na}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 371.1555$, found $\mathrm{m} / \mathrm{z} 371.1557$.


2-(1-(1-Naphtyl)vinyl)-1-tosylpiperidine 5 e Following the described procedure, 62 mg ( 0.3 mmol ) of 1bromonaphthalene $\mathbf{2 i}$ and $53 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 b}$ were reacted under the optimized conditions to afford 30 mg of 2-(1-(1-naphtyl)vinyl)-1-tosylpiperidine 5 e as a yellow oil (EP/AcOEt 7/1, yield 38\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=1.22-1.53\left(\mathrm{~m}, 6 \mathrm{H} ; \mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right.$ and $\left.\mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)$, 2.39 (s, 3H; Ar-CH3), 3.37 (td, $1 \mathrm{H}, \mathrm{J}=13.4,4.5 \mathrm{~Hz}$; $\left.\mathrm{N}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 3.84$ (dd, $\left.1 \mathrm{H}, \mathrm{J}=14.1,4.5 \mathrm{~Hz} ; \mathrm{N}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 5.22$ ( d narrow, $1 \mathrm{H}, \mathrm{J}=4.4 \mathrm{~Hz}$; N-CH-CH2$), 5.35(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{C}(H) \mathrm{H}=\mathrm{C})$, ), $5.66(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{C}(H) \mathrm{H}=\mathrm{C}), 7.22(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}$; Ts-H), 7.26-7.33 (m, 1H, Ar-H), $7.42(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz} ; \mathrm{Ar}-\mathrm{H}$ ), 7.45-7.53 (m, 2H; Ar-H), $7.69(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}$; Ts-H), 7.77 (d, 1H, J= 8.3 Hz ; Ar-H), 7.84 (d, 1H, J= 9.6 Hz ; Ar-H), 8.08 (d, $1 \mathrm{H}, J=8.0 \mathrm{~Hz}$; Ar-H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=19.2\left(\mathrm{CH}_{2}\right), 21.4\left(\mathrm{CH}_{3}\right)$, $24.6\left(\mathrm{CH}_{2}\right)$, $26.6\left(\mathrm{CH}_{2}\right), 41.7\left(\mathrm{CH}_{2}\right), 56.9(\mathrm{CH}), 118.1$ $\left(\mathrm{CH}_{2}\right), 125.2(\mathrm{CH}), 125.5(\mathrm{CH}), 125.8(\mathrm{CH}), 126.2(\mathrm{CH}), 126.9(\mathrm{CH}), 127.6(\mathrm{CH}), 128.3(\mathrm{CH}), 129.5(\mathrm{CH}), 131.4(\mathrm{Cq}), 133.7(\mathrm{Cq}), 138.4$ (Cq), 138.9 (Cq), 142.8.
IR: $2937.0 \mathrm{~cm}^{-1}, 2857.7 \mathrm{~cm}^{-1}, 1636.8 \mathrm{~cm}^{-1}, 1596.2 \mathrm{~cm}^{-1}, 1444.6 \mathrm{~cm}^{-1}, 1334.4 \mathrm{~cm}^{-1}, 1303.3 \mathrm{~cm}^{-1}, 1178.8 \mathrm{~cm}^{-1}, 1153.4 \mathrm{~cm}^{-1}, 1109.1 \mathrm{~cm}$ ${ }^{1}, 1092.4 \mathrm{~cm}^{-1}, 1055.2 \mathrm{~cm}^{-1}, 957.8 \mathrm{~cm}^{-1}, 931.2 \mathrm{~cm}^{-1}, 913.1 \mathrm{~cm}^{-1}, 803.0 \mathrm{~cm}^{-1}, 780.8 \mathrm{~cm}^{-1}, 731.6 \mathrm{~cm}^{-1}, 694.9 \mathrm{~cm}^{-1}, 658.1 \mathrm{~cm}^{-1}, 575.2 \mathrm{~cm}$ ${ }^{1}$.
MS (ESI): Chemical formula $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{~S}$, $[\mathbf{M + N a}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 414.1498$, found $\mathrm{m} / \mathrm{z} 414.1495$.


1-(4-(1-(1-Tosylpiperidin-2-yl)vinyl)phenyl)ethan-1-one 5 f Following the described procedure, 60 mg ( 0.3 mmol ) of 4 -bromoacetophenone $\mathbf{2 k}$ and $53 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 b}$ were reacted under the optimized conditions to afford 46 mg of 1-(4-(1-(1-tosylpiperidin-2-yl)vinyl)phenyl)ethan-1-one 5 fas a yellow oil (EP/AcOEt 7/3, yield 60\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.21-1.32\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}\right), 1.32-1.42\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}^{2}-\mathrm{CH}_{2}\right.$ and $\mathrm{N}-$ $\left.\mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}\right)$, 1.44-1.53 (m, 2H; $\mathrm{CH}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}$ and $\left.\mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right)$, 1.66-1.72 (m, $\left.1 \mathrm{H} ; \mathrm{CH}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right)$, 2.39 (s, 3H; Ar-CH3), 2.59 (s, 3H; $\mathrm{COCH}_{3}$ ), 3.13 (td, $\left.1 \mathrm{H}, \mathrm{J}=13.4,3.2 \mathrm{~Hz} ; \mathrm{N}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 3.65-3.69(\mathrm{~m}, 1 \mathrm{H}$; $\left.\mathrm{N}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 5.26\left(\mathrm{bd}, 1 \mathrm{H}, \mathrm{J}=5.9 \mathrm{~Hz} ; \mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}\right), 5.31(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.2 \mathrm{~Hz} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}), 5.35(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.2$ $\mathrm{Hz} ; \mathrm{C}(H) \mathrm{H}=\mathrm{C}), 7.23(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Ts}-H), 7.38(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}$; Ar-H), $7.66(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{Ts}-H)$, 7.89 (d, 2H, J=8.4 Hz; Ar-H).
${ }^{13} \mathrm{C}-$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=18.6\left(\mathrm{CH}_{2}\right), 21.4\left(\mathrm{CH}_{3}\right), 24.3\left(\mathrm{CH}_{2}\right)$, $26.6\left(\mathrm{CH}_{3}\right), 26.7\left(\mathrm{CH}_{2}\right), 41.6\left(\mathrm{CH}_{2}\right), 55.2(\mathrm{CH}), 117.6\left(\mathrm{CH}_{2}\right), 127.0$ $(\mathrm{CH}), 127.3(\mathrm{CH}), 128.4(\mathrm{CH}), 129.5(\mathrm{CH}), 136.1(\mathrm{Cq}), 138.2(\mathrm{Cq}), 143.0(\mathrm{Cq}), 145.5(\mathrm{Cq}), 146.1(\mathrm{Cq}), 197.6(\mathrm{CO})$. IR: $2940.4 \mathrm{~cm}^{-1}, 2859.4 \mathrm{~cm}^{-1}, 1679.9 \mathrm{~cm}^{-1}, 1602.9 \mathrm{~cm}^{-1}, 1446.8 \mathrm{~cm}^{-1}, 1335.3 \mathrm{~cm}^{-1}, 1264.4 \mathrm{~cm}^{-1}, 1215.3 \mathrm{~cm}^{-1}, 1183.3 \mathrm{~cm}^{-1}, 1152.6 \mathrm{~cm}$ ${ }^{1}, 1109.8 \mathrm{~cm}^{-1}, 1091.5 \mathrm{~cm}^{-1}, 957.0 \mathrm{~cm}^{-1}, 908.7 \mathrm{~cm}^{-1}, 845.4 \mathrm{~cm}^{-1}, 814.7 \mathrm{~cm}^{-1}, 728.2 \mathrm{~cm}^{-1}, 683.3 \mathrm{~cm}^{-1}, 651.9 \mathrm{~cm}^{-1}, 567.1 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S},[\mathbf{M}+\mathrm{Na}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 406.1447$, found $\mathrm{m} / \mathrm{z} 406.1448$.


4-(1-(1-Tosylpiperidin-2-yl)vinyl)benzaldehyde 5 g Following the described procedure, $55 \mathrm{mg}(0.3 \mathrm{mmol})$ of 4 -bromobenzaldehyde 2 m and $53 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 b}$ were reacted under the optimized conditions to afford 56 mg of 4 -(1-(1-tosylpiperidin-2-yl)vinyl)benzaldehyde 5 g as a transparent oil (EP/AcOEt 6/4, yield 75\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=1.23-1.32\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}\right), 1.34-1.44\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)$, $1.45-$ $1.49\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{N}^{2} \mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}\right), 1.49-1.56$ ( m, 1H; CH-C $\left.(H) \mathrm{H}-\mathrm{CH}_{2}\right), 1.63-1.71\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 2.39$ (s, $3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}$ ), 3.13 (td, $1 \mathrm{H}, \mathrm{J}=13.4,3.2 \mathrm{~Hz} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), 3.68 (dd broad, $1 \mathrm{H}, \mathrm{J}=15.1,4.7 \mathrm{~Hz} ; \mathrm{N}-$ $\left.\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 5.28$ (d broad, $1 \mathrm{H}, \mathrm{J}=3.5 \mathrm{~Hz} ; \mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}$ ), 5.34 (d narrow, $\left.1 \mathrm{H}, \mathrm{J}=2.3 \mathrm{~Hz} ; \mathrm{C}(H) \mathrm{H}=\mathrm{C}\right), 5.38$ (d narrow, 1H, J= $2.3 \mathrm{~Hz} ; \mathrm{C}(H) \mathrm{H}=\mathrm{C}), 7.24(\mathrm{~d}, 2 \mathrm{H} ; \mathrm{J}=8.0 \mathrm{~Hz} ; \mathrm{Ts}-H), 7.46(\mathrm{~d}, 2 \mathrm{H} ; \mathrm{J}=8.1 \mathrm{~Hz} ; \mathrm{Ar}-\mathrm{H}), 7.65(\mathrm{~d}, 2 \mathrm{H} ;$ $J=8.2 \mathrm{~Hz}$; Ts-H), 7.82 (d, 2H; J=8.0 Hz; Ar-H), $9.99 \mathrm{~s}, 1 \mathrm{H} ; \mathrm{CHO}$ ).
${ }^{13} \mathrm{C}-$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=18.7\left(\mathrm{CH}_{2}\right), 21.4\left(\mathrm{CH}_{3}\right), 24.3\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{2}\right), 41.6\left(\mathrm{CH}_{2}\right), 55.2(\mathrm{CH}), 118.1\left(\mathrm{CH}_{2}\right), 127.0(\mathrm{CH}), 127.8$ (CH), 129.6 (CH), 129.8 (CH), $135.5(\mathrm{Cq}), 138.2(\mathrm{Cq}), 143.1(\mathrm{Cq}), 146.2(\mathrm{Cq}), 147.3(\mathrm{Cq}), 191.7(\mathrm{CHO})$.
IR: $2940.7 \mathrm{~cm}^{-1}, 2858.0 \mathrm{~cm}^{-1}, 1697.5 \mathrm{~cm}^{-1}, 1603.3 \mathrm{~cm}^{-1}, 1562.5 \mathrm{~cm}^{-1}, 1434.5 \mathrm{~cm}^{-1}, 1334.7 \mathrm{~cm}^{-1}, 1304.5 \mathrm{~cm}^{-1}, 1209.9 \mathrm{~cm}^{-1}, 1183.7 \mathrm{~cm}$ ${ }^{1}, 1153.5 \mathrm{~cm}^{-1}, 1092.4 \mathrm{~cm}^{-1}, 1055.4 \mathrm{~cm}^{-1}, 958.2 \mathrm{~cm}^{-1}, 908.0 \mathrm{~cm}^{-1}, 834.4 \mathrm{~cm}^{-1}, 814.1 \mathrm{~cm}^{-1}, 724.5 \mathrm{~cm}^{-1}, 707.0 \mathrm{~cm}^{-1}, 664.6 \mathrm{~cm}^{-1}, 569.8 \mathrm{~cm}$ 1.

MS (ESI): Chemical formula $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S},[\mathbf{M}+\mathrm{Na}]^{\dagger}$ theoretical $\mathrm{m} / \mathrm{z} 392.1290$, found $\mathrm{m} / \mathrm{z} 392.1281$.


Methyl 4-(1-(1-tosylpiperidin-2-yl)vinyl)benzoate 5h Following the described procedure, 64 mg ( 0.3 mmol ) of methyl 4 -bromobenzoate $\mathbf{2 n}$ and $53 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 b}$ were reacted under the optimized conditions to afford 42 mg of methyl 4-(1-(1-tosylpiperidin-2-yl)vinyl)benzoate 5 h as a yellow oil (EP/AcOEt 7/1, yield 52\%).
${ }^{1} \mathrm{H}-$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=1.23-1.35\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 1.36-1.42\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)$, 1.43-1.49 (m, 1H; CH-C $\left.(H) \mathrm{H}-\mathrm{CH}_{2}\right), 1.49-1.55\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 1.64-1.69(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}-\mathrm{C}(H) \mathrm{H}-$ $\mathrm{CH}_{2}$ ), 2.39 (s, 3H; Ar-CH3), 3.14 (td, $\left.1 \mathrm{H}, \mathrm{J}=13.1,3.2 \mathrm{~Hz} ; \mathrm{N}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 3.65-3.73(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-$ $\mathrm{CH}_{2}$ ), 3.91 (s, 3H; $\mathrm{CO}_{2} \mathrm{CH}_{3}$ ), 5.26 (d broad, $1 \mathrm{H}, \mathrm{J}=5.9 \mathrm{~Hz} ; \mathrm{N}-\mathrm{CH}^{2}-\mathrm{CH}_{2}$ ), 5.30 (d, $\left.1 \mathrm{H}, \mathrm{J}=2.2 \mathrm{~Hz} ; \mathrm{C}(H) \mathrm{H}=\mathrm{C}\right)$, 5.34 (d, 1H, J= 2.2 Hz ; C(H)H=C), 7.24 (d, 2H, J= $8.4 \mathrm{~Hz} ; \mathrm{Ts}-H$ ), 7.35 (d, 2H, J= $8.3 \mathrm{~Hz} ; \mathrm{Ar}-\mathrm{H}$ ), 7.66 (d, $2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}$; Ts-H), 7.97 (d, 2H, J=8.3 Hz; Ar-H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=18.7\left(\mathrm{CH}_{2}\right), 21.4\left(\mathrm{CH}_{3}\right), 24.4\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{2}\right), 41.6\left(\mathrm{CH}_{2}\right), 52.1\left(\mathrm{OCH}_{3}\right), 55.3(\mathrm{CH}), 117.5\left(\mathrm{CH}_{2}\right), 127.0$ (CH), $127.1(\mathrm{CH}), 129.2(\mathrm{Cq}), 129.5(\mathrm{CH}), 129.6(\mathrm{Cq}), 138.2(\mathrm{Cq}), 143.0(\mathrm{Cq}), 145.7(\mathrm{Cq}), 146.2(\mathrm{Cq}), 166.8\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$.
IR: $2945.4 \mathrm{~cm}^{-1}, 2859.1 \mathrm{~cm}^{-1}, 1717.3 \mathrm{~cm}^{-1}, 1607.2 \mathrm{~cm}^{-1}, 1436.1 \mathrm{~cm}^{-1}, 1334.1 \mathrm{~cm}^{-1}, 1277.7 \mathrm{~cm}^{-1}, 1182.7 \mathrm{~cm}^{-1}, 1153.1 \mathrm{~cm}^{-1}, 1110.3 \mathrm{~cm}$ ${ }^{1}$, $1092.2 \mathrm{~cm}^{-1}, 1017.9 \mathrm{~cm}^{-1}, 956.4 \mathrm{~cm}^{-1}, 921.9 \mathrm{~cm}^{-1}, 871.2 \mathrm{~cm}^{-1}, 815.2 \mathrm{~cm}^{-1}, 778.4 \mathrm{~cm}^{-1}, 718.5 \mathrm{~cm}^{-1}, 669.9 \mathrm{~cm}^{-1}, 640.1 \mathrm{~cm}^{-1}, 568.1 \mathrm{~cm}$ .

