Supplementary Information

Silver-catalyzed [3+3]-annulation cascade of alkynyl alcohols and α,β-unsaturated ketones for the regioselective assembly of chromanes

Ashwini K. Nakate,^{a,b} Sagar S. Thorat,^{a,b} Shailja Jain,^{c,b} Gamidi Rama Krishna,^d Kumar Vanka^{c,b} and Ravindar Kontham^{*,a,b}

^aOrganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India. ^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India. Centre for Materials Characterization,

CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India.

^cPhysical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India.

^dCentre for Materials Characterization, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India.

* Corresponding Author, E-mail: <u>k.ravindar@ncl.res.in; konthamravindar@gmail.com</u>

Sr. No	Contents	Page No		
1.	General Information	S2		
2.	Scheme S1. Known synthetic strategies for chromanes	S3		
3.	Table S1. Reaction optimization studies			
4.	General Procedure for the synthesis of chromanes (5 or E5) from alkynols (2) and α , β -unsaturated ketones (4)	S4		
5.	Synthesis of alkynols (2)	S5		
6.	Synthesis of α,β -unsaturated ketones (4)	S7		
7.	<i>General Procedure</i> for the synthesis of protected chalcones (40-4r)	S9		
8.	Synthesis and characterization of chromanes (5) from alkynols(2) and α , β -unsaturated ketones (4)	S10		
9.	Synthesis and characterization of heterocyclic chromanes (5 or E5) from alkynols (2) and α , β -unsaturated ketones (4)	S30		
10.	Scheme S2. Unsuccessful [3+3]-annulation experiments	S34		
11.	X-ray crystallography data	S35		
12.	Supporting experiments for the postulated reaction mechanism	S38		
13.	Quantum chemical calculations	S43		
14.	¹ H, ¹³ C, and 2D NMR Spectra	S52		

Table of Contents

1. General Information:

All reactions were performed under argon atmosphere with oven (80 °C) or flame-dried glassware with a septum seal. Tetrahydrofuran (THF) was distilled from sodiumbenzophenone under the argon atmosphere immediately before use. Anhydrous dichloromethane, dichloroethane, methanol, and fluorobenzene were purchased from commercial sources and used without any further treatment. Reaction temperatures are reported as the temperature of the bath surrounding the reaction vessel, and 30 °C corresponds to the room temperature (rt) of the laboratory when the experiments were carried out. Analytical thin-layer chromatography (TLC) was performed on TLC Silica gel 60 F254. Visualization was accomplished with short wave UV light, anisaldehyde or KMnO₄ staining solutions followed by heating. Chromatography was performed on silica gel (100-200 mesh) by standard techniques eluting with solvents as indicated. ¹H and ¹³C NMR spectra were recorded on Bruker AV 200, 400, and 500 in solvents as indicated. Chemical shifts (δ) are given in ppm. The residual solvent signals were used as references and the chemical shifts converted to the TMS scale (CDCl₃: δ H = 7.27 ppm, δ C = 77.00 ppm), the following abbreviations were used: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; dd, doublet of doublet; td, triplet doublet; and br, broad. HRMS data were recorded on a Thermo Scientific Q-Exactive, Accela 1250 pump, FT-IR instrument (Bruker Alpha Model) at normal temperature with a NaCl pellet (IR grade). Experimental procedures for all new compounds and known compounds without published experimental procedures are described below. Compounds that are not presented in the main text (manuscript) are numbered starting from **S1**.

2. Scheme S1. Known synthetic strategies for chromanes 5.

a. From pre-functionalized arenes

b. From dihydropyran derivatives

c. Through hexadehydro Diels-Alder reaction of triynes

d. Through Wulff-Dötz reaction

single example

Н			catalyst (10 mol %)	O Me
	2a	РП 💙 Ме 4а	conditions	5aa Ph
Entry	Catalyst		Solvent	Yield ^{<i>b</i>} (%)
1	AgCl		PhF, rt, 12 h	_c
2	AgBr		PhF, rt, 12 h	_c
3	AgI		PhF, rt, 12 h	_c
4	AgNO ₃		PhF, rt, 12 h	_c
5	Ag ₂ O		PhF, rt, 12 h	_c
6	AuCl		CH ₂ Cl ₂ , 12 h	70
7	Hg(OTf) ₂		CH ₂ Cl ₂ , 12 h	68
8	Bi(OTf) ₃		CH ₂ Cl ₂ , 12 h	53
9	Bi(OTf) ₃		PhF, 85 °C	65
10	Sc(OTf) ₃		CH ₂ Cl ₂	15
11	Fe(OTf) ₃		CH_2Cl_2	15
12	Fe(OTf) ₃		PhF, 85 °C	42
13	Ni(OTf) ₂		CH ₂ Cl ₂	_c
14	Cu(OTf) ₂		CH ₂ Cl ₂	43
15	Zn(OTf) ₂		CH_2Cl_2	_c
16	In(OTf) ₃		CH_2Cl_2	52
17	Yb(OTf) ₃		CH_2Cl_2	_C

3. Table S1. Reaction optimization studies^a

^{*a*}Unless otherwise noted all reactions were carried out with **4a** (1 mmol), **2a** (2 mmol), and catalyst (10 mol %) at rt for 6 h. ^{*b*}Isolated yields of **5aa**. ^{*c*}No reaction was observed, both starting materials **2a** and **3a** were found to be intact. Tf = triflate (CF₃SO₂).

4. *General Procedure* for the synthesis of chromanes (5 or E5) from alkynols (2) and α,β -unsaturated ketones (4):

Alkynol 2(1.01 mmol) and α , β -unsaturated ketone4(0.505mmol) were taken into a single neck 10 mL round bottom flask equipped with positive argon flow, then dissolved in 2 mL of

anhydrous PhF. Catalyst (AgOTf, 0.101mmol) was added under an argon atmosphere at room temperature. The resulting reaction mixture was stirred at rt for six h. After completion of the reaction (monitored by TLC, visualized using UV, anisaldehyde, and KMnO₄ staining solutions), quenched with saturated aqueous NaHCO₃solution, then extracted with CH₂Cl₂ (2x5 mL), then washed with brine solution (10 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and filtered through a sintered glass funnel. The filtrate was concentrated under reduced pressure and purified using silica-gel column chromatography (SiO₂, 100-200 mesh) to afford the corresponding chromanes **5** or **E5**.

5. Synthesis of alkynols (2):

5.1. Synthesis of alkynols 2a, 2b, 2d, 2e, and 2f: Prepared using reported procedures^{1,2,3}

5.2. Synthesis of alkynol 2c:

2,2-Dimethyl-6-(trimethylsilyl)hex-5-yn-1-ol (S4): To a flame dried (100 mL) two neck round bottom flask, anhydrous THF (20 mL) was added under argon atmosphere and cooled to 0 °C, to this diisopropylamine (1.18 g, 11.74mmol) followed by *n*-butyllithium (1.6 M in hexanes, 7.95 mL, 12.7 mmol) was added dropwise at 0 °C and stirred for 45 min at 0 °C to generate LDA solution. To this LDA solution, was added ethyl isobutyrate (**S1**)(1 g, 9.79 mmol) in THF (3 mL) and stirred the reaction mixture at -78 °C for 30 min, then warmed to 0 °C and stirred for another 30 min. The reaction mixture was cooled back to -78 °C and (4-

¹1a were purchased from commercial sources.

²Thorat, S. S.; Kataria, P.; Kontham, R. Org. Lett. 2018, 20, 872-875.