MS (ESI): Chemical formula $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S},[\mathrm{M}+\mathrm{Na}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 422.1396$, found $\mathrm{m} / \mathrm{z} 422.1393$.


4-(1-(1-Tosylpiperidin-2-yl)vinyl)benzonitrile $5 \mathbf{i}$ Following the described procedure, $55 \mathrm{mg}(0.3 \mathrm{mmol})$ of 4-bromobenzonitrile $\mathbf{2 q}$ and $53 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 b}$ were reacted under the optimized conditions to afford 46 mg of 4 -(1-(1-tosylpiperidin-2-yl)vinyl)benzonitrile 5 i as a transparent oil (EP/AcOEt 7/1, yield $62 \%$ ). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.22-1.33\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 1.33-1.49\left(\mathrm{~m}, 3 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right.$ and $\left.\mathrm{N}-\mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}\right), 1.50-1.58\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 1.65-1.70\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 2.41\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ts}^{2}-\mathrm{CH}_{3}\right)$, 3.08 (td, $1 \mathrm{H}, \mathrm{J}_{1}=13.4 \mathrm{~Hz}, \mathrm{~J}_{2}=3.1 \mathrm{~Hz}$; N-C(H)H-CH2$), 3.61-3.68\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 5.23$ (d, 1H, J=3.4 $\left.\mathrm{Hz} ; \mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}\right), 5.35(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{C}(H) \mathrm{H}=\mathrm{C}), 5.36(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}), 7.25(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz} ; \mathrm{Ts}-\mathrm{H}), 7.40(\mathrm{~d}, 2 \mathrm{H}$, J= 8.4 Hz ; Ar-H), 7.59 (d, 2H, J= 8.4 Hz ; Ar-H), 7.64 (d, 2H, J= 8.4 Hz ; Ts-H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=18.6\left(\mathrm{CH}_{2}\right), 21.5\left(\mathrm{CH}_{3}\right)$, $24.2\left(\mathrm{CH}_{2}\right)$, $26.5\left(\mathrm{CH}_{2}\right), 41.7\left(\mathrm{CH}_{2}\right), 55.0(\mathrm{CH}), 11.2$ $(\mathrm{Cq}), 118.5\left(\mathrm{CH}_{2}\right), 118.7(\mathrm{Cq}), 127.0(\mathrm{CH}), 127.9(\mathrm{CH}), 129.6(\mathrm{CH}), 132.1(\mathrm{CH}), 138.1(\mathrm{Cq}), 143.2(\mathrm{Cq}), 145.7(\mathrm{Cq}), 145.8(\mathrm{Cq})$. IR: $2940.9 \mathrm{~cm}^{-1}, 2859.7 \mathrm{~cm}^{-1}, 2226.7 \mathrm{~cm}^{-1}, 1604.3 \mathrm{~cm}^{-1}, 1503.7 \mathrm{~cm}^{-1}, 1449.7 \mathrm{~cm}^{-1}, 1335.2 \mathrm{~cm}^{-1}, 1212.6 \mathrm{~cm}^{-1}, 1184.0 \mathrm{~cm}^{-1}, 1152.8 \mathrm{~cm}$ ${ }^{1}, 1109.4 \mathrm{~cm}^{-1}, 1091.5 \mathrm{~cm}^{-1}, 957.6 \mathrm{~cm}^{-1}, 910.1 \mathrm{~cm}^{-1}, 846.8 \mathrm{~cm}^{-1}, 814.9 \mathrm{~cm}^{-1}, 730.3 \mathrm{~cm}^{-1}, 710.5 \mathrm{~cm}^{-1}, 687.8 \mathrm{~cm}^{-1}, 652.9 \mathrm{~cm}^{-1}, 574.0 \mathrm{~cm}$ ${ }^{1}$.
MS (ESI): Chemical formula $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S},[\mathrm{M}+\mathrm{Na}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 389.1294$, found $\mathrm{m} / \mathrm{z} 389.1297$.


3-(1-(1-Tosylpiperidin-2-yl)vinyl)benzonitrile 5j Following the described procedure, $55 \mathrm{mg}(0.3 \mathrm{mmol})$ of 3-bromobenzonitrile $\mathbf{2 r}$ and $53 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 b}$ were reacted under the optimized conditions to afford 56 mg of 3-(1-(1-tosylpiperidin-2-yl)vinyl)benzonitrile 5 j as a yellow oil (EP/AcOEt 7/1, yield $75 \%$ ).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.21-1.30\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}\right), 1.32-1.42\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right.$ and $\mathrm{N}-$ $\left.\mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}\right)$, 1.43-1.54 (m, 2H; CH-C(H)H-CH2 and $\left.\mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 1.62-1.67\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right)$, 2.39 (s, $3 \mathrm{H} ; \mathrm{Ar}^{2}-\mathrm{CH}_{3}$ ), 3.08 (td, $1 \mathrm{H}, \mathrm{J}=13.4,3.2 \mathrm{~Hz}$; $\left.\mathrm{N}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 3.66\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 5.18(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=3.6 \mathrm{~Hz} ; \mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}\right), 5.32(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.2 \mathrm{~Hz} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}), 5.33(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.2 \mathrm{~Hz} ; \mathrm{C}(H) \mathrm{H}=\mathrm{C}), 7.24(\mathrm{~d}, 2 \mathrm{H}$, $J=8.3 \mathrm{~Hz}$; Ts-H), 7.41 (m, 1H; Ar-H), 7.51-7.56 (m, 3H; Ar-H), 7.64 (d, 2H, J= 8.3 Hz ; Ts-H).
${ }^{13} \mathrm{C}$-NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=18.8\left(\mathrm{CH}_{2}\right), 21.6\left(\mathrm{CH}_{3}\right), 24.3\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right), 41.8\left(\mathrm{CH}_{2}\right), 55.2(\mathrm{CH}), 112.6$ $(\mathrm{CH}), 118.4\left(\mathrm{CH}_{2}\right), 118.7(\mathrm{Cq}), 127.1(\mathrm{CH}), 129.3(\mathrm{CH}), 129.8(\mathrm{CH}), 130.9(\mathrm{CH}), 131.1(\mathrm{CH}), 131.7(\mathrm{CH}), 138.2(\mathrm{Cq}), 142.4(\mathrm{Cq}), 143.3$ (Cq), 145.4 (Cq).
IR: $2940.7 \mathrm{~cm}^{-1}, 2858.2 \mathrm{~cm}^{-1}, 2229.0 \mathrm{~cm}^{-1}, 1734.4 \mathrm{~cm}^{-1}, 1597.0 \mathrm{~cm}^{-1}, 1575.9 \mathrm{~cm}^{-1}, 1451.5 \mathrm{~cm}^{-1}, 1335.7 \mathrm{~cm}^{-1}, 1241.2 \mathrm{~cm}^{-1}, 1187.8 \mathrm{~cm}$ ${ }^{1}$, $1152.6 \mathrm{~cm}^{-1}, 1111.3 \mathrm{~cm}^{-1}, 1091.6 \mathrm{~cm}^{-1}$, $1045.0 \mathrm{~cm}^{-1}, 958.7 \mathrm{~cm}^{-1}, 910.4 \mathrm{~cm}^{-1}, 856.3 \mathrm{~cm}^{-1}, 810.9 \mathrm{~cm}^{-1}, 763.5 \mathrm{~cm}^{-1}, 710.8 \mathrm{~cm}^{-1}, 699.9$ $\mathrm{cm}^{-1}, 648.8 \mathrm{~cm}^{-1}, 607.7 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S},[\mathrm{M}+\mathrm{Na}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 389.1294$, found $\mathrm{m} / \mathrm{z} 389.1292$.


1-Tosyl-2-(1-(4-(trifluoromethyl)phenyl)vinyl)piperidine 5k Following the described procedure, 68 mg $(0.3 \mathrm{mmol})$ of 4-bromobenzotrifluoride $\mathbf{2 s}$ and $53 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 b}$ were reacted under the optimized conditions to afford 55 mg of 1 -tosyl-2-(1-(4-(trifluoromethyl)phenyl)vinyl)piperidine $\mathbf{5 k}$ as a yellow oil (EP/AcOEt 7/1, yield 75\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.28-1.45\left(\mathrm{~m}, 3 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right.$ and $\left.\mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)$, $1.46-1.51\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\right.$ $\left.\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 1.52-1.61\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 1.70-1.73\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}-\mathrm{C}(H) \mathrm{H}_{-} \mathrm{CH}_{2}\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}\right)$, 3.11 (td, $1 \mathrm{H}, \mathrm{J}=12.6,3.3 \mathrm{~Hz}$; $\left.\mathrm{N}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 3.63-3.69\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 5.26(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.9 \mathrm{~Hz} ; \mathrm{N}-\mathrm{CH}-$ $\mathrm{CH}_{2}$ ), 5.32 (d, $\left.1 \mathrm{H}, \mathrm{J}=2.2 \mathrm{~Hz} ; \mathrm{C}(H) \mathrm{H}=\mathrm{C}\right), 5.34(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.2 \mathrm{~Hz} ; \mathrm{C}(H) \mathrm{H}=\mathrm{C}), 7.23(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}$; Ts-H$)$, 7.40 (d, 2H, J= 8.1 Hz ; Ar-H), 7.55 (d, 2H, J= 8.1 Hz ; Ar-H), 7.62 (d, 2H, J= 8.3 Hz ; Ts-H).
${ }^{13} \mathrm{C}-$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=18.7\left(\mathrm{CH}_{2}\right), 21.4\left(\mathrm{CH}_{3}\right)$, $24.3\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right), 41.6\left(\mathrm{CH}_{2}\right), 55.2(\mathrm{CH}), 117.8\left(\mathrm{CH}_{2}\right), 124.3\left(\mathrm{Cq}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=\right.$ $271 \mathrm{~Hz}), 125.3\left(\mathrm{CH}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=4.1 \mathrm{~Hz}\right), 127.0(\mathrm{CH}), 127.5(\mathrm{CH}), 129.5(\mathrm{Cq}), 129.6\left(\mathrm{Cq}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=32.3 \mathrm{~Hz}\right), 138.1(\mathrm{Cq}), 143.1(\mathrm{Cq}), 144.8(\mathrm{Cq})$, 146.0 (Cq).
${ }^{19}$ F-NMR ( 600 MHz ; $\mathrm{CDCl}_{3}, \mathrm{NaF}$ ): $\delta$ - $62.35(3 \mathrm{~F}, \mathrm{~s})$.
IR: $2940.4 \mathrm{~cm}^{-1}, 2860.4 \mathrm{~cm}^{-1}, 1615.0 \mathrm{~cm}^{-1}, 1448.0 \mathrm{~cm}^{-1}, 1403.5 \mathrm{~cm}^{-1}, 1322.5 \mathrm{~cm}^{-1}, 1213.2 \mathrm{~cm}^{-1}, 1154.5 \mathrm{~cm}^{-1}, 1115.1 \mathrm{~cm}^{-1}, 1090.9 \mathrm{~cm}$ ${ }^{1}$, $1064.3 \mathrm{~cm}^{-1}, 1016.0 \mathrm{~cm}^{-1}, 959.1 \mathrm{~cm}^{-1}, 932.2 \mathrm{~cm}^{-1}, 869.4 \mathrm{~cm}^{-1}, 849.2 \mathrm{~cm}^{-1}, 815.1 \mathrm{~cm}^{-1}, 728.0 \mathrm{~cm}^{-1}, 670.4 \mathrm{~cm}^{-1}, 567.9 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}$, $[\mathbf{M + N a}]^{\dagger}$ theoretical $\mathrm{m} / \mathrm{z} 432.1215$, found $\mathrm{m} / \mathrm{z} 432.1214$.


1-Tosyl-2-(1-(3-(trifluoromethyl)phenyl)vinyl)piperidine 51 Following the described procedure, 68 mg ( 0.3 mmol ) of 3 -bromobenzotrifluoride $\mathbf{2 t}$ and $53 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 b}$ were reacted under the optimized conditions to afford 40 mg of 1 -tosyl-2-(1-(3-(trifluoromethyl)phenyl)vinyl)piperidine $\mathbf{5 I}$ as a transparent oil (EP/AcOEt 7/1, yield 50\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.24-1.45\left(\mathrm{~m}, 3 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right.$ and $\left.\mathrm{N}-\mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}\right), 1.46-1.50(\mathrm{~m}, 1 \mathrm{H}$; $\left.\mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 1.51-1.57\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 1.65-1.72\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 2.41(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-$ $\mathrm{CH}_{3}$ ), 3.14 (td, $\left.1 \mathrm{H}, \mathrm{J}=13.7,3.4 \mathrm{~Hz} ; \mathrm{N}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right)$, $3.65-3.71\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 5.27(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.8$ Hz ; N-CH-CH2), $5.32(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.2 \mathrm{~Hz} ; \mathrm{C}(H) \mathrm{H}=\mathrm{C}), 5.34(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz} ; \mathrm{C}(H) \mathrm{H}=\mathrm{C}), 7.25(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5$ Hz; Ts-H), 7.44 (t, 1H, J= 7.6 Hz ; Ar-H), 7.50 (d, 1H, J= 7.9 Hz ; Ar-H), 7.52-7.57 (m, 2H; Ar-H), 7.66 (d, 2H,
$J=8.3 \mathrm{~Hz}$; Ts-H).
${ }^{13}$ C-NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=18.7\left(\mathrm{CH}_{2}\right), 21.4\left(\mathrm{CH}_{3}\right)$, $24.3\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{2}\right), 41.6\left(\mathrm{CH}_{2}\right)$, $55.2(\mathrm{CH}), 117.8\left(\mathrm{CH}_{2}\right), 123.9\left(\mathrm{CH}, \mathrm{J}_{\mathrm{C}-\mathrm{F}=}=\right.$ $3.9 \mathrm{~Hz}), 124.0\left(\mathrm{Cq}, J_{\mathrm{C}-\mathrm{F}}=270 \mathrm{~Hz}\right), 124.3\left(\mathrm{CH}, J_{\mathrm{C}-\mathrm{F}}=3.7 \mathrm{~Hz}\right), 127.0(\mathrm{CH}), 128.8(\mathrm{CH}), 129.6(\mathrm{CH}), 130.4(\mathrm{CH}), 130.7\left(\mathrm{Cq}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=31.9\right.$ $\mathrm{Hz}), 138.2(\mathrm{Cq}), 141.8(\mathrm{Cq}), 143.0(\mathrm{Cq}), 145.8(\mathrm{Cq})$.
${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}, \mathrm{NaF}\right): \delta-62.43(3 \mathrm{~F}, \mathrm{~s})$.
IR: $2941.6 \mathrm{~cm}^{-1}, 2861.0 \mathrm{~cm}^{-1}, 2229.2 \mathrm{~cm}^{-1}, 1597.2 \mathrm{~cm}^{-1}, 1444.8 \mathrm{~cm}^{-1}, 1399.5 \mathrm{~cm}^{-1}, 1330.8 \mathrm{~cm}^{-1}, 1253.2 \mathrm{~cm}^{-1}, 1215.5 \mathrm{~cm}^{-1}, 1153.6 \mathrm{~cm}$ ${ }^{1}, 1122.8 \mathrm{~cm}^{-1}, 1092.3 \mathrm{~cm}^{-1}, 1071.4 \mathrm{~cm}^{-1}, 958.7 \mathrm{~cm}^{-1}, 907.7 \mathrm{~cm}^{-1}, 811.9 \mathrm{~cm}^{-1}, 765.0 \mathrm{~cm}^{-1}, 729.4 \mathrm{~cm}^{-1}, 654.7 \mathrm{~cm}^{-1}, 613.3 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S},\left[\mathrm{M}+\mathrm{Na}^{+}\right.$theoretical $\mathrm{m} / \mathrm{z} 432.1215$, found $\mathrm{m} / \mathrm{z} 432.1217$.


3-(1-(1-Tosylpiperidin-2-yl)vinyl)pyridine 5 m Following the described procedure, $48 \mathrm{mg}(0.3 \mathrm{mmol})$ of 3 bromopyridine $\mathbf{2 v}$ and $53 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 b}$ were reacted under the optimized conditions to afford 38 mg of 3 -(1-(1-tosylpiperidin-2-yl)vinyl)pyridine 5 m as an amber oil (EP/AcOEt 6/4, yield $56 \%$ ).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=1.24-1.31\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}\right), 1.33-1.42\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 1.42-1.53$ ( $\mathrm{m}, 2 \mathrm{H} ; \mathrm{CH}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}$ and $\left.\mathrm{N}-\mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}\right)$, 1.67-1.70 (m, $\left.1 \mathrm{H} ; \mathrm{CH}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 2.39\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}\right), 3.10$ (td, $\left.1 \mathrm{H}, \mathrm{J}=12.8,3.3 \mathrm{~Hz} ; \mathrm{N}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 3.66\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 5.20$ (d broad, $1 \mathrm{H}, \mathrm{J}=10.7 \mathrm{~Hz} ; \mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}$ ), 5.33 (d narrow, $1 \mathrm{H}, J=2.2 \mathrm{~Hz} ; \mathrm{C}(H) \mathrm{H}=\mathrm{C}$ ), 5.34 (d narrow, $1 \mathrm{H}, J=2.2 \mathrm{~Hz} ; \mathrm{C}(H) \mathrm{H}=\mathrm{C}), 7.24$ (m, 3H, Ts-H, Ar-H,), 7.63 (dt, 1H, J= 7.9, 1.7 Hz; Ar-H), 7.65 (d, 2H, J= 8.3 Hz ; Ts-H), 8.48-8.57 (m, 2H; Ar-H).
${ }^{13} \mathrm{C}-$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=18.6\left(\mathrm{CH}_{2}\right)$, $21.5\left(\mathrm{CH}_{3}\right)$, $24.2\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 41.6\left(\mathrm{CH}_{2}\right), 55.1(\mathrm{CH}), 118.1$ $\left(\mathrm{CH}_{2}\right)$, $123.0(\mathrm{CH}), 127.0(\mathrm{CH}), 129.6(\mathrm{CH}), 134.4(\mathrm{CH}), 136.5(\mathrm{Cq}), 138.1(\mathrm{Cq}), 143.1(\mathrm{Cq}), 143.8(\mathrm{Cq}), 148.2(\mathrm{CH}), 148.8(\mathrm{CH})$.
IR: $2945.3 \mathrm{~cm}^{-1}, 2870.4 \mathrm{~cm}^{-1}, 1480.3 \mathrm{~cm}^{-1}, 1371.6 \mathrm{~cm}^{-1}, 1334.1 \mathrm{~cm}^{-1}, 1287.0 \mathrm{~cm}^{-1}, 1202.4 \mathrm{~cm}^{-1}, 1182.7 \mathrm{~cm}^{-1}, 1153.0 \mathrm{~cm}^{-1}, 1111.8 \mathrm{~cm}^{-1}$ ${ }^{1}, 1090.6 \mathrm{~cm}^{-1}, 1024.5 \mathrm{~cm}^{-1}, 952.9 \mathrm{~cm}^{-1}, 922.6 \mathrm{~cm}^{-1}, 902.8 \mathrm{~cm}^{-1}, 874.9 \mathrm{~cm}^{-1}, 816.7 \mathrm{~cm}^{-1}, 746.5 \mathrm{~cm}^{-1}, 715.2 \mathrm{~cm}^{-1}, 692.3 \mathrm{~cm}^{-1}, 665.0 \mathrm{~cm}$ ${ }^{1}, 640.5 \mathrm{~cm}^{-1}, 600.1 \mathrm{~cm}^{-1}, 564.5 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 343.1480$, found $\mathrm{m} / \mathrm{z} 343.1472$; [M+Na] ${ }^{+}$theoretical $\mathrm{m} / \mathrm{z} 365.1294$, found $m / z 365.1294$.


2-(1-(Thiophen-2-yl)vinyl)-1-tosylpiperidine $5 \mathbf{n}$ Following the described procedure, 49 mg ( 0.3 mmol ) of 2bromothiophene $\mathbf{2 x}$ and $53 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 b}$ were reacted under the optimized conditions to afford 44 mg of 2 -(1-(thiophen-2-yl)vinyl)-1-tosylpiperidine $\mathbf{5 n}$ as a light yellow solid (EP/AcOEt 7/1, yield 63\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.28-1.37\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}\right), 1.39-1.45\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 1.49-1.53(\mathrm{~m}$, $\left.1 \mathrm{H} ; \mathrm{N}-\mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}\right), 1.54-1.61\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 1.90-1.95\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 2.41\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}\right)$, 3.21 (ddd, 1H, J=13.4, 12.4, 3.4 Hz; N-C(H)H-CH2), 3.71-3.75 (m, 1H; N-C(H)H-CH2), 5.12 (d, 1H, J=2.1 Hz; $\mathrm{C}(H) \mathrm{H}=\mathrm{C}), 5.14-5.16$ ( m broad, $1 \mathrm{H} ; \mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}$ ), $5.45(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.1 \mathrm{~Hz} ; \mathrm{C}(H) \mathrm{H}=\mathrm{C}), 7.70(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz} ; \mathrm{Ts}-\mathrm{H})$, 7.26 (d, 2H, J=7.8 Hz; Ts-H), 6.97 (dd, 1H, $J=5.1,3.6 \mathrm{~Hz}$; Ar-H). 7.02 (dd, $1 \mathrm{H}, \mathrm{J}=3.6,1.2 \mathrm{~Hz}$; Ar-H), 7.17 (dd, $1 \mathrm{H}, \mathrm{J}=5.1,1.2 \mathrm{~Hz}$; Ar-H).
${ }^{13} \mathrm{C}$-NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=18.8\left(\mathrm{CH}_{2}\right)$, $21.5\left(\mathrm{CH}_{3}\right), 24.4\left(\mathrm{CH}_{2}\right)$, $27.4\left(\mathrm{CH}_{2}\right), 42.1\left(\mathrm{CH}_{2}\right), 55.7(\mathrm{CH}), 115.8\left(\mathrm{CH}_{2}\right), 124.1(\mathrm{CH}), 124.4$ $(\mathrm{CH}), 127.1(\mathrm{CH}), 127.2(\mathrm{CH}), 129.5(\mathrm{CH}), 138.1(\mathrm{Cq}), 140.0(\mathrm{Cq}), 142.87(\mathrm{Cq}), 142.95(\mathrm{Cq})$.
IR: $2922.25 \mathrm{~cm}^{-1}, 2858.3 \mathrm{~cm}^{-1}, 1445.0 \mathrm{~cm}^{-1}, 1386.3 \mathrm{~cm}^{-1}, 1353.1 \mathrm{~cm}^{-1}, 1334.9 \mathrm{~cm}^{-1}, 1304.6 \mathrm{~cm}^{-1}, 1221.2 \mathrm{~cm}^{-1}, 1178.0 \mathrm{~cm}^{-1}, 1153.1 \mathrm{~cm}$ ${ }^{1}$, $1109.9 \mathrm{~cm}^{-1}, 1092.6 \mathrm{~cm}^{-1}, 1052.5 \mathrm{~cm}^{-1}$, $1034.2 \mathrm{~cm}^{-1}$, $959.4 \mathrm{~cm}^{-1}$, $931.2 \mathrm{~cm}^{-1}, 912.2 \mathrm{~cm}^{-1}, 897.0 \mathrm{~cm}^{-1}, 850.9 \mathrm{~cm}^{-1}, 837.7 \mathrm{~cm}^{-1}, 814.9$ $\mathrm{cm}^{-1}, 767.6 \mathrm{~cm}^{-1}, 721.2 \mathrm{~cm}^{-1}, 709.2 \mathrm{~cm}^{-1}, 688.3 \mathrm{~cm}^{-1}, 654.4 \mathrm{~cm}^{-1}, 602.1 \mathrm{~cm}^{-1}, 572.6 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}_{2},[\mathrm{M}+\mathrm{Na}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 370.0905$, found $\mathrm{m} / \mathrm{z} 370.0904$. Mp: 108.7-109.3${ }^{\circ} \mathrm{C}$


5-(1-(1-Tosylpiperidin-2-yl)vinyl)furan-2-carbaldehyde 50 Following the described procedure, 52 mg ( 0.3 mmol ) of 5 -bromo-2-furaldehyde $\mathbf{2 y}$ and $53 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 b}$ were reacted under the optimized conditions to afford 31 mg of 5 -(1-(1-tosylpiperidin-2-yl)vinyl)furan-2-carbaldehyde 50 as an orange oil (gradient EP/AcOEt from 7/1 to 7/3, yield 42\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.23-1.32\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}\right), 1.43-1.51\left(\mathrm{~m}, 3 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right.$ and $\mathrm{N}-$ $\left.\mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}\right)$, 1.62-1.68 (m, 1H; CH-C(H)H-CH2), 1.87-1.90 (m, 1H; CH-C(H)H-CH2), $2.41\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}\right)$, 3.19 (td, 1H, J=12.2, 3.1 Hz; N-C(H)H-CH2), 3.69 (dt, $\left.1 \mathrm{H}, \mathrm{J}=13.9,4.5 \mathrm{~Hz} ; \mathrm{N}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right), 5.08$ (d broad, $1 \mathrm{H}, \mathrm{J}=4.0 \mathrm{~Hz} ; \mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}$ ), 5.40 (d narrow, $\left.1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz} ; \mathrm{C}(H) \mathrm{H}=\mathrm{C}\right), 5.96(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{C}(\mathrm{H}) \mathrm{H}=\mathrm{C}), 6.72$ (d, 1H, $J=3.8 \mathrm{~Hz} ; \mathrm{Ar}-\mathrm{H}$ ), $7.22(\mathrm{~d}, 1 \mathrm{H}, J=3.8 \mathrm{~Hz} ; \mathrm{Ar}-\mathrm{H}), 7.27(\mathrm{~d}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}$; Ts-H), $7.70(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz} ;$ Ts-
H), 9.58 (s, 1H; CHO).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=18.9\left(\mathrm{CH}_{2}\right)$, $21.4\left(\mathrm{CH}_{3}\right), 23.9\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right), 42.5\left(\mathrm{CH}_{2}\right), 53.7(\mathrm{CH}), 110.0(\mathrm{CH}), 118.5\left(\mathrm{CH}_{2}\right), 122.9$ $(\mathrm{CH}), 127.1(\mathrm{CH}), 129.6(\mathrm{CH}), 135.8(\mathrm{Cq}), 137.7(\mathrm{Cq}), 143.3(\mathrm{Cq}), 151.6(\mathrm{Cq}), 158.1(\mathrm{Cq}), 177.3(\mathrm{CHO})$.
IR: $2940.96 \mathrm{~cm}^{-1}, 2860.2 \mathrm{~cm}^{-1}, 1671.4 \mathrm{~cm}^{-1}, 1596.8 \mathrm{~cm}^{-1}, 1498.5 \mathrm{~cm}^{-1}, 1445.9 \mathrm{~cm}^{-1}, 1396.7 \mathrm{~cm}^{-1}, 1335.2 \mathrm{~cm}^{-1}, 1287.3 \mathrm{~cm}^{-1}, 1261.0 \mathrm{~cm}$ ${ }^{1}, 1183.9 \mathrm{~cm}^{-1}, 1153.8 \mathrm{~cm}^{-1}, 1111.6 \mathrm{~cm}^{-1}, 1092.0 \mathrm{~cm}^{-1}, 1028.4 \mathrm{~cm}^{-1}, 962.6 \mathrm{~cm}^{-1}, 949.7 \mathrm{~cm}^{-1}, 915.7 \mathrm{~cm}^{-1}, 813.9 \mathrm{~cm}^{-1}, 755.1 \mathrm{~cm}^{-1}, 731.5$ $\mathrm{cm}^{-1}, 709.3 \mathrm{~cm}^{-1}, 690.5 \mathrm{~cm}^{-1}, 659.4 \mathrm{~cm}^{-1}, 593.4 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}$, $[\mathbf{M + N a}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 382.1083$, found $\mathrm{m} / \mathrm{z} 382.1081$.

### 4.4.4 Characterization of pyrrolidines 6-7



6a
$E: Z>99: 1$

2-(1,2-Diphenylvinyl)-1-tosylpyrrolidine 6a Following the described procedure, $47 \mathrm{mg}(0.3 \mathrm{mmol})$ of bromobenzene $2 \mathbf{a}$ and $65 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 c}$ were reacted under the optimized conditions to afford 41 mg of 2-(1,2-Diphenylvinyl)-1-tosylpyrrolidine $\mathbf{6 a}$ as a yellow oil (EP/AcOEt 7/1, yield 50\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(E$ isomer $)$ : $\delta=1.54-1.59\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}_{\left.-\mathrm{CH}_{2}\right), 1.64-1.68\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-1 .\right.}\right.$ $\mathrm{CH}_{2}$ ), 1.69-1.76 (m, 2H; $\left.\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}\right), 3.32-3.36\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 3.46-3.49(\mathrm{~m}, 1 \mathrm{H}$; $\mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}_{-} \mathrm{CH}_{2}$ ), 4.56 (dd, $1 \mathrm{H}, \mathrm{J}=8.0,2.0 \mathrm{~Hz} ; \mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}$ ), $6.62(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{C}=\mathrm{CH}-\mathrm{Ph}), 6.86-6.89$ (m, 2H; Ar-H), 7.037.10 (m, 3H; Ar-H), 7.20-7.22 (m, 2H; Ar-H), 7.28-7.35 (m, 5H; Ar-H and Ts-H), 7.79 (d, 2H, J=8.34; Ts-H).
${ }^{13} \mathrm{C}-$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(E$ isomer $): ~ \delta=21.4\left(\mathrm{CH}_{3}\right), 23.7\left(\mathrm{CH}_{2}\right), 31.4\left(\mathrm{CH}_{2}\right), 49.3\left(\mathrm{CH}_{2}\right), 66.5(\mathrm{CH}), 126.5(\mathrm{CH})$, $127.3(\mathrm{CH}), 127.5(\mathrm{CH}), 127.7(\mathrm{CH}), 128.7(\mathrm{CH}), 129.2(\mathrm{CH}), 129.4(\mathrm{CH}), 129.6(\mathrm{CH}), 135.3(\mathrm{Cq}), 136.4(\mathrm{Cq}), 139.0(\mathrm{Cq}), 142.0(\mathrm{Cq})$, 143.3 (Cq).