³Nakate, A. K.; Pratapure, M. S.; Kontham, R. Org. Biomol. Chem., 2018, 16, 3229–3240

iodobut-1-yn-1-yl)trimethylsilane (**S2**) (3.69 g, 14.68 mmol) was added dropwise. The resulting mixture was stirred at -78 °C for 1 h and warmed to rt and stirred overnight. Then, the reaction was quenched with saturated aqueous NH₄Cl solution, and extracted with EtOAc (3x20 mL), combined organic layers were dried over anhydrous Na₂SO₄, concentrated under reduced pressure to afford ethyl 2,2-dimethyl-6-(trimethylsilyl)hex-5-ynoate (**S3**) TLC: $R_f = 0.7$ (SiO₂, 10% EtOAc/hexanes), this crude product was subjected to the next step without further purification.

Lithium aluminium hydride (0.74 g, 19.58 mmol) was dissolved in a 20 mL of anhydrous THF in a 100 mL two neck round bottom flask under argon atmosphere, then ethyl 2,2dimethyl-6-(trimethylsilyl)hex-5-ynoate (**S3**) in (5 mL) THF was added drop by drop at 0 °C, and the reaction mixture was stirred for 30 min at the same temperature, after completion of the reaction monitored by TLC quenched with a saturated aqueous solution of sodium sulphate (very carefully). After quenching the reaction, the mixture diluted with 50 mL EtOAc and stirred for 1h to obtain the white powder, which was filtered through Celite. The solvent was evaporated under reduced pressure and the resulting crude product was purified by silica gel column chromatography (SiO₂, 8% EtOAc/hexanes) to afford 2,2-dimethyl-6-(trimethylsilyl)hex-5-yn-1-ol (**S4**) (0.726 g, 43% for two steps) as a colorless liquid. TLC: *R*_f = 0.8 (SiO₂, 20% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 3.35 (s, 2H), 2.23 (t, *J* = 7.32 Hz, 2H), 1.55 (t, *J* = 7.32 Hz, 2H), 0.88 (s, 6H), 0.15 (s, 9H); ¹³C NMR (CDCl₃, 101 MHz): δ 108.3, 84.2, 70.9, 37.3, 35.2, 23.9, 14.9, 0.04.

2,2-Dimethylhex-5-yn-1-ol (2c): To a stirred solution of 2,2-dimethyl-6-(trimethylsilyl)hex-5-yn-1-ol (**S4**) (0.8 g, 4.03 mmol) in MeOH (20 mL) was added K₂CO₃ (1.2 g, 8.68 mmol) at room temperature. The reaction mixture was stirred for 6 h. After quenched with H₂O, the mixture was extracted twice with ether. The combined organic extracts were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (SiO₂, 5% EtOAc /hexanes) to give 2,2-dimethylhex-5yn-1-ol (**2c**) (0.402 g, 79%) as a colourless oil. TLC: $R_f = 0.5$ (SiO₂, 20% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 3.35 (s, 2H), 2.19 (td, J = 7.63, 3.05 Hz, 2H), 1.97-1.95 (m, 1H), 1.60-1.54 (m,2H), 0.89 (s, 6H);¹³C NMR (CDCl₃, 101 MHz): δ 85.4, 71.1, 67.9, 37.3, 35.1, 23.7, 13.5.

3.3. (S)-5-(Hydroxymethyl)-1-(prop-2-yn-1-yl)pyrrolidin-2-one(2g):

To a solution of ethyl (*S*)-5-oxo-1-(prop-2-yn-1-yl)pyrrolidine-2-carboxylate (**S5**)⁴(0.4 g, 2.05 mmol) in methanol (10 mL), sodium borohydride (0.155 g, 4.1 mmol) was added batch wise at 0 °C. The reaction mixture was stirred at 0 °C for 30 min. and then at rt for 5 h after which the solvent was evaporated under reduced pressure. Aqueous NH₄Cl solution (5 mL) was added to the resulting suspension, and then extracted with EtOAc (3×5 mL). Organic phases were combined and dried over anhydrous Na₂SO₄, filtered and the solvent was evaporated under reduced pressure, and the resulting crude product was purified by silica gel column chromatography (SiO₂, 10% MeOH/CH₂Cl₂) to afford (*S*)-5-(hydroxymethyl)-1-(prop-2-yn-1-yl)pyrrolidin-2-one (**2g**) (0.302 g, 96%) as a colourless liquid. TLC: $R_f = 0.1$ (SiO₂, 70% EtOAc/hexanes);¹H NMR (CDCl₃, 400 MHz): δ 4.32 (d, *J* = 17.70 Hz, 1H) , 4.02-3.82 (m, 3H), 3.69-3.56 (m, 1H), 2.86 (br.s., 1H), 2.53-2.43 (m, 1H), 2.37-2.29 (m, 1H), 2.18-2.07 (m, 1H), 2.04-1.95 (m, 1H);¹³C NMR (CDCl₃, 101 MHz): δ 175.5, 78.3, 71.9, 62.5, 59.2, 30.5, 30.3, 20.7.

6. Synthesis of α,β -unsaturated ketones (4): Prepared using reported procedures (see below details of chemical structures with related references.^{5,6,7,8,9,10,11,12,13,14,15,16,17,18,19, 20}

⁴Amit, B.; Subhash, C. G.; Amit, K. D.; Valerio, B. Org. Biomol. Chem., 2005, 3, 4050-4052.

⁵Ajay, H. B.; Gurunath, S. ACS Omega, **2019**, *4*, 9636-9644.

⁶Titu, D.; Chadha, A. *Tetrahedron*, **2008**, *19*, 1698-1701.

⁷Wang, Y.; Franzen, R. Synlett, 2012,6, 925-929.

⁸Gopinath, V. K.; Swarup, H. A.; Mantelingu, K.; Rangappa, K. S. Synlett, 2019, 30, 12-20.

⁹Robinson, T. P.; Hubbard, R. B.; IV, Ehlers, T. J.; Arbiser, J. L.; Goldsmith, D. J.; Bowen, J. P. *Bioorg. Med. Chem.*, **2005**, *13*, 4007-4013.

¹⁰Hassan, S. Y. J. Braz. Chem. Soc., **2011**, 22, 1286-1298.

¹¹D'Aleo, A.; Karapetyan, A.; Heresanu, V.; Giorgi, M.; Fages, F. Tetrahedron, 2015, 71, 2255-2259.

¹²Singh, G.; Arora, A.; Kalra, P.; Maurya, I. K.; Ruizc, C. E.; Estebanc, A. M.; Sinha, S.; Goyal, K. Sehgal, R. *Bioorg. Med. Chem.*, **2019**, *27*, 188-195.

¹³Astekar, K. D.; Staples, R. J.; Borhan, B. Org. Lett., **2011**, 13, 5732-5735.

¹⁴Rajasekar, S.; Anbarasan, P. Org. Lett., **2019**, 21, 3067-3071.

¹⁵Liu, S.; Cui, P.; Wang, J.; Zhou, H.; Liu, Q.; Ly. J. Org. Biomol. Chem., **2019**, *17*, 264-267.

¹⁶Basnet, A.; Thapa, P. Karki, R.; Na, Y.; Jahng, Y.; Jeong, B. S.; Jeong, T. C. Lee, C. S.; Lee, E. S. *Bioorg. Med. Chem.*, **2007**, *15*, 4351-4359.

Supporting Information

¹⁷Cheng, S.; Yu, S. Org. Biomol. Chem., **2014**, *12*, 8607-8610.