IR: $3022.7 \mathrm{~cm}^{-1}$, $2973.6 \mathrm{~cm}^{-1}, 1597.3 \mathrm{~cm}^{-1}, 1492.4 \mathrm{~cm}^{-1}, 1445.0 \mathrm{~cm}^{-1}, 1342.1 \mathrm{~cm}^{-1}, 1303.6 \mathrm{~cm}^{-1}, 1260.2 \mathrm{~cm}^{-1}, 1205.7 \mathrm{~cm}^{-1}, 1182.9 \mathrm{~cm}^{-}$ ${ }^{1}, 1153.9 \mathrm{~cm}^{-1}, 1090.4 \mathrm{~cm}^{-1}, 1037.4 \mathrm{~cm}^{-1}, 989.0 \mathrm{~cm}^{-1}, 917.7 \mathrm{~cm}^{-1}, 814.2 \mathrm{~cm}^{-1}, 757.5 \mathrm{~cm}^{-1}, 736.7 \mathrm{~cm}^{-1}, 695.2 \mathrm{~cm}^{-1}, 679.3 \mathrm{~cm}^{-1}, 659.2 \mathrm{~cm}^{-}$ ${ }^{1}, 594.2 \mathrm{~cm}^{-1}, 581.7 \mathrm{~cm}^{-1}, 547.2 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{~S},[\mathrm{M}+\mathrm{Na}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 426.1498$, found $\mathrm{m} / \mathrm{z} 426.1497$.

( $E$ and Z)-1-(4-(2-Phenyl-1-(1-tosylpyrrolidin-2-yl)vinyl)phenyl)ethan-1-one 6 b Following the described procedure, $60 \mathrm{mg}(0.3 \mathrm{mmol})$ of 4-bromobenzophenone $\mathbf{2 k}$ and $65 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 c}$ were reacted under the optimized conditions to afford 65 mg of $1-(E$ and $Z)$-(4-(2-phenyl-1-(1-tosylpyrrolidin-2-yl)vinyl)phenyl)ethan-1-one 6b as a yellow oil (gradient EP/AcOEt $7 / 1$ to $7 / 3$, yield $73 \%$ ).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$; mixture of $E / Z$ isomers in ratio $80 / 20$ : $\delta=1.13-1.20\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right.$ minor isomer), 1.34-1.40 (m, 1H; $\mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ minor isomer), 1.52-1.59 (m, $1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ major isomer), 1.61-1.73 (m, 3H; $\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}$ and $\mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ major isomer), 1.75-1.80 (m, 1H; $\mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}$ minor isomer), 1.85-1.93 (m, 1H; $\mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}$ minor isomer), $2.35\left(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{Ar}^{-} \mathrm{CH}_{3}\right.$ minor isomer), $2.40(\mathrm{~s}, 3 \mathrm{H}$; $\mathrm{Ar}-$ $\mathrm{CH}_{3}$ major isomer), $2.60\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{COCH}_{3}\right.$ major isomer); $2.63\left(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{COCH}_{3}\right.$ major isomer), 3.18-3.22 (m, 1 H ; $\mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ minor isomer), 3.23-3.27 (m, $1 \mathrm{H} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ minor isomer); 3.31-3.35 (m,1H; N-C(H)H-CH2 major isomer), 3.42-3.46 (m, $1 \mathrm{H} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ major isomer), 4.53-4.55 (m, 1H; N-CH-CH2 major isomer), $4.66(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{CH}-\mathrm{CH} 2$ minor isomer), $6.68(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{C}=\mathrm{CH}-\mathrm{Ph}$ major isomer), $6.70(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{C}=\mathrm{CH}-\mathrm{Ph}$ minor isomer), 6.86-6.87 (m, 2 H ; Ar-H major isomer), 7.03 (d, $1 \mathrm{H}, \mathrm{J}=8.6$; Ts-H minor isomer), 7.06-7.09 (m, 3 H ; Ar-H major isomer), $7.10(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}$; Ar-H minor isomer), $7.30(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ 7.7 Hz ; Ts-H major isomer), $7.33(\mathrm{~m}, 2 \mathrm{H}$; Ar-H major isomer), 7.41-7.46 (m, 1H; Ar-H minor isomer), 7.73 (d, $1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}$; Ar- Hminor isomer), 7.78 (d, $2 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}$; Ts-H major isomer), 7.92 (d, $2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}$; Ar-H major isomer), 7.96 ( $\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}$; Ar- H minor isomer).
${ }^{13} \mathbf{C}$-NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) mixture of $E / Z$ isomers in ratio $80 / 20$ : $\delta=21.40\left(\mathrm{CH}_{3}\right.$ minor isomer), $21.43\left(\mathrm{CH}_{3}\right.$ major isomer), $23.8\left(\mathrm{CH}_{2}\right.$ major isomer), $24.3\left(\mathrm{CH}_{2}\right.$ minor isomer), $26.58\left(\mathrm{CH}_{3}\right.$ major isomer), $26.60\left(\mathrm{CH}_{3}\right.$ minor isomer), $31.5\left(\mathrm{CH}_{2}\right.$ major isomer), $32.6\left(\mathrm{CH}_{2}\right.$ minor isomer), $49.3\left(\mathrm{CH}_{2}\right.$ major isomer), 50.3 ( $\mathrm{CH}_{2}$ minor isomer), 58.3 ( CH minor isomer), 66.2 ( CH major isomer), 126.9 ( CH major isomer), 127.1 ( CH minor isomer), 127.4 ( CH minor isomer), 127.46 ( CH major isomer), 127.48 ( CH minor isomer), 127.8 ( CH major isomer), 128.3 (CH minor isomer), 128.5 (CH minor isomer), 128.6 ( CH major isomer), 128.9 (CH minor isomer), 129.2 (CH major isomer), 129.4 (CH minor isomer), 129.7 (CH major isomer), 129.8 (CH major isomer), 130.1 ( CH major isomer), 131.9 ( CH minor isomer), 133.1 ( Cq minor isomer), 135.1 (Cq major isomer), 135.92 ( Cq major isomer), 135.97 ( Cq major isomer), 136.8 ( Cq minor isomer), 141.1 ( Cq major isomer), 142.4 (Cq minor isomer), 143.1 (Cq minor isomer), 143.5 (Cq major isomer), 144.3 (Cq major isomer), 145.9 (Cq minor isomer), 197.8 ( $\mathrm{C}=\mathrm{O}$ major isomer), 198.0 ( $\mathrm{C}=\mathrm{O}$ minor isomer).
IR: $2968.5 \mathrm{~cm}^{-1}, 2870.4 \mathrm{~cm}^{-1}, 1736.2 \mathrm{~cm}^{-1}, 1679.8 \mathrm{~cm}^{-1}, 1600.7 \mathrm{~cm}^{-1}, 1557.3 \mathrm{~cm}^{-1}, 1492.2 \mathrm{~cm}^{-1}, 1445.8 \mathrm{~cm}^{-1}, 1400.5 \mathrm{~cm}^{-1}, 1343.2 \mathrm{~cm}^{-}$ ${ }^{1}, 1304.3 \mathrm{~cm}^{-1}, 1264.4 \mathrm{~cm}^{-1}, 1205.6 \mathrm{~cm}^{-1}, 1182.1 \mathrm{~cm}^{-1}, 1157.2 \mathrm{~cm}^{-1}, 1091.1 \mathrm{~cm}^{-1}, 1032.2 \mathrm{~cm}^{-1}, 991.6 \mathrm{~cm}^{-1}, 957.4 \mathrm{~cm}^{-1}, 915.5 \mathrm{~cm}^{-1}, 815.6$ $\mathrm{cm}^{-1}, 752.1 \mathrm{~cm}^{-1}, 732.8 \mathrm{~cm}^{-1}, 696.2 \mathrm{~cm}^{-1}, 663.7 \mathrm{~cm}^{-1}, 588.9 \mathrm{~cm}^{-1}, 551.7 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S},[\mathrm{M}+\mathrm{Na}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 468.1603$, found $m / z 468.1607$.

( $E$ and Z)-4-(2-phenyl-1-(1-tosylpyrrolidin-2-yl)vinyl)benzonitrile 6 c Following the described procedure, 55 $\mathrm{mg}(0.3 \mathrm{mmol})$ of 4-bromobenzonitrile $\mathbf{2 q}$ and $65 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 c}$ were reacted under the optimized conditions to afford 69 mg of $(E$ and $Z)$-4-(2-phenyl-1-(1-tosylpyrrolidin-2-yl)vinyl)benzonitrile $6 \mathbf{c}$ as a yellow oil (gradient EP/AcOEt $7 / 1$ to $7 / 3$, yield $80 \%$ ).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ mixture of $\mathrm{E} / \mathrm{Z}$ isomers in ratio $81 / 19$ : $\delta=1.17-1.22\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right.$ minor isomer), $1.36-1.40\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right.$ minor isomer), $1.53-1.57\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right.$ major isomer), 1.63-1.66 (m, 3H; (m, 1H; $\mathrm{CH}_{2}-\mathrm{C}(H)-\mathrm{CH}$ and $\mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) H-\mathrm{CH}_{2}$ major isomer), 1.72-1.79 (m, 1H; $\mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}$ minor isomer and $\mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}$ major isomer), 1.88-1.95 (m, 1H; $\mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}$ minor isomer), 2.36 (s, 1 H ; $\mathrm{Ar}-\mathrm{CH}_{3}$ minor isomer), 2.41 ( $\mathrm{s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}$ major isomer), 3.19-3.22 (m, $1 \mathrm{H} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ minor isomer), 3.22$3.26\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right.$ minor isomer), 3.31-3.35 (m,1H; $\mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ major isomer), 3.40-3.44 3.31-3.35 (m, $1 \mathrm{H} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH} 2$ major isomer), 4.49 (dd, $1 \mathrm{H}, \mathrm{J}=7.9 ; 3.5 \mathrm{~Hz} ; \mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}$ major isomer), $4.63\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz} ; \mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}\right.$ minor isomer), $6.70(\mathrm{~s}, 1 \mathrm{H}$; $\mathrm{C}=\mathrm{CH}$-Ph major isomer), 6.81-6.85 (m, 2H; C=CH-Ph minor isomer and $\mathrm{Ar}-\mathrm{H}$ ), $7.03(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}$; Ar-H minor isomer), 7.06-7.14 ( $\mathrm{m}, 4 \mathrm{H}$; Ar-H mixture of isomers), 7.31 (m, 3H; Ar-H mixture of isomers), 7.37 ( $\mathrm{d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}$; Ar-H minor isomer), $7.43-7.47(\mathrm{~m}, 1 \mathrm{H}$; Ar- H minor isomer), 7.61 (d, 2H, $J=8.4$; Ar- H major isomer), 7.66 ( $\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz} ; \mathrm{Ar}-\mathrm{H}$ minor isomer), 7.75-7.63 (m, 3H; Ar- H mixture of isomers).
${ }^{13} \mathbf{C}-$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right)$ : $\delta=21.3\left(\mathrm{CH}_{3}\right.$ minor isomer), $21.3\left(\mathrm{CH}_{3}\right.$ major isomer), $23.6\left(\mathrm{CH}_{2}\right.$ major isomer), 24.1 ( $\mathrm{CH}_{2}$ minor isomer), $31.5\left(\mathrm{CH}_{2}\right.$ major isomer), $32.5\left(\mathrm{CH}_{2}\right.$ minor isomer), $49.2\left(\mathrm{CH}_{2}\right.$ major isomer), $50.1\left(\mathrm{CH}_{2}\right.$ minor isomer), 57.9 ( CH minor isomer), 65.9
(CH major isomer), 110.9 (Cq minor isomer), 111.0 (Cq major isomer), 118.5 (Cq major isomer), 118.7 (Cq minor isomer), 126.9 (CH major isomer), 127.1 (CH minor isomer), 127.37 ( CH major isomer), 127.31 ( CH minor isomer), 127.8 ( CH major isomer), 128.2 (CH), 128.9 (CH minor isomer), 128.95 (CH major isomer), 129.1 (CH major isomer), 129.2 ( CH minor isomer), 129.5 (CH major isomer), 130.4 (CH major isomer), 130.5 (CH minor isomer), 131.4 (CH major isomer), 132.2 ( CH major isomer), 132.4 (CH minor isomer), 132.6 (Cq major isomer), 134.7 (Cq), 135.4 (Cq major isomer), 136.3 (Cq minor isomer), 140.3 (Cq major isomer), 141.6 (Cq minor isomer), 143.1 (Cq minor isomer), 143.4 (Cq major isomer), 143.9 (Cq major isomer), 145.5 (Cq minor isomer).
IR: $3021.7 \mathrm{~cm}^{-1}, 2974.3 \mathrm{~cm}^{-1}, 2226.6 \mathrm{~cm}^{-1}, 2096.0^{-1}, 1732.4 \mathrm{~cm}^{-1}, 1597.4 \mathrm{~cm}^{-1}, 1492.3 \mathrm{~cm}^{-1}, 1446.1 \mathrm{~cm}^{-1}, 1398.9 \mathrm{~cm}^{-1}, 1343.1 \mathrm{~cm}^{-1}$, $1304.2 \mathrm{~cm}^{-1}, 1258.6 \mathrm{~cm}^{-1}, 1207.0 \mathrm{~cm}^{-1}, 1184.3 \mathrm{~cm}^{-1}, 1157.0 \mathrm{~cm}^{-1}, 1091.0 \mathrm{~cm}^{-1}, 1033.7 \mathrm{~cm}^{-1}, 992.1 \mathrm{~cm}^{-1}, 914.6 \mathrm{~cm}^{-1}, 815.5 \mathrm{~cm}^{-1}, 752.9$ $\mathrm{cm}^{-1}, 696.0 \mathrm{~cm}^{-1}, 663.8 \mathrm{~cm}^{-1}, 606.9 \mathrm{~cm}^{-1}, 591.9 \mathrm{~cm}^{-1}, 562.2 \mathrm{~cm}^{-1}, 550.4 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$, [M+Na] ${ }^{+}$theoretical $\mathrm{m} / \mathrm{z} 451.1450$, found $m / z 451.1447$.

(E)-6d
(E)-2-(2-phenyl-1-(4-(trifluoromethyl)phenyl)vinyl)-1-tosylpyrrolidine 6d Following the described procedure, $67 \mathrm{mg}(0.3 \mathrm{mmol})$ of 4-bromobenzotrifluoride $\mathbf{2 s}$ and $65 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 c}$ were reacted under the optimized conditions to afford 44 mg of ( $($ E)-2-(2-phenyl-1-(4-(trifluoromethyl)phenyl)vinyl)-1tosylpyrrolidine ( $E$ )-6d as a yellow oil (EP/AcOEt 7/1, yield 47\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; E$ isomer: $\delta=1.54-1.58\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 1.64-1.74\left(\mathrm{~m}, 3 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\right.$ CH and $\mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), $2.41\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}\right), 3.32-3.36\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 4.52$ (ddd, $1 \mathrm{H}, \mathrm{J}=7.8,4.1$, $1.1 \mathrm{~Hz} ; \mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}$ ), 6.69 (s, 1H; C=CH-Ph), 6.85 (dd, 2H; J=6.4,1.7 Hz; Ar-H), 7.08-7.10 (m, 3H; Ar-H), 7.31 (d, 2H, J=7.7 Hz; Ts-H), $7.36(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz} ; \mathrm{Ar}-H$ ), $7.59(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}$; Ar-H), $7.78(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}$; Ts-H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=21.5\left(\mathrm{CH}_{3}\right)$, $23.8\left(\mathrm{CH}_{2}\right), 31.6\left(\mathrm{CH}_{2}\right), 49.4\left(\mathrm{CH}_{2}\right), 66.3(\mathrm{CH}), 124.3\left(\mathrm{Cq}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=271 \mathrm{~Hz}\right), 125.0(\mathrm{Cq}), 125.6$ (CH, $\left.J_{C-F}=3.6 \mathrm{~Hz}\right), 126.9(\mathrm{CH}), 127.5(\mathrm{CH}), 127.9(\mathrm{CH}), 128.8(\mathrm{CH}), 129.5\left(\mathrm{Cq}, J_{\mathrm{C}-\mathrm{F}}=32.3 \mathrm{~Hz}\right), 129.7(\mathrm{CH}), 130.0(\mathrm{CH}), 135.1(\mathrm{Cq})$, $135.9(\mathrm{Cq}), 140.8(\mathrm{Cq}), 142.9(\mathrm{Cq}), 143.5(\mathrm{Cq})$.
${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(600 \mathrm{MHz}\right.$; CDCl $\left.{ }_{3}, \mathrm{NaF}\right)$ : $\delta-62.31$ ( $3 \mathrm{~F}, \mathrm{~s}$ ).
IR: $2981.1 \mathrm{~cm}^{-1}, 1615.7 \mathrm{~cm}^{-1}, 1598.7 \mathrm{~cm}^{-1}, 1447.0 \mathrm{~cm}^{-1}, 1340.3 \mathrm{~cm}^{-1}, 1321.8 \mathrm{~cm}^{-1}, 1183.5 \mathrm{~cm}^{-1}, 1158.6 \mathrm{~cm}^{-1}, 1107.3 \mathrm{~cm}^{-1}, 1090.3 \mathrm{~cm}^{-}$ ${ }^{1}, 1065.6 \mathrm{~cm}^{-1}, 1016.3 \mathrm{~cm}^{-1}, 985.3 \mathrm{~cm}^{-1}, 913.0 \mathrm{~cm}^{-1}, 886.9 \mathrm{~cm}^{-1}, 855.2 \mathrm{~cm}^{-1}, 835.6 \mathrm{~cm}^{-1}, 816.0 \mathrm{~cm}^{-1}, 751.0 \mathrm{~cm}^{-1}, 725.2 \mathrm{~cm}^{-1}, 710.6 \mathrm{~cm}^{-}$ ${ }^{1}, 694.8 \mathrm{~cm}^{-1}, 679.2 \mathrm{~cm}^{-1}, 662.2 \mathrm{~cm}^{-1}, 626.8 \mathrm{~cm}^{-1}, 607.7 \mathrm{~cm}^{-1}, 584.5 \mathrm{~cm}^{-1}, 552.0 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S},[\mathrm{M}+\mathrm{Na}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 494.1372$, found $\mathrm{m} / \mathrm{z} 494.1371$.

(Z)-6d
(Z)-2-(2-phenyl-1-(4-(trifluoromethyl)phenyl)vinyl)-1-tosylpyrrolidine $\mathbf{6 d}$ ' Following the described procedure, 67 $\mathrm{mg}(0.3 \mathrm{mmol})$ of 4-bromobenzotrifluoride $\mathbf{2 s}$ and $65 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 c}$ were reacted under the optimized conditions to afford 8 mg of (Z)-2-(2-phenyl-1-(4-(trifluoromethyl)phenyl)vinyl)-1-tosylpyrrolidine (Z)-6d as a yellow oil (EP/AcOEt 7/1, yield 8\%).
${ }^{1} \mathrm{H}$-NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ); $Z$ isomer: $\delta=1.14-1.21\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right)$, 1.34-1.41 (m, $\left.1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right)$,
 $\left.\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 3.24-3.28\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 4.65\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz} ; \mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}\right), 6.69(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{C}=\mathrm{CH}-\mathrm{Ph}), 7.04$ (d, $2 \mathrm{H} ; \mathrm{J}=8.5 \mathrm{~Hz} ; \mathrm{Ts}-\mathrm{H}$ ), 7.10 (d, 2H; J=8.5 Hz; Ts-H), 7.33 (d, 2H, J= 7.9 Hz; Ar-H), 7.41-7.47 (m, 3H; Ar-H), 7.62 (d, $2 \mathrm{H}, J=7.9 \mathrm{~Hz}$ Ar-H), 7.75 (d, 2H, J= 7.9 Hz ; Ar-H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=21.5\left(\mathrm{CH}_{3}\right), 24.4\left(\mathrm{CH}_{2}\right)$, $32.6\left(\mathrm{CH}_{2}\right), 50.4\left(\mathrm{CH}_{2}\right), 58.3(\mathrm{CH}), 124.8\left(\mathrm{CH}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=3.3 \mathrm{~Hz}\right)$, $125.7\left(\mathrm{Cq}, J_{\mathrm{C} . \mathrm{F}}=269 \mathrm{~Hz}\right), 127.2(\mathrm{CH}), 127.6(\mathrm{CH}), 128.4(\mathrm{CH}), 129.2(\mathrm{CH}), 129.4(\mathrm{CH}), 129.6\left(\mathrm{Cq}, J_{\mathrm{C} . \mathrm{F}}=32.7 \mathrm{~Hz}\right), 130.3(\mathrm{CH}), 132.2$ (CH), 133.2 (Cq), 136.8 (Cq), 142.2 (Cq), 143.2 (Cq), 144.5 (Cq).
${ }^{19} \mathrm{~F}-\mathrm{NMR}(600 \mathrm{MHz}$; CDCl 3 , NaF ): ठ - 62.27 (3F, s).
IR: $2921.6 \mathrm{~cm}^{-1}, 2860.8 \mathrm{~cm}^{-1}, 1613.9 \mathrm{~cm}^{-1}, 1595.8 \mathrm{~cm}^{-1}, 1492.0 \mathrm{~cm}^{-1}, 1406.6 \mathrm{~cm}^{-1}, 1347.5 \mathrm{~cm}^{-1}, 1317.7 \mathrm{~cm}^{-1}, 1260.5 \mathrm{~cm}^{-1}, 1184.5 \mathrm{~cm}^{-}$ ${ }^{1}$, $1157.5 \mathrm{~cm}^{-1}, 1105.3 \mathrm{~cm}^{-1}, 1063.2 \mathrm{~cm}^{-1}, 1017.7 \mathrm{~cm}^{-1}, 999.8 \mathrm{~cm}^{-1}, 974.4 \mathrm{~cm}^{-1}, 923.2 \mathrm{~cm}^{-1}, 862.2 \mathrm{~cm}^{-1}, 826.9 \mathrm{~cm}^{-1}, 817.6 \mathrm{~cm}^{-1}, 755.6$ $\mathrm{cm}^{-1}, 744.1 \mathrm{~cm}^{-1}, 709.0 \mathrm{~cm}^{-1}, 698.7 \mathrm{~cm}^{-1}, 664.7 \mathrm{~cm}^{-1}, 638.4 \mathrm{~cm}^{-1}, 623.7 \mathrm{~cm}^{-1}, 615.5 \mathrm{~cm}^{-1}, 581.9 \mathrm{~cm}^{-1}, 551.3 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}$, [M+Na]+ theoretical $\mathrm{m} / \mathrm{z} 494.1372$, found $\mathrm{m} / \mathrm{z} 494.1373$.

( $E$ and Z)-2-(2-(4-Methoxyphenyl)-1-(p-tolyl)vinyl)-1-tosylpyrrolidine 7a Following the described procedure, 51 mg ( 0.3 mmol ) of 4-bromotoluene $\mathbf{2 b}$ and $72 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 d}$ were reacted under the optimized conditions to afford 41 mg of ( $E$ and $Z$ )-2-(2-(4-methoxyphenyl)-1-(p-toly) vinyl)-1tosylpyrrolidine 7a as a yellow oil (EP/AcOEt 7/1, yield 45\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ mixture of $\mathrm{E} / \mathrm{Z}$ isomers in ratio 64/36: $\delta=1.51-1.57\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right.$ major isomer), 1.58-1.74 ( $\mathrm{m}, 5 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}$ - CH mixture of isomers), 1.74-1.83 ( $\mathrm{m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ minor isomer), 2.36 (s, 3H; Ar-CH3 $)$, 2.39 ( $\mathrm{s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}$ ), 3.25-3.34 (m, 2H; $\mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ mixture of isomers), 3.43-3.48 ( $\mathrm{m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ major isomer), 3.49-3.54 (m, $1 \mathrm{H} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ minor isomer), $3.72\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCH}_{3}\right)$, 4.52 (dd, $1 \mathrm{H}, \mathrm{J}=7.6,2.8 \mathrm{~Hz}$; $\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}$ major isomer), $4.64\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}\right.$ minor isomer), $6.51(\mathrm{~s}, 1 \mathrm{H}$; C=CH major isomer), 6.65 (d, 2H, J=9.0 Hz; Ar-H major isomer), 6.81 (d, $2 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}$; Ar-H major isomer), 7.08 (d, $2 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}$; $\mathrm{Ar}-\mathrm{H}$ major isomer), 7.14 ( $\mathrm{d}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}$; Ar-H major isomer), 7.24 (d, $1 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}$; Ar-H minor isomer), 7.28 ( $\mathrm{m}, 2 \mathrm{H}$; Ar-H mixture of isomers), 7.34 ( $\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}$; Ar- H minor isomer), 7.46 ( $\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}$; Ar- H minor isomer), $7.73-7.80(\mathrm{~m}, 3 \mathrm{H}$; Ar- H mixture of isomers).
${ }^{13} \mathrm{C}-\mathrm{NMR}$ ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) mixture of $\mathrm{E} / \mathrm{Z}$ isomers in ratio 64/36: $\delta=21.2\left(\mathrm{CH}_{3}\right.$ major isomer), $21.47\left(\mathrm{CH}_{3}\right.$ major isomer), 21.52 (minor isomer), $23.5\left(\mathrm{CH}_{2}\right.$ minor isomer), $23.7\left(\mathrm{CH}_{2}\right.$ major isomer), $31.4\left(\mathrm{CH}_{2}\right.$ major isomer), $31.9\left(\mathrm{CH}_{2}\right.$ minor isomer), $49.0\left(\mathrm{CH}_{2}\right.$ minor isomer), $49.2\left(\mathrm{CH}_{2}\right.$ major isomer), $55.1\left(\mathrm{OCH}_{3}\right.$ major isomer), $62.9\left(\mathrm{OCH}_{3}\right.$ minor isomer), $66.7(\mathrm{CH}$ major isomer), $67.2(\mathrm{CH}$ minor isomer), 113.3 (CH major isomer), 115.6 (CH minor isomer), 121.4 (CH major isomer), 126.8 (CH minor isomer), 127.46 (CH minor isomer), 127.5 (CH major isomer), 128.2 (CH minor isomer), 128.5 (CH minor isomer), 128.8 (CH minor isomer), 129.0 (CH), 129.26 (CH minor isomer), 129.3 (CH major isomer), 129.5 ( CH major isomer), 129.6 ( CH major isomer), 129.7 ( CH minor isomer), 129.8 ( CH major isomer), 130.4 (CH minor isomer), 134.9 (Cq minor isomer), 135.5 (Cq major isomer), 136.2 (Cq major isomer), 136.8 (Cq major isomer), 139.9 (Cq major isomer), 140.3 (Cq minor isomer), 143.2 (Cq major isomer), 143.6 (Cq minor isomer), 147.5 (Cq minor isomer), 148.9 (Cq minor isomer), 158.2 (Cq major isomer).
IR: $2922.3 \mathrm{~cm}^{-1}, 1604.3 \mathrm{~cm}^{-1}, 1507.9 \mathrm{~cm}^{-1}, 1421.1 \mathrm{~cm}^{-1}, 1342.9 \mathrm{~cm}^{-1}, 1302.3 \mathrm{~cm}^{-1}, 1248.7 \mathrm{~cm}^{-1}, 1209.2 \mathrm{~cm}^{-1}, 1177.4 \mathrm{~cm}^{-1}, 1157.3 \mathrm{~cm}$ ${ }^{1}$, $1092.1 \mathrm{~cm}^{-1}, 1033.9 \mathrm{~cm}^{-1}, 887.9 \mathrm{~cm}^{-1}, 815.5 \mathrm{~cm}^{-1}, 756.5 \mathrm{~cm}^{-1}, 732.8 \mathrm{~cm}^{-1}, 664.0 \mathrm{~cm}^{-1}, 591.6 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}$, $[\mathrm{M}+\mathrm{Na}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 470.1760$, found $m / z 470.1761$.

( $E$ and Z)-2-(2-(4-Methoxyphenyl)-1-(1-naphtyl)vinyl)-1-tosylpyrrolidine 7b Following the described procedure, 62 mg ( 0.3 mmol ) of 1-bromonaphthalene $\mathbf{2 i}$ and $72 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene $\mathbf{1 d}$ were reacted under the optimized conditions to afford 30 mg of ( $E$ and $Z$ )-2-(2-(4-Methoxyphenyl)-1-(1-naphtyl)vinyl)-1tosylpyrrolidine $\mathbf{7 b}$ as a white solid (EP/AcOEt 7/1, yield 31\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ), mixture of $\mathrm{E} / \mathrm{Z}$ isomers in ratio $84 / 16: \delta=0.80-0.95\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right.$ minor isomer), 1.15-1.36 ( $\mathrm{m}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}_{-} \mathrm{CH}_{2}$ and $\mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}$ minor isomer), 1.53-1.59 ( $\mathrm{m}, 1 \mathrm{H}$; $\mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ major isomer), 1.62-1.73 ( $\mathrm{m}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ and $\mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}$ major isomer), 1.74$1.95\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}\right.$ major isomer), 1.83-1.95 (m, 1H; CH2$-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}$ minor isomer), $2.37(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{Ar}^{2} \mathrm{CH}_{3}$ minor isomer), 2.340 (s, 3H, $\mathrm{Ar}-\mathrm{CH}_{3}$ major isomer), 3.15-3.24 ( $\mathrm{m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ minor isomer), 3.27-3.33 ( $\mathrm{m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ minor isomer), 3.34-3.39 ( $\mathrm{m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ major isomer), 3.43-3.49 ( $\mathrm{m}, 1 \mathrm{H}$; $\mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ major isomer), $3.68\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCH}_{3}\right.$ major isomer), $3.92\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCH}_{3}\right.$ minor isomer), 4.66 (dd, $1 \mathrm{H}, \mathrm{J}=7.4,3.4 \mathrm{~Hz}$; $\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}$ major isomer), 4.79 ( t broad, $1 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}$; $\mathrm{N}-\mathrm{CH}^{2} \mathrm{CH}_{2}$ minor isomer), 6.57 (d, 2H, J=9.0 Hz; p-OCH $\mathrm{H}_{3}-\mathrm{Ar}-\mathrm{H}$ major isomer), 6.65 (s, 1H; C=CH major isomer), 6.72 (s, $1 \mathrm{H} ; \mathrm{C}=\mathrm{CH}$ minor isomer), 6.83 (d, $2 \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz} ; \mathrm{p}$ - $\mathrm{OCH}_{3}$-Ar-H major isomer), 7.06 .57 (d, $1 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}$; Ar-H minor isomer), 7.07 ( $\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz} ; p-\mathrm{OCH}_{3}$-Ar- H minor isomer), $7.20\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz} ; p-\mathrm{OCH} \mathrm{H}_{3}\right.$ - $\mathrm{Ar}-\mathrm{H}$ minor isomer), 7.28-7.31 ( $\mathrm{m}, 4 \mathrm{H}$; Ts-H mixture of isomers), 7.46-7.50 ( $\mathrm{m}, 3 \mathrm{H}$; Ts-H mixture of isomers), 7.69 ( $\mathrm{s}, 1 \mathrm{H} ; \mathrm{Ar}-\mathrm{H}$ major isomer), 7.777.88 (m, 6H, Ar-H mixture of isomers), 7.98 (s, 1H; Ar-H minor isomer).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.5\left(\mathrm{CH}_{3}\right.$ major isomer), $23.8\left(\mathrm{CH}_{2}\right.$ major isomer), $24.5\left(\mathrm{CH}_{2}\right.$ minor isomer), $31.5\left(\mathrm{CH}_{2}\right.$ major isomer), $32.7\left(\mathrm{CH}_{2}\right.$ minor isomer), $49.2\left(\mathrm{CH}_{2}\right.$ major isomer), $50.4\left(\mathrm{CH}_{2}\right.$ minor isomer), $55.0\left(\mathrm{CH}_{3}\right.$ major isomer), $55.4\left(\mathrm{CH}_{3}\right.$ minor isomer), 58.5 (CH minor isomer), 66.8 (CH major isomer), 113.3 (CH major isomer), 113.7 (CH minor isomer), 125.7 (CH minor isomer), 125.9 (CH minor isomer), 125.9 (CH major isomer), 126.0 (CH major isomer), 127.1 (CH minor isomer), 127.5 ( CH major isomer), 127.53 (CH major isomer), 127.6 (CH minor isomer), 127.0 (CH major isomer), 127.98 (CH major isomer), 128.04 (CH major isomer), 128.08 (CH major isomer), 128.1 (CH major isomer), 128.4 (CH major isomer), 128.7 (Cq minor isomer), 129.0 (Cq minor isomer), 129.3 (CH minor isomer), 129.6 (CH major isomer), 129.8 (Cq minor isomer), 130.5 (CH major isomer), 131.3 (CH major isomer), 132.5 (Cq), 133.1 (Cq minor isomer), 133.6 (Cq major isomer), 133.7 (Cq minor isomer), 135.5 (Cq major isomer), 136.9 (Cq major isomer), 138.8 (Cq minor isomer), 139.6 (Cq major isomer), 142.4 (Cq minor isomer), 143.0 (Cq minor isomer), 143.3 (Cq major isomer), 158.3 (Cq major isomer), 158.7 (Cq minor isomer).