¹⁸Thomson, C. J.; Barber, D. M.; Dixon, D. J. Angew. Chem. Int. Edi., **2019**, 58, 8, 2469-2473.

¹⁹Salfeena, C. T.; Basavaraja, Ashitha, K. T.; Kumar, V. P.; Varughese, S.; Cherumuttathu, H. S.; Sasidhar, B. S. *Chem. Commun.*, **2018**, *54*, 12463-12466.

²⁰Wang, D.; Li, L.; Feng, H.; Sun, H.; Almedida-Velodo, F.; Charavin, M.; Yu, P.; Désaubry, L. *Green Chemistry*, **2018**, 20, 2775-2780.

7. *General procedure* for the synthesis of protected chalcones (40-4r):

To a solution of 4-hydroxychalcone (**4m**) (10.0 mmol) and triethylamine (12.0 mmol) in anhydrous THF (20 ml)was added drop wise organo-halide (12.0 mmol) and the mixture was stirred at ambient temperature. After a certain reaction time the volatile was concentrated under reduced pressure. The residue was extracted with ethyl acetate (20 ml) and water (20 ml). The organic layer was washed with saturated aqueous solution of sodium hydrogen carbonate (20 mL), 10% aqueous solution of sodium hydrogen sulfonate (20 mL), and brine (20 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The solid was purified by recrystallization.

(E)-3-(4-(Allyloxy)phenyl)-1-phenylprop-2-en-1-one (40):

(*E*)-3-(4-(Allyloxy)phenyl)-1-phenylprop-2-en-1-one (**40**) was prepared by using general procedureas a yellow crystalline solid in 57% yield.¹H NMR (CDCl₃,200 MHz): δ 8.20-7.97 (m, 2H),7.78 (d, *J*=15.66 Hz, 1H),7.69-7.43 (m, 6H),7.10-6.86 (m, 2H),6.21-5.91

(m, 1H),5.59-5.20 (m, 2H),4.53 (d, *J*=5.18 Hz, 2H).

(*E*)-4-(3-Oxo-3-phenylprop-1-en-1-yl)phenyl 4-methylbenzenesulfonate (4p):

(E)-4-(3-Oxo-3-phenylprop-1-en-1-yl)phenyl

4-

methylbenzenesulfonate (**4p**) was prepared by using general procedureas a yellow crystalline solidin 68% yield. ¹H NMR (CDCl₃, 200 MHz): δ 8.00 (d, *J* = 7.17 Hz, 2H), 7.85-7.66 (m, 3H), 7.66-7.41

(m, 6H), 7.31 (d, J = 8.38 Hz, 2H), 7.03 (d, J = 8.60 Hz, 2H), 2.44 (s, 3H).

(E)-4-(3-Oxo-3-phenylprop-1-en-1-yl)phenylmethanesulfonate (4q):

(*E*)-4-(3-Oxo-3-phenylprop-1-en-1-yl)phenylmethanesulfonate (**4q**) was prepared by using general procedureas a yellow crystalline solidin 80% yield. ¹H NMR (CDCl₃, 200 MHz): δ 8.14-7.94 (m, 2H), 7.81-7.47 (m, 7H), 7.33 (d, *J*=8.71 Hz, 2H), 3.18 (s, 3H).

(*E*)-4-(3-Oxo-3-phenylprop-1-en-1-yl)phenyl acetate (4r):

(*E*)-4-(3-Oxo-3-phenylprop-1-en-1-yl)phenyl acetate (**4r**) was prepared by using general procedureas a light yellow solidin 77% yield. ¹H NMR (CDCl₃, 200 MHz): δ 8.16-7.97 (m, 2H), 7.86-7.43 (m, 7H), 7.14 (d, *J*=8.49 Hz, 2H),2.30 (s, 3H).

8. Synthesis and characterization of chromanes (5) from alkynols (2) and α , β -unsaturated ketones (4)

7-Methyl-5-phenylchromane (5aa):

Following the *General Procedure*, to the mixture of 5-hexyn-1-ol (**2a**) (0.1 g, 1.01 mmol) and (*E*)-4-phenylbut-3-en-2-one (**4a**) (0.073 g, 0.505 mmol) in anhydrous PhF (2 mL) was added AgOTf (0.012 g, 0.05 mmol) under argon atmosphere at room temperature and reaction mixture was stirred for 6h at rt. Purification of the crude product by column

chromatography (SiO₂, 1% EtOAc/hexanes) afforded 7-methyl-5-phenylchromane (**5aa**) (0.086 g, 87%). TLC: $R_f = 0.90$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 500 MHz): δ 7.43-7.38(m, 2H), 7.37-7.31 (m, 3H),6.67 (d, J = 4.96 Hz, 2H), 4.22-4.18 (m,2H), 2.62-2.58 (m, 2H), 2.32 (s, 3H), 1.94-1.88 (m, 2H); ¹³C NMR (CDCl₃, 126 MHz): δ 154.8, 142.8, 141.3, 136.7, 129.1, 127.9, 126.8, 122.7, 116.9, 116.3, 66.2, 23.9, 22.6, 21.0; HRMS (ESI) m/z calcdfor C₁₆H₁₇O [M+H]⁺ 225.1274, found 225.1273.

5-(Anthracen-9-yl)-7-methyl-3,4,5,8-tetrahydro-2*H*-chromene (T3ab) and 5-(Anthracen-9-yl)-7-methylchromane (5ab):

Following the *General Procedure*, to the mixture of 5-hexyn-1-ol (**2a**) (0.1 g,1.01 mmol) and (*E*)-4-(anthracen-9-yl)but-3-en-2-one (**4b**) (0.124 g,0.505 mmol) in anhydrous PhF (2 mL) was added AgOTf (0.012 g, 0.05 mmol) under argon atmosphere at room temperature and reaction mixture was stirred for 6h at rt. Purification of the crude product by column

chromatography (SiO₂, 1% EtOAc/hexanes) afforded a mixture of two product5-(anthracen-9-yl)-7-methyl-3,4,5,8-tetrahydro-2H-chromene (**T3ab**) (0.056 g, 34%) as a yellow crystalsand 5-(anthracen-9-yl)-7-methylchromane (**5ab**) as a yellow powder (0.063 g, 39%). TLC: $R_f = 0.9$ (SiO₂, 10% EtOAc/hexanes).

T3ab: ¹H NMR (CDCl₃, 500 MHz): δ 8.56-8.52 (m, 1H), 8.46 (d, J = 9.14 Hz, 1H), 8.38 (s, 1H), 8.04-7.97 (m, 2H), 7.53-7.41 (m, 3H), 7.39-7.34 (m, 1H), 5.63-5.57 (m, 1H), 5.54-5.51 (m, 1H), 4.06-3.99 (m, 1H), 3.91-3.85 (m, 1H), 2.93 (d, J = 8.20 Hz, 2H), 1.78 (s, 3H), 1.77-1.59 (m, 4H); ¹³C NMR (CDCl₃, 126 MHz): δ 144.3, 134.6, 131.8, 131.6, 130.9, 130.6, 129.5, 129.3, 129.0, 127.0, 125.8, 125.2, 124.8, 124.5, 124.2, 123.6, 106.8, 65.7, 41.7, 33.6, 22.9, 22.7, 22.4; HRMS (ESI) *m*/*z* calcd for C₂₄H₂₃O [M+H]⁺ 327.1743, found 327.1745. **5ab:** ¹H NMR (CDCl₃, 400 MHz): δ 8.49 (s, 1H), 8.06 (d, J = 8.39 Hz, 2H), 7.62 (d, J = 9.16 Hz, 2H), 7.51-7.44 (m, 2H), 7.41-7.35 (m, 2H), 6.84 (s, 1H), 6.70 (s, 1H), 4.17 (t, J = 5.34 Hz, 2H), 2.37 (s, 3H), 2.08-2.03 (m, 2H), 1.84-1.73 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ

155.5, 139.8, 139.4, 137.6, 137.0, 131.4, 129.9, 129.4, 128.5, 126.7, 126.5,125.6, 125.2, 121.8, 121.3, 114.3, 66.4, 22.5, 22.3, 21.1; IR (KBr, cm⁻¹): v 2929, 2860, 1612, 1575, 1454, 1215, 1138, 908, 733, 642; HRMS (ESI) *m*/*z* calcd for C₂₄H₂₁O [M+H]⁺ 325.1587, found 325.1586.