IR: $2955.4 \mathrm{~cm}^{-1}, 1605.1 \mathrm{~cm}^{-1}, 1509.1 \mathrm{~cm}^{-1}, 1455.2 \mathrm{~cm}^{-1}, 1341.7 \mathrm{~cm}^{-1}, 1301.8 \mathrm{~cm}^{-1}, 1249.2 \mathrm{~cm}^{-1}, 1196.2 \mathrm{~cm}^{-1}, 1176.8 \mathrm{~cm}^{-1}, 1155.8 \mathrm{~cm}^{-}$ ${ }^{1}$, $1090.9 \mathrm{~cm}^{-1}, 1031.3 \mathrm{~cm}^{-1}, 994.1 \mathrm{~cm}^{-1}, 900.1 \mathrm{~cm}^{-1}, 862.1 \mathrm{~cm}^{-1}, 815.6 \mathrm{~cm}^{-1}, 749.5 \mathrm{~cm}^{-1}, 708.4 \mathrm{~cm}^{-1}, 662.6 \mathrm{~cm}^{-1}, 587.4 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S},[\mathrm{M}+\mathrm{Na}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 506.1760$, found $\mathrm{m} / \mathrm{z} 506.1763$. Mp: 71.0-72.3 ${ }^{\circ} \mathrm{C}$

( $E$ and Z)-Methyl 3-(2-(4-methoxyphenyl)-1-(1-tosylpyrrolidin-2-yl)vinyl)benzoate 7c Following the described procedure, 65 mg ( 0.3 mmol ) of methyl 3 -bromobenzoate 2 o and $72 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene 1d were reacted under the optimized conditions to afford 52 mg of ( $E$ and $Z$ )-Methyl 3 -(2-(4-methoxyphenyl)-1-(1-tosylpyrrolidin-2-yl)vinyl)benzoate 7c as a transparent oil (EP/AcOEt 7/1, yield 53\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, mixture of $\mathrm{E} / \mathrm{Z}$ isomers in ratio $87 / 13$ : $\delta=1.14-1.33\left(\mathrm{~m}, 2 \mathrm{H}+\mathrm{H}_{2} \mathrm{O} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\right.$ $\mathrm{CH}_{2}$ minor isomer), $1.36\left(\mathrm{ep}, 1 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right.$ minor isomer), $1.52-1.59\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\right.$ $\mathrm{CH}_{2}$ major isomer), 1.60-1.73 ( $\mathrm{m}, 3 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ and $\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}$ major isomer), 1.77-1.83 ( $\mathrm{m}, 1 \mathrm{H}$; $\mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}$ minor isomer), 1.86-1.92 (m, 1H; $\mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}$ minor isomer), $2.36\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}\right), 2.39$ (s, $3 \mathrm{H} ; \mathrm{Ar}^{\mathrm{C}} \mathrm{CH}_{3}$ ), 3.16-3.20 ( $\mathrm{m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ minor isomer), 3.25-3.29 ( $\mathrm{m}, \mathrm{1H} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ minor isomer), 3.29-3.35 (m, $1 \mathrm{H} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ major isomer), 3.39-3.44 ( $\mathrm{m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ major isomer), 3.71 ( $\mathrm{s}, 3 \mathrm{H} ; \mathrm{OCH}_{3}$ major isomer), 3.89 (s, $3 \mathrm{H} ; \mathrm{CO}_{2} \mathrm{CH}_{3}$ major isomer), 3.90 (s, $3 \mathrm{H} ; \mathrm{OCH}_{3}$ minor isomer), 3.92 ( $\mathrm{s}, 3 \mathrm{H} ; \mathrm{CO}_{2} \mathrm{CH}_{3}$ minor isomer), 4.538 (dd, $1 \mathrm{H}, \mathrm{J}=7.3,3.8$ Hz ; $\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}$ major isomer), 4.68 (dd broad, $1 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}$; $\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}$ minor isomer), 6.59-6.64 ( $\mathrm{m}, 3 \mathrm{H} ; \mathrm{C}=\mathrm{CH}$ and Ar-H major isomer), $6.64(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{C}=\mathrm{CH}$ minor isomer), 6.76 (d, 2H, J=9 Hz; Ar-H major isomer), 6.97 (d, $1 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}$; Ar- H minor isomer), 7.05 (d, 2H, $J=8.5 \mathrm{~Hz}$; Ts-H minor isomer), 7.16 ( $\mathrm{d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}$; Ts-H minor isomer), 7.25 ( $\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=9.6 \mathrm{~Hz}$; Ar- H minor isomer), 7.29 ( $\mathrm{d}, 2 \mathrm{H}, \mathrm{J}=$ 7.8 Hz ; Ts-H major isomer), $7.40-7.46$ ( $\mathrm{m}, 3 \mathrm{H}$; m - $\mathrm{CO}_{2} \mathrm{Me}-\mathrm{Ar}-\mathrm{H}$ major isomer), 7.78 ( $\mathrm{d}, 2 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}$; Ts-H major isomer), 7.85 (t broad, $1 \mathrm{H}, \mathrm{J}=1.14 \mathrm{~Hz} ; m-\mathrm{CO}_{2} \mathrm{Me}-\mathrm{Ar}-\mathrm{H}$ major isomer), 7.98 (dt, $1 \mathrm{H}, \mathrm{J}=7.2,1.7 \mathrm{~Hz} ; m-\mathrm{CO}_{2} \mathrm{Me}-\mathrm{Ar}-\mathrm{H}$ major isomer), 7.99-8.00 (m, $\mathrm{H} \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ minor isomer), 8.09 (t, $1 \mathrm{H}, \mathrm{J}=1.8 \mathrm{~Hz}, m-\mathrm{CO}_{2} \mathrm{Me}-\mathrm{Ar}-\mathrm{H}$ minor isomer).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=21.5\left(\mathrm{CH}_{3}\right.$ major isomer), $23.8\left(\mathrm{CH}_{2}\right.$ major isomer), $24.4\left(\mathrm{CH}_{2}\right.$ minor isomer), $31.5\left(\mathrm{CH}_{2}\right.$ major isomer), $32.6\left(\mathrm{CH}_{2}\right.$ minor isomer), $49.2\left(\mathrm{CH}_{2}\right.$ major isomer), $50.3\left(\mathrm{CH}_{3}\right.$ minor isomer), $52.1\left(\mathrm{CH}_{3}\right.$ major isomer), $55.1\left(\mathrm{CH}_{3}\right.$ major isomer), 55.4 $\left(\mathrm{CH}_{3}\right.$ minor isomer), 58.3 ( CH minor isomer), 66.4 ( CH major isomer), 67.1 ( $\mathrm{CH}_{2}$ minor isomer), 113.3 ( CH major isomer), $113.7(\mathrm{CH}$ minor isomer), 125.3 (CH), 127.55 (CH major isomer), 127.62 (CH minor isomer), 128.2 (CH minor isomer), 128.4 (CH minor isomer), 128.5 (CH major isomer), 128.6 (Cq major isomer), 128.96 (CH major isomer), 129.01 (CH minor isomer), 129.4 (CH minor isomer), 129.5 (Cq minor isomer), $129.65(\mathrm{CH}), 129.7$ (Cq), 130.42 (CH major isomer), 130.47 (CH major isomer), 130.67 (Cq), 131.6 (CH), 133.5 (CH), 134.60 (CH major isomer), 134.63 (CH), 138.8 (Cq major isomer), 139.6 (Cq major isomer), 140.3 (Cq), 141.2 (Cq minor isomer), 141.5 (Cq minor isomer), 143.1 (Cq minor isomer), 143.4 (Cq major isomer), 158.4 (Cq major isomer), 158.8 (Cq minor isomer), 166.9 (Cq major isomer), 167.2 (Cq minor isomer).

IR: $2950.5 \mathrm{~cm}^{-1}, 1718.9 \mathrm{~cm}^{-1}, 1605.2 \mathrm{~cm}^{-1}, 1509.5 \mathrm{~cm}^{-1}, 1439.3 \mathrm{~cm}^{-1}, 1343.4 \mathrm{~cm}^{-1}, 1285.5 \mathrm{~cm}^{-1}, 1247.7 \mathrm{~cm}^{-1}, 1204.3 \mathrm{~cm}^{-1}, 1177.0 \mathrm{~cm}^{-}$ ${ }^{1}, 1155.6 \mathrm{~cm}^{-1}, 1089.4 \mathrm{~cm}^{-1}, 1031.3 \mathrm{~cm}^{-1}, 998.3 \mathrm{~cm}^{-1}, 814.9 \mathrm{~cm}^{-1}, 750.4 \mathrm{~cm}^{-1}, 658.1 \mathrm{~cm}^{-1}, 582.5 \mathrm{~cm}^{-1}, 547.2 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{~S}$, [M+Na] ${ }^{+}$theoretical $\mathrm{m} / \mathrm{z} 514.1659$, found $\mathrm{m} / \mathrm{z} 514.1660$.

(E and Z)-3-(2-(4-methoxyphenyl)-1-(1-tosylpyrrolidin-2-yl)vinyl)pyridine 7d Following the described procedure, $47 \mathrm{mg}(0.3 \mathrm{mmol})$ of 3-bromopyridine 2 w and $72 \mathrm{mg}(0.2 \mathrm{mmol})$ of allene 1 d were reacted under the optimized conditions to afford 15 mg of ( E and $Z$ )-3-(2-(4-methoxyphenyl)-1-(1-tosylpyrrolidin-2yl)vinyl) pyridine 7d as a transparent oil (EP/AcOEt 6/4, yield 17\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, mixture of $\mathrm{E} / \mathrm{Z}$ isomers in ratio $82 / 18$ : $\delta=1.17-1.28\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right.$ major isomer and $\mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}$ minor isomer), $1.38\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}\right.$ minor isomer), 1.49-1.55 ( $\mathrm{m}, 1 \mathrm{H} ; \mathrm{CH}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}$ major isomer), 1.66-1.71 ( $\mathrm{m}, 1 \mathrm{H} ;$ ), 1.72-1.80 ( $\mathrm{m}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}$ of both isomers), 1.87-1.95 (m, 1H; $\mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}$ minor isomer), $2.37\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}\right), 2.41\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ar}-\mathrm{CH}_{3}\right), 3.18-$ 3.23 ( $\mathrm{m}, 1 \mathrm{H}$; N-C $(H) \mathrm{H}-\mathrm{CH}_{2}$ minor isomer), 3.25-3.28 ( $\mathrm{m}, 1 \mathrm{H} ; \mathrm{N}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}$ minor isomer), 3.31-3.35 ( $\mathrm{m}, 1 \mathrm{H}$; $\mathrm{N}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}$ major isomer), 3.37-3.41(m, $1 \mathrm{H} ; \mathrm{N}-\mathrm{C}(H) \mathrm{H}-\mathrm{CH}_{2}$ major isomer), $3.72\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCH}_{3}\right), 3.91\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCH}_{3}\right), 4.47(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ $7.8,4.0 \mathrm{~Hz}$; $\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}$ major isomer), 4.67 (t broad, $1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz} ; \mathrm{N}-\mathrm{CH}-\mathrm{CH}_{2}$ minor isomer), 6.63 (s, $1 \mathrm{H} ; \mathrm{C}=\mathrm{CH}$ minor isomer); 6.64 (d, 2H, J= 2.2 Hz ; Ar-H mixture of isomers), 6.67 (s, 1H; C=CH major isomer), 6.79 (d, 2H, J=9.0 Hz; Ar-H major isomer), 6.98 (d, 2H, $J=8.8 \mathrm{~Hz}$; Ar-H minor isomer), 7.06 (d, 2H, J=7.8 Hz; Ar-H minor isomer), 7.16 (d, 2H, J= 8.3 Hz ; Ar-H minor isomer), 7.24 (d, 2H, J= 8.1 Hz ; Ar-H minor isomer), 7.27-7.32 ( $\mathrm{m}, 5 \mathrm{H}$; mixture of isomers), 7.65 ( $\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=8.1,1.8 \mathrm{~Hz}$; Ar-H major isomer), 7.77 ( $\mathrm{d}, 2 \mathrm{H}, \mathrm{J}=8.2$ Hz ; Ar-H major isomer), 8.15 (dt, $1 \mathrm{H}, \mathrm{J}=7.8,1.7 \mathrm{~Hz}$; Ar- H minor isomer), 8.37 (d, $1 \mathrm{H}, \mathrm{J}=2.2 \mathrm{~Hz}$; Ar-H major isomer), 8.54 (dd, $1 \mathrm{H}, \mathrm{J}=$ $5.2,1.7 \mathrm{~Hz}$; Ar-H major isomer), 8.57 (d, 1H, J=3.7 Hz; Ar-H minor isomer), 8.63 (s, 1H, Ar-H minor isomer).
${ }^{13} \mathrm{C}$-NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) mixture of $E / Z$ isomers in ratio 82/18: $\delta=17.7\left(\mathrm{CH}_{3}\right), 21.5\left(\mathrm{CH}_{3}\right)$, $23.3\left(\mathrm{CH}_{2}\right), 23.9\left(\mathrm{CH}_{2}\right), 24.5\left(\mathrm{CH}_{2}\right)$, 31.8 $\left(\mathrm{CH}_{2}\right), 34.4\left(\mathrm{CH}_{2}\right), 34.43\left(\mathrm{CH}_{2}\right), 49.5\left(\mathrm{CH}_{2}\right), 55.1\left(\mathrm{OCH}_{3}\right), 55.2\left(\mathrm{OCH}_{3}\right), 62.0(\mathrm{CH}), 66.4(\mathrm{CH}), 113.5(\mathrm{CH}), 113.8(\mathrm{CH}), 123.9(\mathrm{CH})$, $126.8(\mathrm{CH}), 127.4(\mathrm{CH}), 127.6(\mathrm{CH}), 127.7(\mathrm{CH}), 128.2(\mathrm{Cq}), 129.5(\mathrm{CH}), 129.7(\mathrm{CH}), 129.8(\mathrm{CH}), 130.5(\mathrm{CH}), 134.9(\mathrm{Cq}), 135.2(\mathrm{Cq})$, 136.2 (Cq), 138.5 (CH), 143.57 (Cq), 143.6 (Cq), 147.8 (Cq), 149.7 (CH), 158.7 (CH), 159.3 (Cq).