5-(Anthracen-9-yl)-7-methylchromane (5ab)(prepared from T3ab):

Following the *General Procedure*, to the mixture of 5-(anthracen-9-yl)-7-methyl-3,4,5,8tetrahydro-2H-chromene (**T3ab**) (0.050 g, 0.15 mmol) in anhydrous PhF (2.0 mL) was added AgOTf (0.003 g, 0.015 mmol) under argon atmosphere at room temperature and reaction

mixture was stirred for 6 h at rt. Purification of the crude product by column chromatography (SiO₂, 1% EtOAc/hexanes) afforded 5-(anthracen-9-yl)-7-methylchromane (**5ab**) (0.035 g, 71%). TLC: $R_f = 0.9$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 200 MHz): δ 8.49 (s, 1H), 8.06 (d, *J*= 7.94 Hz, 2H), 7.62 (d, *J*= 9.16 Hz, 2H), 7.54-7.32 (m, 4H), 7.41-7.35 (m, 2H), 6.84 (s, 1H), 6.70 (s, 1H), 4.18 (t, *J*= 5.07 Hz, 2H), 2.37 (s, 3H), 2.06 (t, *J*=6.39 Hz, 2H), 1.88-1.72 (m, 2H).

5-Methyl-7-phenylchromane (5ac):

Following the *General Procedure*, to the mixture of 5-hexyn-1-ol (**2a**) (0.1 g, 1.01 mmol) and (*E*)-1-phenylbut-2-en-1-one (**4c**) (0.073 g, 0.505 mmol) in anhydrous PhF (2 mL) was added AgOTf (0.012 g, 0.05 mmol)under argon atmosphere at room temperature and reaction

mixture was stirred for 6h at rt. Purification of the crude product by column chromatography (SiO₂, 1% EtOAc/hexanes) afforded 7-methyl-5-phenylchromane (**5ac**) (0.73 g, 68%). TLC: $R_f = 0.90$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.61-7.55 (m, 2H), 7.46-7.40 (m, 2H), 7.36-7.30 (m, 1H), 7.03-6.94 (m, 2H), 4.23-4.17 (m, 2H), 2.70 (t, *J* = 6.63 Hz, 2H), 2.30 (s, 3H), 2.13-2.05 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 155.3, 141.0, 139.8, 138.0, 128.6, 127.0, 126.9, 120.6, 120.2, 113.1, 66.0, 22.5, 22.4, 19.3; HRMS (ESI) m/z calcd for C₁₆H₁₇O [M+H]⁺ 225.1274, found 225.1276.

5-Cyclopropyl-7-phenylchromane (5ad):

Following the *General Procedure*, to the mixture of 5-hexyn-1-ol (**2a**) (0.1 g, 1.01 mmol) and (*E*)-3-cyclopropyl-1-phenylprop-2-en-1-one (**4d**) (0.086 g, 0.505 mmol)in anhydrous PhF (2 mL) was added AgOTf (0.012 g, 0.05 mmol)under argon atmosphere at room temperature and reaction mixture was stirred for 8 h at rt. Purification of the crude

product by column chromatography (SiO₂, 1% EtOAc/hexanes) afforded5-cyclopropyl-7phenylchromane (**5ad**) (0.085 g, 67%). TLC: $R_f = 0.9$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃,400 MHz): δ 7.59-7.53 (m, 2H), 7.46-7.39 (m, 2H), 7.37-7.30 (m, 1H), 6.93 (d, J =1.88 Hz, 1H), 6.83 (d, J = 1.50 Hz, 1H), 4.21 (t, J = 5.13 Hz, 2H), 2.93 (t, J = 6.63 Hz, 2H), 2.15-2.07 (m, 2H), 1.90-1.83 (m, 1H), 0.99-0.92 (m, 2H) 0.77-0.65 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 155.1, 142.7, 141.2, 139.8, 128.6, 127.1, 126.9, 121.4, 116.7, 113.3, 66.0, 22.5, 22.2, 13.1, 6.8; IR (KBr, cm⁻¹): ν 3019, 2955, 2927, 2855, 1663, 1612, 1600, 1583, 1565, 1518, 1502, 1410, 1172, 962, 850, 771, 699, 625; HRMS (ESI) *m/z* calcd for C₁₈H₁₉O [M+H]⁺ 251.1430 found 251.1432.

5-Cyclohexyl-7-phenylchromane (5ae):

Following the *General Procedure*, to the mixture of 5-hexyn-1-ol (**2a**) (0.1 g, 1.01 mmol) and (*E*)-3-cyclohexyl-1-phenylprop-2-en-1-one (**4e**) (0.108 g, 0.505 mmol) in anhydrous PhF (2 mL) was add AgOTf (0.012 g, 0.05 mmol)under argon atmosphere at room temperature and reaction mixture was stirred for 8h at rt. Purification of the crude product by column

chromatography (SiO₂, 1% EtOAc/hexanes) afforded 5-cyclohexyl-7phenylchromane (**5ae**) (0.083 g, 56%). TLC: $R_f = 0.9$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.60-7.56 (m, 2H), 7.45-7.39 (m, 2H), 7.35-7.30 (m, 1H), 7.05 (d, J = 2.3 Hz, 1H), 6.92 (d, J = 2.3 Hz, 1H), 4.23-4.18 (m, 2H), 2.84-2.78 (m, 2H), 2.73-2.65 (m,

1H), 2.11-2.04 (m, 2H), 1.92-1.76 (m, 5H), 1.55-1.33 (m, 5H); ¹³C NMR (CDCl₃, 101 MHz): δ 155.2, 147.5, 141.4, 140.0, 128.6, 127.0, 118.8, 116.6, 113.0, 65.8, 39.5, 33.8, 27.2, 26.3, 22.6, 21.8; HRMS (ESI) *m*/*z* calcd for C₂₁H₂₅O [M+H]⁺ 293.1900, found 293.1897.

5,7-Diphenylchromane (5af):

Following the *General Procedure*, to the mixture of 5-hexyn-1-ol (**2a**) (0.1 g, 1.01 mmol) and (*E*)-chalcone (**4f**) (0.105 g, 0.505 mmol)in anhydrous PhF (2 mL) was added AgOTf (0.012 g, 0.05 mmol) under argon atmosphere at room temperature and reaction mixture was stirred for 6h at rt. Purification of the crude product by column chromatography (SiO₂, 1% EtOAc/hexanes) afforded 5,7-

diphenylchromane (**5af**) (0.111 g, 77%). TLC: $R_f = 0.90$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 500 MHz): δ 7.62 (d, J = 7.63 Hz, 2H), 7.48-7.32 (m, 8H), 7.10 (d, J = 4.20 Hz, 2H), 4.33-4.20 (m, 2H), 2.68 (t, J = 6.10 Hz, 2H), 2.03-1.90 (m, 2H); ¹³C NMR (CDCl₃, 126 MHz): δ 155.2, 143.3, 141.1, 140.6, 140.0, 129.1, 128.7, 128.1, 127.2, 127.1, 127.0, 120.6, 119.2, 114.3, 66.3, 24.0, 22.5; HRMS (ESI) *m*/*z* calcd for C₂₁H₁₉O [M+H]⁺ 287.1430 found 287.1430.

5-(2-Bromophenyl)-7-phenylchromane (5ag):

Following the *General Procedure*, to the mixture of 5-hexyn-1-ol (**2a**) (0.1 g, 1.01 mmol) and (*E*)-3-(2-bromophenyl)-1-phenylprop-2-en-1-one (**4g**) (0.144 g, 0.505 mmol) in anhydrous PhF (2 mL) was added AgOTf(0.012 g, 0.05 mmol) under argon atmosphere at room temperature and reaction

mixture was stirred for 6h at rt. Purification of the crude product by column chromatography (SiO₂, 1% EtOAc/hexanes) afforded 5-(2-bromophenyl)-7-phenylchromane (**5ag**) (0.126 g, 69%). TLC: $R_f = 0.90$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.69 (dd, J = 8.0, 1.0 Hz, 1H), 7.66-7.60 (m, 2H), 7.46-7.21 (m, 6H), 7.14 (d, J = 1.88 Hz, 1H), 6.99 (d, J = 1.88 Hz, 1H), 4.26-4.23(m, 2H), 2.60-2.52 (m, 1H), 2.43-2.36 (m, 1H), 2.02-1.97 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 155.1, 142.3, 141.8, 140.5, 139.7, 132.6, 130.8, 128.9,

128.7, 127.2 (2C), 126.9, 123.6, 120.0, 119.8, 114.7, 66.3, 23.0, 22.3; IR (KBr, cm⁻¹): υ 3018, 2952, 2880, 1612, 1603, 1583, 1566, 1479, 1216, 1177, 1053, 1009, 772, 669.

5-(Naphthalen-1-yl)-7-phenylchromane (5ah):

Following the *General Procedure*, to the mixture of 5-hexyn-1-ol (**2a**) (0.1 g, 1.01 mmol) and (*E*)-3-(naphthalen-1-yl)-1-phenylprop-2-en-1-one (**4h**) (0.130 g, 0.505 mmol) in anhydrous PhF (2 mL) was added AgOTf (0.012g, 0.05 mmol)under argon atmosphere at room temperature and reaction mixture was stirred for 6h at rt. Purification of the crude product by

column chromatography (SiO₂, 1% EtOAc/hexanes) afforded 5-(naphthalen-1-yl)-7-phenylchromane (**5ah**) (0.127 g, 75%). TLC: $R_f =$ 0.90 (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.91-7.83 (m, 2H), 7.60 (d, J = 7.25 Hz, 3H), 7.54-7.44 (m, 2H), 7.42-7.35 (m, 4H), 7.32-7.28 (m, 1H), 7.23 (s, 1H), 7.13 (dd, J = 1.75, 22.3 Hz, 2H) 4.24-4.18 (m, 2H), 2.44-2.34 (m, 1H), 2.32-2.22 (m, 1H), 1.91-

1.82 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 155.2, 141.5, 140.6, 139.7, 138.8, 133.5, 131.9, 128.7, 128.2, 127.6, 127.2, 126.9, 126.5, 126.1, 126.0, 125.8, 125.4, 121.2, 120.6, 114.4, 66.4, 23.1, 22.3; HRMS (ESI) *m*/*z* calcd for C₂₅H₂₁O [M+H]⁺ 337.1587 found 337.1587.

7-Phenyl-5-(pyren-4-yl)chromane(5ai):

Following the *General Procedure*, to the mixture of 5-hexyn-1-ol (**2a**) (0.1 g, 1.01 mmol) and (*E*)-1-phenyl-3-(pyren-4-yl)prop-2-en-1-one (**4i**) (0.167 g, 0.505 mmol) in anhydrous PhF (2 mL) was added AgOTf (0.012 g, 0.05 mmol)under argon atmosphere at room temperature and reaction mixture was stirred for 8 h at rt. Purification of the crude product by column chromatography (SiO₂, 1% EtOAc/hexanes) afforded 7-Phenyl-5-(pyren-4-yl)chromane (**5ai**) (0.136 g, 66%). TLC: $R_f = 0.9$

(SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 8.28-8.16 (m, 4H), 8.13 (d, J = 0.9 Hz, 2H), 8.07-8.00 (m, 3H), 7.95 (d, J = 7.7 Hz, 1H), 7.89 (d, J = 9.3 Hz, 1H), 7.71-7.65 (m, 2H), 7.47-7.40 (m, 2H), 7.35-7.28 (m, 1H), 4.26-4.22 (m, 2H), 2.41-2.36 (m, 2H), 1.93-1.87 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 155.3, 142.0, 140.6, 139.8, 136.3, 131.4, 131.0, 130.6, 128.9, 128.7, 128.3, 127.6, 127.4, 127.3, 127.2, 127.0, 126.0, 125.8, 125.3, 125.2, 125.1, 125.0, 124.8, 124.7, 124.5, 121.5, 120.8, 114.5, 66.4, 23.4, 22.3; HRMS (ESI): *m/z* calcd for C₃₁H₂₃O [M+H]⁺ 411. 1743, found 411.1741.

5-(4-Methoxyphenyl)-7-phenylchromane (5aj):

Following the *General Procedure*, to the mixture of 5-hexyn-1-ol (**2a**)(0.1 g, 1.01 mmol) and (*E*)-3-(4-methoxyphenyl)-1-phenylprop-2en-1-one (**4j**) (0.120 g, 0.505 mmol)in anhydrous PhF (2 mL) was addedAgOTf(0.012 g, 0.05mmol)under argon atmosphere at room temperature and reaction mixture was stirred for 6 h at rt. Purification of the crude product by column chromatography (SiO₂, 1%

EtOAc/hexanes) afforded5-(4-methoxyphenyl)-7-phenylchromane(**5aj**)(0.116 g, 73%).TLC: $R_f = 0.90$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.63-7.60 (m, 2H), 7.45-7.40 (m, 2H), 7.36-7.30 (m, 3H), 7.08 (s, 2H), 7.01-6.96 (m, 2H), 4.27-4.23 (m, 2H), 3.87 (s, 3H), 2.71-2.65 (m, 2H), 2.01-1.93 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 158.7, 155.2, 143.0, 140.7, 139.9, 133.5, 130.2, 128.7, 127.2, 127.0, 120.7, 119.3, 114.1, 113.5, 66.3, 55.3, 24.1, 22.5; HRMS (ESI) *m*/*z* calcd for C₂₂H₂₁O₂ [M+H]⁺ 317.1536, found 317.1530.