IR: $2954.6 \mathrm{~cm}^{-1}, 1605.2 \mathrm{~cm}^{-1}, 1508.8 \mathrm{~cm}^{-1}, 1455.7 \mathrm{~cm}^{-1}, 1407.3 \mathrm{~cm}^{-1}, 1343.4 \mathrm{~cm}^{-1}, 1301.6 \mathrm{~cm}^{-1}, 1247.8 \mathrm{~cm}^{-1}, 1176.2 \mathrm{~cm}^{-1}, 1156.0 \mathrm{~cm}$ ${ }^{1}, 1089.5 \mathrm{~cm}^{-1}, 1027.2 \mathrm{~cm}^{-1}, 990.6 \mathrm{~cm}^{-1}, 811.8 \mathrm{~cm}^{-1}, 755.8 \mathrm{~cm}^{-1}, 719.7 \mathrm{~cm}^{-1}, 661.2 \mathrm{~cm}^{-1}, 580.9 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S},[\mathrm{M}+\mathrm{Na}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 457.1562$, found $\mathrm{m} / \mathrm{z} 457.1567$.

### 4.5 Characterization of dimer 4a


(E)-4-methyl-N-(5-methyl-6-(1-tosylpyrrolidin-2-yl)hepta-4,6-dien-1-yl)benzenesulfonamide 4a Following the described procedure for 3a, employing AcONa as the base (20 mg 1,2 eq, $0,24 \mathrm{mmol}$ ), ( $($ ) -4-methyl-N-(5-methyl-6-(1-tosylpyrrolidin-2-yl)hepta-4,6-dien-1-yl)benzenesulfonamide 4a was obtained in $66 \%$ yield as a transparent oil (gradient EP/AcOEt $8 / 2$ to $6 / 4,33 \mathrm{mg}$ ).
${ }^{1}$ H-NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=1.54-1.64\left(\mathrm{~m}, 6 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}^{2}\right.$ and $\left.\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 1.74$
(s, 3H; $\mathrm{CH}_{3}-\mathrm{C}=\mathrm{CH}$ ), 2.11 (q, 2H, J=7.4 Hz; CH-CH2-CH2), 2.41 (s, 3H; Ar-CH3), 2.43 (s, 3H; Ar-CH $\mathrm{CH}_{3}$ ), 2.94 (q, 2H, J=7.5 Hz; CH $\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}$ ), 3.20 (dt, $1 \mathrm{H}, \mathrm{J}=10.2,9.5 \mathrm{~Hz}$; $\mathrm{N}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}$ ), 3.49 (ddd, $1 \mathrm{H}, \mathrm{J}=10.1,7.5,2.9 \mathrm{~Hz}$; N-C(H)H-CH2), 4.51 (t, 1H, J=6.3 Hz; NH), 4.58 (d, 1H, J=7.7 Hz; N-CH-CH2), 5.12 (s, 1H; C(H)H=C-CH), 5.21 (s, 1H; C(H)H=C-CH), 5.37 (t, 1H, J=7.2 $\left.\mathrm{Hz} ; \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}\right), 7.29(\mathrm{~d}, 2 \mathrm{H} ; J=8.1, \mathrm{Ts}-H$ ), $7.31(\mathrm{~d}, 2 \mathrm{H} ; J=8.6, \mathrm{Ts}-H), 7.73(\mathrm{~d}, 2 \mathrm{H} ; J=8.1, \mathrm{Ts}-H), 7.74(\mathrm{~d}, 2 \mathrm{H} ; J=8.2, \mathrm{Ts}-H)$.
${ }^{13}$ C-NMR ( $\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=15.0\left(\mathrm{CH}_{3}\right)$, $21.5\left(\mathrm{CH}_{3}\right)$, $23.6\left(\mathrm{CH}_{2}\right)$, $25.4\left(\mathrm{CH}_{2}\right)$, $29.5\left(\mathrm{CH}_{2}\right)$, $32.4\left(\mathrm{CH}_{2}\right), 42.8\left(\mathrm{CH}_{2}\right), 48.7\left(\mathrm{CH}_{2}\right), 61.0$ $(\mathrm{CH}), 111.3\left(\mathrm{CH}_{2}\right), 125.9(\mathrm{CH}), 127.0(\mathrm{CH}), 127.4(\mathrm{CH}), 129.6(\mathrm{CH}), 129.7(\mathrm{CH}), 134.4(\mathrm{Cq}), 135.0(\mathrm{Cq}), 136.8(\mathrm{Cq}), 143.3(\mathrm{Cq}), 143.4$ (Cq), 149.2 (Cq).
IR: $3276.35 \mathrm{~cm}^{-1}, 2976.53 \mathrm{~cm}^{-1}, 2948.43 \mathrm{~cm}^{-1}, 2870.98 \mathrm{~cm}^{-1}, 1737.81 \mathrm{~cm}^{-1}, 1598.03 \mathrm{~cm}^{-1}, 1447.82 \mathrm{~cm}^{-1}, 1324.16 \mathrm{~cm}^{-1}, 1188.82 \mathrm{~cm}^{-1}$, $1154.67 \mathrm{~cm}^{-1}, 1092.46 \mathrm{~cm}^{-1}, 1063.31 \mathrm{~cm}^{-1}, 1005.28 \mathrm{~cm}^{-1}, 908.03 \mathrm{~cm}^{-1}, 851.39 \mathrm{~cm}^{-1}, 814.00 \mathrm{~cm}^{-1}$.
MS (ESI): Chemical formula $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2},[\mathrm{M}+\mathrm{H}]^{+}$theoretical $\mathrm{m} / \mathrm{z} 503.2033$, found $m / z 503.2028$.

### 4.6 Synthesis of compound 3 k in 1 mmol scale



A Schlenk tube, equipped with a magnetic stirring bar, was dried and placed under a flow of $\mathrm{N}_{2}$, then 25 ml of dry DMF were transferred into the tube and degassed with $\mathrm{N}_{2}$ for at least 10 minutes. Under a constant flow of $\mathrm{N}_{2}, \mathrm{Pd}(\mathrm{OAc})_{2}(11 \mathrm{mg}, 0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%$ ) was placed in the Schlenk tube and the mixture was degassed for additional 5 minutes until the solution turned an intense yellow. Then $\mathrm{PPh}_{3}(26 \mathrm{mg}, 0.1 \mathrm{mmol}, 10 \mathrm{~mol} \%$ ) was added and the solution was left under stirring under inert gas until the solution turned cherry red. The other reagents were added in the following order: p-bromo acetophenone $\mathbf{2 k}(300 \mathrm{mg}, 1.5 \mathrm{mmol}, 1.5 \mathrm{Eq}), \mathrm{K}_{2} \mathrm{CO}_{3}(166 \mathrm{mg}, 1.2$ $\mathrm{mmol}, 1.2 \mathrm{Eq})$ and the allene $\mathbf{1 a}(251 \mathrm{mg}, 1 \mathrm{mmol}, 1 \mathrm{Eq})$. The Schlenk tube, saturated with $\mathrm{N}_{2}$, was closed with a septum and then stirred at 4 cm from a Kessil blue lamp ( 456 nm ) at room temperature for 21 h .
Reaction work-up: the reaction mixture was diluted with 50 ml of $\mathrm{Et}_{2} \mathrm{O}$ and the organic phase was washed with brine ( $5 \times 20 \mathrm{ml}$ ) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After solvent removal, the crude mixture was purified by flash chromatography on silica gel (gradient: EP/AcOEt $7 / 1$ to $7 / 3$, ) to afford product $\mathbf{3 k}$ in $63 \%$ yield.

### 4.7 Procedure for the synthesis of compound 1a'



Naphthalene ( $207 \mathrm{mg}(0,21 \mathrm{~g}$ ), $1.65 \mathrm{mmol}, 6 \mathrm{Eq})$ in dry THF ( 6 mL ) was treated with $\mathrm{Na}(38 \mathrm{mg}, 1.65 \mathrm{mmol}, 6 \mathrm{Eq})$ at room temperature. The solution was stirred at this temperature under $\mathrm{N}_{2}$ until it turned green. In the meantime, a Schlenk tube, equipped with a magnetic stirring bar, was dried and placed under a flow of $\mathrm{N}_{2}$, then compound $\mathbf{1 a}(90 \mathrm{mg}, 0.275 \mathrm{mmol}, 1 \mathrm{Eq})$ was transferred in the tube and dissolved with 6 mL of dry THF. The mixture was cooled to $-78^{\circ} \mathrm{C}$ and the solution of $\mathrm{Na} /$ naphthalene was slowly added via a syringe. The addition was continued until the green colour was maintained. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ until compound $\mathbf{1 a}$ was totally consumed. Then, it was allowed to warm to RT and carefully quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (concentrazione, 4 mL ). The phases were separated and the aqueous phase was extracted with DCM ( $3 \times 5.0 \mathrm{~mL}$ ). The combined organic phases were dried over $\mathrm{MgSO}_{4}$ and concentrated under reduced pressure. The crude product was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{DCM} / \mathrm{MeOH}\right.$ from $10 / 1$ to $3 / 2$ ) to give the title product $1 \mathbf{a}^{\prime}$ in $40 \%$ yield.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=1.83-1.89\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\mathrm{CH}_{2}\right), 1.96-2.01\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}_{-} \mathrm{CH}_{2}\right), 2.01-2.09\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(\mathrm{H}) \mathrm{H}-\right.$ $\mathrm{CH}_{2}$ ), 2.21-2.26 (m, 1H; CH-C(H)H-CH2), 3.35-3.39 (m, 1H; N-C(H)H-CH2), 3.49-3.53 (m, 1H; N-C(H)H-CH2), 4.57 (t, 1H, J=7.7 Hz; N-$\mathrm{CH}-\mathrm{CH}_{2}$ ), 5.49 (s, 1H; C(H)H=C-CH), 5.65 (s, 1H; C(H)H=C-CH), 7.28-7.34 (m, 3H; ; Ar-H), 7.38 (d, 2H, J=6.8 Hz; ; Ar-H). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=23.0\left(\mathrm{CH}_{2}\right), 31.1\left(\mathrm{CH}_{2}\right), 45.2\left(\mathrm{CH}_{2}\right), 61.5(\mathrm{CH}), 115.5\left(\mathrm{CH}_{2}\right), 126.7(\mathrm{CH}), 128.4(\mathrm{CH}), 128.7(\mathrm{CH}), 138.8(\mathrm{Cq})$, 143.5 (Cq). IR: $2920.8 \mathrm{~cm}^{-1}, 2851.4 \mathrm{~cm}^{-1}, 1722.5 \mathrm{~cm}^{-1}, 1574.0 \mathrm{~cm}^{-1}, 1495.6 \mathrm{~cm}^{-1}, 1375.7 \mathrm{~cm}^{-1}, 1309.3 \mathrm{~cm}^{-1}, 1159.5 \mathrm{~cm}^{-1}, 1074.8 \mathrm{~cm}^{-1}$, $1026.4 \mathrm{~cm}^{-1} 912.3 \mathrm{~cm}^{-1}, 777.6 \mathrm{~cm}^{-1}, 704.5^{-1}, 565.2 \mathrm{~cm}^{-1}$. MS (ESI): Chemical formula $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N},[\mathrm{M}+\mathrm{H}]^{+}$theoretical $\mathrm{m} / \mathrm{z}$

## References

[1] Armarego, W. L. F. Purification of Laboratory Chemicals; Butterworth-Heinemann, 2017
[2] M. Uchiyama, Y. Kobayashi, T. Furuyama, S. Nakamura, Y. Kajihara, T. Miyoshi, T. Sakamoto, Y. Kondo, K. Morokuma, J. Am. Chem. Soc. 2008, 130, 472-480.
[3] C. Amatore, A. Jutand, M. A. M'Barki, Organometallics 1992, 11, 3009-3013.
4] B. R. Neustadt, Tetrahedron Lett. 1994, 35, 379-380
5] C. D. Campbell, R. L. Greenaway, O. T. Holton , P. R. Walker, H. A. Chapman, C. A. Russell, G. Carr, A. L. Thomson, E. A. Anderson, Chem. Eur. J. 2015 21, 12627-12639
[6] C.-H. Yang, M. Han, W. Li, N. Zhu, Z. Sun, J. Wang, Z. Yang, Y.-M. Li, Org. Lett. 2020, 22, 5090-5093.
[7] J. Kuang, X. Tang, S. Ma, Org. Chem. Front. 2015, 2, 470-475.
[8] R. W. Bates, T. Rama-Devi, H.-H. Ko, Tetrahedron 1995, 51, 12939-12954

## Copies of NMR spectra of starting materials and products

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $8\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $9 \mathrm{a}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




${ }^{1} \mathrm{H}$-NMR of compound 10 a crude ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $1 \mathrm{a}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



$\int$ $\iint$


${ }^{1} \mathrm{H}$－NMR of compound $9 \mathrm{~b}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$－NMR of compound $10 \mathrm{~b}\left(\mathbf{6 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ）

| $\begin{aligned} & \text { No } \\ & \text { 筑 } \\ & \end{aligned}$ |  | － | N |  | $\xrightarrow[\text { 筞 }]{\substack{\text { j}}}$ | 可第 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |



${ }^{1} \mathrm{H}$-NMR of compound $\mathbf{1 b}\left(\mathbf{6 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $\mathbf{1 c}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\underbrace{\text { as }}$

If

ने
ì
I



${ }^{13} \mathrm{C}$-NMR of compound $1 \mathrm{c}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


Comparison between DEPT-135 and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $1 \mathrm{c}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $1 \mathrm{~d}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$








|  |  |  |  | T | なু |  |  |  |  |  | $\stackrel{\sim}{\tilde{\sim}}$ | $\stackrel{\text { N }}{\substack{\text { N }}}$ | ¢ | ¢ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | ${ }^{5} .0$ |  | 4.5 |  | 3.5 | 3.0 | 2.5 | 2.0 |  |

${ }^{13} \mathrm{C}$-NMR of compound $1 \mathrm{~d}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




COSY-NMR of compound 1d ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{1} \mathrm{H}$-NMR of compound $\mathbf{3 a}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ )

${ }^{13} \mathrm{C}-{ }^{13} \mathrm{C}$-NMR of compound $3 \mathrm{a}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ )





Comparison between DEPT-135 and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $3 \mathrm{a}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ )


COSY-NMR of compound $3 \mathrm{a}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ )

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $\mathbf{3 b}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
淮
$\underbrace{\text { Fion }}$



I／


${ }^{13} \mathrm{C}$－NMR of compound $3 \mathrm{~b}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

| ก | $\stackrel{\sim}{\sim}$ | パめ | ¢088 |
| :---: | :---: | :---: | :---: |
| $\stackrel{(1)}{\sim}$ |  | 凩 | స్ન స్ન入へ |
| I |  | \／V | \11 |




COSY-NMR of compound $3 \mathrm{~b}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ )

${ }^{1} \mathrm{H}$-NMR of compound $3 \mathrm{C}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$






${ }^{13} \mathrm{C}$-NMR of compound $\mathbf{3 C}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

| $\stackrel{\text { g }}{\text { ¢ }}$ | $\stackrel{\text { + }}{\text { + }}$ |  | (en | $\stackrel{\text { en }}{\stackrel{\text { c }}{1}}$ | ¢0.0 | $\stackrel{\text { ¢ }}{\text { ¢ }}$ | $\stackrel{\square}{\bar{\circ}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 71 | -1 | 1 | 1 |  |  |

Comparison between DEPT-135 and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $3 \mathrm{c}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


COSY-NMR of compound $3 \mathrm{c}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $3 \mathrm{~d}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ )








${ }^{13} \mathrm{C}$-NMR of compound $3 \mathrm{c}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ )


Comparison between DEPT-135 and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $3 \mathrm{~d}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


$$
\begin{array}{lllllllllllllllllllllllllllllllllllllllllllll}
155 & 150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15 & 10
\end{array}
$$