5-(2,6-Dimethoxyphenyl)-7-phenylchromane (5ak):

Following the *General Procedure*, to the mixture of 5-hexyn-1-ol (**2a**) (0.1 g, 1.01 mmol) and (*E*)-3-(2,6-dimethoxyphenyl)-1-phenylprop-2en-1-one (**4k**) (0.135 g, 0.505 mmol) in anhydrous PhF (2 mL) was added AgOTf (0.012 g, 0.05 mmol)under argon atmosphere at room temperature and reaction mixture was stirred for 6h at rt. Purification of

the crude product by column chromatography (SiO₂, 1% EtOAc/hexanes) afforded 5-(2,6dimethoxyphenyl)-7-phenylchromane (**5ak**) (0.149 g, 85%). TLC: $R_f = 0.70$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 500 MHz): δ 7.63-7.60 (m, 2H), 7.42-7.37 (m, 2H), 7.34-7.29 (m, 2H), 7.08 (d, J = 1.53 Hz, 1H), 7.00 (d, J = 1.91 Hz, 1H), 6.67 (d, J = 8.4 Hz, 2H), 4.26-4.19 (m, 2H), 3.75 (s, 6H), 2.46 (t, J = 6.49 Hz, 2H), 2.01-1.93 (m, 2H); ¹³C NMR (CDCl₃, 126 MHz): δ 157.8, 155.0, 141.1, 139.2, 135.5, 128.8, 128.5, 127.0, 126.8, 121.7, 121.3, 118.0, 114.3, 104.0, 66.3, 55.9, 22.6, 22.4; HRMS (ESI) *m/z* calcd for C₂₃H₂₃O₃ [M+H]⁺347.1642, found 347.1645.

5-(Benzo[d][1,3]dioxol-4-yl)-7-phenylchromane (5al):

Following the *General Procedure*, to the mixture of 5-hexyn-1-ol (**2a**) (0.1 g, 1.01 mmol) and (E)-3-(benzo[d][1,3]dioxol-4-yl)-1-phenylprop-2-en-1-one (**4l**) (0.127 g, 0.505 mmol)in anhydrous PhF (2 mL) was added AgOTf (0.012 g, 0.05mmol)under argon atmosphere at

room temperature and reaction mixture was stirred for 6 h at rt. Purification of the crude product by column chromatography (SiO₂, 1% EtOAc/hexanes) afforded5-(benzo[d][1,3]dioxol-4-yl)-7phenylchromane (5al) (0.117 g, 70%). TLC: $R_f = 0.90$ (SiO₂, 10%) EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.65-7.56 (m, 2H), 7.47-7.40 (m, 2H), 7.35-7.32 (m, 1H), 7.10-7.03 (m, 2H), 6.90-6.86 (m, 2H), 6.85-6.81 (m,

1H), 6.02 (s, 2H), 4.24 (t, J = 5.04 Hz, 2H), 2.68 (t, J = 6.41 Hz, 2H), 2.02-1.91 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 155.3, 147.3, 146.7, 142.9, 140.6, 139.9, 134.9, 128.7, 127.2, 127.0, 122.5, 120.6, 119.3, 114.3, 109.7, 108.1, 101.1, 66.3, 24.1, 22.5; HRMS (ESI) m/z calcd for C₂₂H₁₉O₃ [M+H]⁺ 331.1329, found 331.1337.

4-(7-Phenylchroman-5-yl)phenol(5am):

Following the General Procedure, to the mixture of 5-hexyn-1-ol (2a)(0.1 g, 1.01 mmol) and (E)-3-(4-(hydroxy)phenyl)-1-phenylprop-2en-1-one (4m) (0.113 g, 0.505 mmol)in anhydrous PhF (2 mL) was added AgOTf (0.012 g, 0.05mmol)under argon atmosphere at room temperature and reaction mixture was stirred for 6 h at rt. Purification of the crude product by column chromatography (SiO₂, 2%

EtOAc/hexanes) afforded4-(7-Phenylchroman-5-yl)phenol(**5am**)(0.124 g, 81%).TLC: $R_f =$ 0.7 (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 500 MHz): δ 7.63-7.58 (m, 2H), 7.45-7.39 (m, 2H), 7.36-7.31 (m, 1H), 7.28-7.23 (m, 2H), 7.08 (dd, J = 8.4, 1.9 Hz, 2H), 6.92-6.88 (m, 2H), 5.36 (br. s, 1H), 4.25 (t, J = 5.0 Hz, 2H), 2.73-2.67 (m, 2H), 1.99-1.93 (m, 2H); ¹³C NMR (CDCl₃, 126 MHz): δ 155.1, 154.7, 142.9, 140.6, 139.9, 133.5, 130.4, 128.7, 127.2, 126.9, 120.7, 119.3, 115.0, 114.0, 66.3, 24.1, 22.5; IR (KBr, cm⁻¹): v 3019, 2953, 2881, 1611, 1563, 1515, 1424, 1347, 1321, 1257, 1215, 1173, 1048, 1009, 869, 835, 760, 699, 669; HRMS (ESI) m/z calcd for C₂₁H₁₉O₂ [M+H]⁺ 303.1380, found 303.1379.

5-(4-(Benzyloxy)phenyl)-7-phenylchromane(5an):

Following the *General Procedure*, to the mixture of 5-hexyn-1-ol (2a) (0.1 g, 1.01 mmol) and (E)-3-(4-(benzyloxy)phenyl)-1-phenylprop-2en-1-one (4n) (0.158 g, 0.505 mmol) in anhydrous PhF (2 mL) was added AgOTf (0.012 g, 0.05 mmol) under argon atmosphere at room temperature and reaction mixture was stirred for 6 h at rt. Purification of crude by chromatography 2% the product column $(SiO_2,$

EtOAc/hexanes) afforded 5-(4-(benzyloxy)phenyl)-7-phenylchromane (**5an**) (0.140 g, 70%). TLC: $R_f = 0.7$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.63-7.59 (m, 2H), 7.50-7.46 (m, 2H), 7.45-7.39 (m, 4H), 7.38-7.30 (m, 4H), 7.08-7.03 (m, 4H), 5.13 (s, 2H), 4.27-4.23 (m,2H), 2.68 (t, J = 6.4 Hz, 2H), 2.00-1.93 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 158.0, 155.2, 142.9, 140.7, 139.9, 137.0, 133.7, 130.2, 128.7, 128.6, 128.0, 127.5, 127.2, 127.0, 120.7, 119.3, 114.4, 114.1, 70.1, 66.3, 24.1, 22.5; IR (KBr, cm⁻¹): υ 3019, 2935, 1608, 1563, 1512, 1401, 1347, 1287, 1218, 1176, 1141, 1076, 1018, 929, 903, 868, 772, 697, 669; HRMS (ESI) *m*/*z* calcd for C₂₈H₂₅O₂ [M+H]⁺ 393.1849, found 393.1850.

5-(4-(Allyloxy)phenyl)-7-phenylchromane (5ao):

Following the *General Procedure*, to the mixture of 5-hexyn-1-ol (**2a**) (0.1 g, 1.01 mmol) and (*E*)-3-(4-allyloxyphenyl)-1-phenylprop-2-en-1one (**4o**) (0.133 g, 0.505 mmol) in anhydrous PhF (2 mL) was added AgOTf (0.012 g, 0.05 mmol) under argon atmosphere at room temperature and reaction mixture was stirred for 6 h at rt. Purification of the crude product by column chromatography (SiO₂, 2%

EtOAc/hexanes) afforded5-(4-(allyloxy)phenyl)-7-phenylchromane (**5ao**) (0.131 g, 76%). TLC: $R_f = 0.7$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.66-7.61 (m, 2H), 7.48-7.41 (m, 2H), 7.38-7.30 (m, 3H), 7.13-7.09 (m, 2H), 7.04-6.98 (m, 2H), 6.19-6.08 (m, 1H), 5.53-5.46 (m, 1 H), 5.38-5.33 (m, 1H), 4.64-4.60 (m, 2H), 4.27 (t, J = 5.0 Hz, 2H), 2.70 (t, J = 6.4 Hz, 2H), 2.02-1.94 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 157.7, 155.2, 142.9, 140.7, 139.9, 133.6, 133.2, 130.1, 128.6, 127.2, 126.9, 120.6, 119.2, 117.7, 114.3, 114.0, 68.8, 66.2, 24.1, 22.5; IR (KBr, cm⁻¹): υ 3019, 1609, 1563, 1512, 1466, 1424, 1347, 1321, 1286, 1215, 1177, 1076, 929, 834, 760, 669; HRMS (ESI) *m/z* calcd for C₂₄H₂₃O₂ [M+H]⁺ 343.1693, found 343.1689.

4-(7-Phenylchroman-5-yl)phenyl 4-methylbenzenesulfonate (5ap):

Following the *General Procedure*, to the mixture of 5-hexyn-1-ol (**2a**) (0.1 g, 1.01 mmol) and (*E*)-4-(3-oxo-3-phenylprop-1-en-1-yl)phenyl 4-methylbenzenesulfonate (**4p**) (0.191 g, 0.505 mmol) in anhydrous PhF (2 mL) was add AgOTf(0.012 g, 0.05 mmol) under argon atmosphere at room temperature and reaction mixture was stirred for 6h at rt. Purification of the crude product by column chromatography (SiO₂, 2%

EtOAc/hexanes) afforded 4-(7-phenylchroman-5-yl)phenyl 4-methylbenzenesulfonate (5ap)

(0.195 g, 85%). TLC: $R_f = 0.60$ (SiO₂, 20% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.81-7.76 (m, 2H), 7.60-7.56 (m, 2H), 7.45-7.39 (m, 2H), 7.37-7.33 (m, 3H), 7.32-7.28 (m, 2H), 7.09 (d, J = 2.3 Hz, 1H), 7.07-7.03 (m, 2H), 7.01 (d, J = 1.8 Hz, 1H), 4.24 (t, J = 5.0 Hz, 2H), 2.60 (t, J = 6.4 Hz, 2H), 2.47 (s, 3H), 1.99-1.92 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 155.3, 148.7, 145.4, 141.9, 140.4, 140.1, 140.0, 132.5, 130.3, 129.8, 128.7, 128.5, 127.4, 126.9, 122.1, 120.4, 119.0, 114.7, 66.3, 24.0, 22.4, 21.7; HRMS (ESI) *m*/*z* calcd for C₂₈H₂₅O₄S [M+H]⁺ 457.1468, found 457.1467.

4-(7-Phenylchroman-5-yl)phenylmethanesulfonate (5aq):

Following the *General Procedure*, to the mixture of 5-hexyn-1-ol (**2a**) (0.1 g, 1.01 mmol) and (*E*)-4-(3-oxo-3-phenylprop-1-en-1-yl)phenyl methanesulfonate (**4q**) (0.152 g, 0.505 mmol) in anhydrous PhF (2 mL) was added AgOTf(0.012 g, 0.05 mmol)under argon atmosphere at room temperature and reaction mixture was stirred for 6h at rt. Purification of the crude product by column chromatography (SiO₂, 2%

EtOAc/hexanes) afforded 4-(7-phenylchroman-5-yl)phenyl methanesulfonate (**5aq**) (0.167 g, 87%). TLC: $R_f = 0.60$ (SiO₂, 20% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.62-7.59 (m, 2H), 7.46-7.41 (m, 4H), 7.38-7.34 (m, 3H), 7.12 (d, J = 2.3 Hz, 1H), 7.05 (d, J = 1.5 Hz, 1H), 4.28-4.24 (m, 2H), 3.21 (s, 3H), 2.68-2.63 (m, 2H), 2.08-1.94 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 155.3, 148.2, 141.7, 140.4, 140.3, 140.1, 130.7, 128.7, 127.4, 126.9, 121.7, 120.4, 119.0, 114.7, 66.3, 37.4, 24.0, 22.3; IR (KBr, cm⁻¹): υ 3019, 2939, 2877, 1723, 1601, 1583, 1565, 1467, 1412, 1372, 1351, 1321, 1287, 1215, 1149, 1101, 1048, 1011, 969, 929, 903, 871, 849, 758, 669; HRMS (ESI): calcd for C₂₂H₂₁O4S [M+H]⁺ 381.1155, found 381.1149.

4-(7-Phenylchroman-5-yl)phenyl acetate (5ar):

Following the *General Procedure*, to the mixture of 5-hexyn-1-ol (**2a**) (0.1 g, 1.01 mmol) and (*E*)-4-(3-oxo-3-phenylprop-1-en-1-yl)phenyl acetate (**4r**) (0.134 g, 0.505 mmol) in anhydrous PhF (2 mL) was add AgOTf (0.012 g, 0.05mmol) under argon atmosphere at room temperature and reaction mixture was stirred for 6 h at rt. Purification of the crude product by column chromatography (SiO₂, 2%

EtOAc/hexanes) afforded4-(7-phenylchroman-5-yl)phenyl acetate (**5ar**) (0.145 g, 83%). TLC: $R_f = 0.70$ (SiO₂, 20% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.65-7.57 (m, 2H), 7.46-7.38 (m, 4H), 7.37-7.31 (m, 1H), 7.18-7.14 (m, 2H), 7.10 (d, J= 1.88 Hz, 1H), 7.08 (d, J= 1.88 Hz, 1H), 4.28-4.23 (m, 2H), 2.68 (t, J=6.38 Hz, 2H), 2.35 (s, 3H), 2.01-1.94 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 169.6, 155.3, 149.8, 142.4, 140.5, 140.0, 138.6, 130.1, 128.7, 127.3, 126.9, 121.2, 120.6, 119.2, 114.5, 66.3, 24.0, 22.3, 21.2; HRMS (ESI) m/z calcd for C₂₃H₂₁O₃ [M+H]⁺ 345.1485, found 345.1476.

5-(4-(Methylthio)phenyl)-7-phenylchromane(5as):

Following the *General Procedure*, to the mixture of 5-hexyn-1-ol (**2a**)(0.1 g, 1.01 mmol) and (*E*)-3-(4-(methylthio)phenyl)-1-phenylprop-2-en-1-one (**4s**) (0.128 g, 0.505 mmol)in anhydrous PhF (2 mL) was added AgOTf (0.012 g, 0.05mmol)under argon atmosphere at room temperature and reaction mixture was stirred for 6 h at rt. Purification of the crude product by column chromatography (SiO₂, 1%

EtOAc/hexanes) afforded 5-(4-(methylthio)phenyl)-7-phenylchromane (**5as**) (0.100 g, 60%). TLC: $R_f = 0.90$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.62-7.59 (m, 2H), 7.46-7.39 (m, 2H), 7.37-7.30 (m, 5H), 7.08 (d, J = 1.83 Hz, 1H), 7.06 (d, J = 1.83 Hz, 1H), 4.27-4.23 (m, 2H), 2.68 (t, J = 6.41 Hz, 2H), 2.54 (s, 3H), 2.03-1.89 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 155.3, 142.7, 140.6, 140.1, 137.9, 137.3, 129.6, 128.7, 127.3, 126.9, 126.2, 120.5, 119.2, 114.4, 66.3, 24.1, 22.5, 15.8; HRMS (ESI) *m*/*z* calcd for C₂₂H₂₁OS [M+H]⁺ 333.1308 found 333.1306.