COSY-NMR of compound $3 \mathrm{~d}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


## ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $\mathbf{3 e}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



$\underbrace{\text { Not }}$

韋





NMR of compound $3 \mathrm{e}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



COSY-NMR of compound $3 \mathrm{e}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ )

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $\mathbf{3 f}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR of compound $3 \mathrm{f}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




Comparison between DEPT-135 and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $3 \mathrm{f}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


COSY-NMR of compound $\mathbf{3 f}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$-NMR of compound $3 \mathrm{~g}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR of compound $\mathbf{3 g}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




Comparison between DEPT-135 and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $3 \mathrm{~g}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


COSY-NMR of compound $3 \mathrm{~g}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $3 \mathrm{~h}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR of compound $3 \mathrm{~h}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ )


$\stackrel{9}{m} \stackrel{\operatorname{nin}}{1} \stackrel{n}{\sim}$


[^0]Comparison between DEPT-135 and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $3 \mathrm{~h}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


COSY-NMR of compound $3 \mathrm{~h}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $3 \mathrm{i}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR of compound $3 \mathrm{i}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




Comparison between DEPT-135 and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $3 \mathrm{i}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


COSY-NMR of compound $3 \mathrm{i}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $3 \mathrm{j}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(
${ }^{13} \mathrm{C}$-NMR of compound 3 j ( $\mathbf{1 5 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

르․
ت
11
io io


| 15 |  |  | 1 |  |  | 0 |  | 70 | 60 | 50 | 40 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 150 | 140 | 130 | 120 | 110 | 100 | 90 | $\begin{gathered} 80 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$ | 70 | 60 | 50 | 40 | 30 | 20 | 10 |

Comparison between DEPT-135 and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $3 \mathrm{j}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


COSY-NMR of compound $3 \mathrm{j}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$－NMR of compound $3 \mathrm{k}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


NMR of compound 3 k （ $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

| $\stackrel{\square}{1}$ | 鬲登等 |  | $\stackrel{\circ}{\square}$ | ¢ิ） | ¢ | $\stackrel{\text { eे }}{ }$ | － |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

[^1]

COSY-NMR of compound $3 \mathrm{k}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $31\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

|l





II
f $\int$

$\int$


${ }^{13} \mathrm{C}$-NMR of compound $31\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\stackrel{\rightharpoonup}{\square}$

侖


[^2]

COSY-NMR of compound $31\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $3 \mathrm{~m}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR of compound $3 \mathrm{~m}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Comparison between DEPT-135 and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $3 \mathrm{~m}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


COSY-NMR of compound $3 \mathrm{~m}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $3 \mathrm{n}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR of compound $3 \mathrm{n}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



COSY-NMR of compound $3 n\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $\mathbf{3 o}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{13} \mathrm{C}$-NMR of compound $30\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
呙



[^3]


COSY-NMR of compound $30\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $3 \mathrm{p}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


N





${ }^{13} \mathrm{C}$-NMR of compound 3 p ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )
|
$\stackrel{m}{\infty} \stackrel{+}{\sim}$


[^4]Comparison between DEPT-135 and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $3 \mathrm{p}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


COSY-NMR of compound $3 p\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ )

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $\mathbf{3 q}\left(\mathbf{6 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR of compound $\mathbf{3 q}\left(\mathbf{1 5 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{0}{\dot{0}} \underset{1}{\dot{\sigma}}$
$\stackrel{9}{\bar{i}}$


| . 60 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | f1 (ppm) |  |  |  |  |  |  |  |

Comparison between DEPT-135 and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $3 \mathrm{q}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


COSY-NMR of compound $3 q\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$-NMR of compound $\mathbf{3 r}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR of compound $3 \mathrm{r}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
~


[^5]Comparison between DEPT-135 and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $3 \mathrm{r}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


COSY-NMR of compound $3 \mathrm{r}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $3 \mathrm{~s}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR of compound $3 \mathrm{~s}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




Comparison between DEPT-135 and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $3 \mathrm{~s}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

 COSY-NMR of compound $3 \mathrm{~s}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F}$-NMR of compound $3 \mathrm{~s}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $\mathbf{3 t}\left(\mathbf{6 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$






11 $\iint$

${ }^{13} \mathrm{C}$-NMR of compound $3 \mathrm{t}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




Comparison between DEPT-135 and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $3 \mathrm{t}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


COSY-NMR of compound $3 \mathrm{t}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ )

${ }^{19} \mathrm{~F}$-NMR of compound $3 \mathrm{t}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ )

$\qquad$
${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $3 \mathrm{u}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\underbrace{\text { On }}_{V}$
$\iint J$



${ }^{13} \mathrm{C}$-NMR of compound $3 \mathrm{u}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



[^6]Comparison between DEPT-135 and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $3 \mathrm{u}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


COSY-NMR of compound $3 \mathrm{u}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $3 \mathrm{v}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR of compound $3 \mathrm{v}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

宅
$\stackrel{\infty}{\tilde{m}} \stackrel{\text { n }}{\substack{n \\ \sim}}$


| 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Comparison between DEPT-135 and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $3 \mathrm{v}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


COSY-NMR of compound $3 v\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $3 \mathrm{w}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ )




NMR of compound $\mathbf{3 w}$ ( $150 \mathbf{M H z}, \mathrm{CDCl}_{3}$ )




COSY-NMR of compound $3 \mathrm{w}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $3 \mathrm{x}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



1 $\int \|$

Comparison between DEPT-135 and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $3 x\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


COSY-NMR of compound $3 \times\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $3 \mathrm{y}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR of compound $3 \mathrm{y}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ )



| 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |



COSY-NMR of compound $3 \mathrm{y}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ )

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $3 \mathrm{z}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR of compound 3 Z ( $\mathbf{1 5 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



Comparison between DEPT-135 and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $3 \mathrm{z}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

 COSY-NMR of compound $3 z\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$-NMR of compound 3aa ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{13} \mathrm{C}$-NMR of compound 3aa ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )






COSY-NMR of compound 3aa ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $3 \mathrm{ab}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ )

${ }^{13} \mathrm{C}$-NMR of compound 3 ab ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

$\stackrel{\oplus}{m}$



COSY-NMR of compound $3 \mathrm{ab}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ )

${ }^{19} \mathrm{H}-\mathrm{NMR}$ of compound $3 \mathrm{ab}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ )
$\qquad$
${ }^{1} \mathrm{H}$-NMR of compound $\mathbf{3 a c}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ )

${ }^{13} \mathrm{C}$-NMR of compound $3 \mathrm{ac}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ )
$\stackrel{-}{\dot{\sim}}$

O.


COSY-NMR of compound $3 \mathrm{ac}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $5 \mathrm{a}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C-NMR of compound 5 a ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

| $\stackrel{\circ}{0}$ | ® |  |
| :---: | :---: | :---: |
| \% | ¢ $\sim_{\sim}^{\sim}$ |  |
| 1 | 111 | ¢1\% |

|

[^7]Comparison between DEPT-135 and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $5 \mathrm{a}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


COSY-NMR of compound $5 \mathrm{a}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ )

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $\mathbf{5 b}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C-NMR of compound 5 b ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



[^8]Comparison between DEPT-135 and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $5 \mathrm{~b}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


COSY-NMR of compound $5 \mathrm{~b}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $\mathbf{5 c}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


寒举

$\left\|\int\right\| /$




|  |  | 算율 |  | d |  | 鱶 |  | \％ | 宫 | \％ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8.0 | 7.5 | ${ }^{1} .0$ | ${ }_{6.5}$ | ${ }_{6.0}$ | 5.5 | 5.0 | 45 | 4.0 |  | 2.5 | 2.0 | ${ }_{1} .5$ | 1.0 |

${ }^{13} \mathrm{C}$－NMR of compound 5 C （ $\mathbf{1 5 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）


[^9]Comparison between DEPT-135 and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $5 \mathrm{c}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


COSY-NMR of compound $5 \mathrm{c}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $5 \mathrm{~d}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR of compound $5 \mathrm{~d}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ )




Comparison between DEPT-135 and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $5 \mathrm{~d}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


COSY-NMR of compound $5 \mathrm{~d}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $5 \mathrm{e}\left(\mathbf{6 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

r mif fol

aincmily

${ }^{13} \mathrm{C}$-NMR of compound $\mathbf{5 e}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




Comparison between DEPT-135 and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $5 \mathrm{e}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


COSY-NMR of compound $5 \mathrm{e}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $\mathbf{5 f}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR of compound $5 \mathrm{f}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
品




Comparison between DEPT-135 and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $5 \mathrm{f}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


COSY-NMR of compound $5 \mathrm{f}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $5 \mathrm{~g}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
or







${ }^{13}$ C-NMR of compound $5 \mathrm{~g}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


[^10]

COSY-NMR of compound $5 \mathrm{~g}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $5 \mathrm{~h}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR of compound $5 \mathrm{~h}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ )


| 170 | 16 | 150 | 140 | 13 | 120 | 11 | 100 |  | 80 | 70 | 60 | 50 | 40 | 30 | 20 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 160 | 15 |  | 130 |  | 110 | 100 | f1 (ppm) |  | 70 |  |  | 40 | 30 | 20 | 10 |

Comparison between DEPT-135 and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $5 \mathrm{~h}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


COSY-NMR of compound $5 \mathrm{~h}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $5 \mathrm{i}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR of compound $5 \mathrm{i}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 |
|  | 150 | 140 | 130 | 120 | 11 | 10 | , |  |  |  |  |  | 30 |  | 10 |

Comparison between DEPT-135 and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $5 \mathrm{i}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


COSY-NMR of compound $5 \mathrm{i}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$-NMR of compound $5 \mathrm{j}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR of compound $\mathbf{5 j}$ ( $\mathbf{1 5 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ )



 COSY-NMR of compound $5 \mathrm{j}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$-NMR of compound $\mathbf{5 k}\left(\mathbf{6 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR of compound $5 \mathrm{k}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ |l|



Comparison between DEPT-135 and ${ }^{13} \mathrm{C}$-NMR of compound $5 \mathrm{k}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


COSY-NMR of compound $5 \mathrm{k}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F-NMR of compound $5 \mathrm{k}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



RP168 - single_pulse
${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $51\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR of compound 5 I ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




|  |  |  |  |  |  |  | 90 | 80 | 70 | 60 | 50 |  | 30 | 20 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | $\begin{array}{r}80 \\ \hline \text { ) }\end{array}$ | 70 | 60 | 50 | 40 | 30 | 20 | 10 |


 COSY-NMR of compound $51\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F}$-NMR of compound $5 \mathrm{I}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{1} \mathrm{H}$-NMR of compound $5 \mathrm{~m}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR of compound $5 \mathrm{~m}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




Comparison between DEPT-135 and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $5 \mathrm{~m}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

 COSY-NMR of compound $5 \mathrm{~m}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $5 \mathrm{n}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C-NMR of compound $5 \mathrm{n}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ )

|  |  |
| :---: | :---: |
| Vノ1 | $\backslash V$ |



[^11]Comparison between DEPT-135 and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $5 \mathrm{n}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


COSY-NMR of compound $5 \mathrm{n}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$-NMR of compound $50\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


NMR of compound $50\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




Comparison between DEPT-135 and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $50\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


COSY-NMR of compound $50\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $\mathbf{6 a}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$－NMR of compound 6a（ $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）
moon
ハアアら


[^12]Comparison between DEPT-135 and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $6 \mathrm{a}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


COSY-NMR of compound $6 \mathrm{a}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $\mathbf{6 b}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




IIS,






Comparison between DEPT-135 and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $6 \mathrm{~b}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


COSY-NMR of compound $6 \mathrm{~b}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $\mathbf{6 c}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR of compound $\mathbf{6 c}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




[^13]

COSY-NMR of compound $6 \mathrm{c}\left(\mathbf{6 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $(E)$ - 6 d major isomer ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{13} \mathrm{C}$-NMR of compound ( E )-6d major isomer ( $\mathbf{1 5 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$ )





[^14]Comparison between DEPT-135 and ${ }^{13}$ C-NMR of compound $(E)$ - 6 d major isomer ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


COSY-NMR of compound (E)-6d major isomer ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{19} \mathrm{~F}$-NMR of compound ( $E$ )-6d major isomer ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

 RP195fr10-11 - single_pulse

NOESY-NMR of compound (E)-6d major isomer ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound (Z)-6d minor isomer ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

$\stackrel{g}{4}$
$\stackrel{0}{0}$
$\stackrel{j}{1}$



(Z)-6d

 $\int \pi /$

${ }^{13} \mathrm{C}$-NMR of compound (Z)-6d minor isomer ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


[^15]Comparison between DEPT-135 and ${ }^{13}$ C-NMR of compound (Z)-6d minor isomer ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


COSY-NMR of compound (Z)-6d minor isomer ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{19} \mathrm{~F}$-NMR of compound (Z)-6d minor isomer ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

$\underbrace{\substack{-25}}_{\text {RP195fr10-11- }}$

NOESY-NMR of compound (Z)-6d minor isomer ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{1} \mathrm{H}$-NMR of compound 7 a crude reaction mixture $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $7 \mathrm{Fa}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR of compound 7a mixture of isomers ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




## Comparison between DEPT-135 and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound 7a ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



| 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

COSY-NMR of compound 7a mixture of isomers ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{1} \mathrm{H}$-NMR of compound 7 b crude reaction mixture ( $\mathbf{6 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{13} \mathrm{C}$-NMR of compound 7b mixture of isomers ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


$\begin{array}{llllllll}142 & 140 & 138 & \begin{array}{rl}136 & 134 \\ \mathrm{f} 1 & (\mathrm{ppm})\end{array} & 132 & 130 & 128 & 126\end{array}$



COSY-NMR of compound 7b ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{1} \mathrm{H}$-NMR of compound 7 c mixture of isomers $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$-NMR of compound 7 c mixture of isomers ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




|  | 170 |  | 150 | 1 |  | 1 | 110 |  | 1 | 1 | 70 | 1 | 50 | 10 |  | 10 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 |

Comparison between DEPT-135 and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $7 \mathrm{c}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


COSY-NMR of compound 7c mixture of isomers ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 7 d crude ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 7d mixture of isomers ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{13} \mathrm{C}$-NMR of compound 7d mixture of isomers ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


Comparison between DEPT－135 and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $7 \mathrm{~d}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


COSY-NMR of compound 7d mixture of isomers ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $4 \mathrm{a}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$








NMR of compound $\mathbf{4 a}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$





| 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | $\begin{gathered} 10 \\ \mathrm{f}^{\prime}(\mathrm{ppm}) \end{gathered}$ | 70 | 60 | 50 | 40 | 30 | 20 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

COSY-NMR of compound $4 \mathrm{a}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


HMQC-NMR of compound $4 \mathrm{a}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


NOESY-NMR of compound $4 \mathrm{a}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $1 \mathrm{a}{ }^{\prime}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$1 \mid$





f /
J III


${ }^{13} \mathrm{C}$-NMR of compound 1 a ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



COSY-NMR of compound $1 \mathrm{a}^{\prime}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



[^0]:    

[^1]:    

[^2]:    200190
    180
    170 160 150 140 130 120 f1 (ppm)

[^3]:    180
    f1 (ppm)

[^4]:    

[^5]:    

[^6]:    

[^7]:    

[^8]:    

[^9]:    

[^10]:    210
    200
    180
    $170 \quad 160$
    $50 \quad 140$ 110 $100 \quad 90$

[^11]:    

[^12]:    

[^13]:    

[^14]:    $\begin{array}{llllllllllllllllllllllllllllllllllllllllllllll}50 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15 & 10 & 5\end{array}$

[^15]:    $\begin{array}{lllllllllllllllllllllllllllllllllllllllllll}155 & 150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15 & 10\end{array}$