5-(4-Chlorophenyl)-7-phenylchromane (5at):

Following the *General Procedure*, to the mixture of 5-hexyn-1-ol (2a)(0.1 g, 1.01 mmol) and (E)-3-(4-chlorophenyl)-1-phenylprop-2-en-1one (4t) (0.122 g, 0.505 mmol)in anhydrous PhF (2 mL) was added AgOTf (0.012 g, 0.05mmol)under argon atmosphere at room temperature and reaction mixture was stirred for 6 h at rt. Purification of the crude product by column chromatography (SiO₂, 1%

EtOAc/hexanes) afforded5-(4-chlorophenyl)-7-phenylchromane (**5at**) (0.094 g, 58%). TLC: $R_f = 0.90$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.61-7.58 (m, 2H), 7.45-7.39 (m, 4H), 7.36-7.30 (m, 3H), 7.10 (d, J = 1.9 Hz, 1H), 7.03 (d, J = 2.0 Hz, 1H), 4.25 (t, J = 5.13 Hz, 2H), 2.67-2.62 (m, 2H), 2.01-1.93 (m, 2H); ¹³C NMR (CDCl₃, 126 MHz): δ 155.3, 142.1, 140.5, 140.1, 139.5, 133.1, 130.4, 128.7, 128.3, 127.3, 126.9, 120.4, 119.0, 114.6, 66.3, 24.0, 22.4; HRMS (ESI) m/z calcd for C₂₁H₁₈OCl [M+H]⁺ 321.1041, found 321.1039.

7-Phenyl-5-(4-(trifluoromethyl)phenyl)chromane(5au):

Following the *General Procedure*, to the mixture of 5-hexyn-1-ol (**2a**)(0.1 g, 1.01 mmol) and (*E*)-1-phenyl-3-(4-(trifluoromethyl)phenyl)prop-2-en-1-one (**4u**) (0.139 g, 0.505 mmol)in anhydrous PhF (2 mL) was addedAgOTf(0.012 g, 0.05mmol)under argon atmosphere at room temperature and reaction mixture was stirred for 6 h at rt. Purification of the crude product by column

chromatography (SiO₂, 1% EtOAc/hexanes) afforded 7-phenyl-5-(4-(trifluoromethyl)phenyl)chromane (**5au**) (0.178 g, 69%). TLC: $R_f = 0.90$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.70 (d, J = 8.1 Hz, 2H), 7.63-7.58 (m, 2H), 7.51 (d, J = 8.0 Hz, 2H), 7.47-7.40 (m, 2H), 7.38-7.32 (m, 1H), 7.13 (d, J = 1.75 Hz, 1H), 7.05 (d, J = 1.9 Hz, 1H), 4.30-4.24 (m, 2H), 2.64 (t, J = 6.5 Hz, 2H), 2.02-1.94 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 155.4, 144.8, 141.9, 140.4, 140.3, 129.5, 128.8, 127.4, 126.9, 125.2, 125.1 (2C), 125.0 120.3, 118.9, 115.0, 66.3, 23.9, 22.3; HRMS (ESI) *m*/*z* calcd for C₂₂H₁₈OF₃ [M+H]⁺ 355.1304, found 355.1304.

7-Phenyl-5-(ferrocenyl)chromane (5av):

Following the *General Procedure*, to the mixture of 5-hexyn-1-ol (2a)(0.1 g, 1.01 mmol) and (E)-3-(ferrocene)-1-phenylprop-2-en-1-one (4v) (0.156 g, 0.505 mmol)in anhydrous PhF (2 mL) was added AgOTf (0.012 g, 0.05mmol)under argon atmosphere at room temperature and reaction mixture was stirred for 6 h at rt. Purification of the crude product by column chromatography (SiO₂, 1%

EtOAc/hexanes) afforded7-phenyl-5-(ferrocenyl)chromane (**5av**) (0.134 g, 67%). TLC: $R_f = 0.90$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.66-7.63 (m, 2H), 7.61 (d, J = 2.3 Hz, 1H), 7.50-7.45 (m, 2H), 7.40-7.34 (m, 1H), 6.97 (d, J = 1.5 Hz, 1H), 4.49-4.48 (m, 2H), 4.32-4.30 (m, 2H), 4.24-4.21 (m, 2H), 4.19 (s, 5H), 2.83-2.78 (m, 2H), 2.00-1.94 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 155.0, 141.0, 139.5, 139.1, 128.8, 127.2, 126.9, 121.7, 119.9, 113.5, 87.1, 70.2, 69.6, 67.8, 66.1, 24.4, 22.6; HRMS (ESI) *m/z* calcd for C₂₅H₂₃OFe [M+H]⁺ 395.1093, found 395.1066.

5-(Anthracen-9-yl)-7-(*p*-tolyl)chromane(5aw):

Following the *General Procedure*, to the mixture of 5-hexyn-1-ol (**2a**) (0.1 g, 1.01 mmol) and (*E*)-3-(anthracen-9-yl)-1-(*p*-tolyl)prop-2-en-1-one (**4w**) (0.162 g, 0.505 mmol) in anhydrous PhF (2 mL) was added AgOTf (0.012 g, 0.05 mmol)under argon atmosphere at room temperature and reaction mixture was stirred for 6h at rt. Purification of the crude product by column chromatography (SiO₂,

1% EtOAc/hexanes) afforded 5-(anthracen-9-yl)-7-(*p*-tolyl)chromane (**5aw**) (0.142 g, 71%). TLC: $R_f = 0.90$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 8.52 (s, 1H), 8.08 (d, J = 8.39 Hz, 2H), 7.69 (d, J = 8.39 Hz, 2H), 7.55 (d, J = 8.39 Hz, 2H), 7.51-7.46 (m, 2H), 7.42-7.34 (m, 2H), 7.28-7.27 (m, 1H), 7.21 (d, J = 8.39 Hz, 2H), 7.15 (d, J = 1.53 Hz, 1H),4.24 (t, J = 5.34 Hz, 2H), 2.37 (s, 3H), 2.16-2.11 (m, 2H), 1.88-1.80 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 155.5, 139.8, 139.4, 137.6, 137.0, 135.5, 131.4, 129.9, 129.4, 128.5, 126.7, 126.5, 125.6, 125.2, 121.8, 121.3, 114.3, 66.4, 22.5, 22.3, 21.1; HRMS (ESI) m/zcalcd for C₃₀H₂₅O [M+H]⁺ 401.1900 found 401.1899.

7-(4-Methoxyphenyl)-5-phenylchromane (5ax):

Following the *General Procedure*, to the mixture of 5-hexyn-1-ol (**2a**) (0.1 g, 1.01 mmol) and (*E*)-1-(4-methoxyphenyl)-3-phenylprop-2-en-1-one (**4x**) (0.120 g, 0.505 mmol) in anhydrous PhF (2 mL) was added AgOTf (0.012 g, 0.05 mmol)under argon atmosphere at room temperature and reaction mixture was stirred for 6h at rt. Purification of the crude product by column chromatography (SiO₂,

1% EtOAc/hexanes) afforded 7-(4-methoxyphenyl)-5-phenylchromane (**5ax**) (0.126 g, 79%). TLC: $R_f = 0.80$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.60-7.51 (m, 2H), 7.48-7.33 (m, 5H), 7.06-7.04 (m, 2H), 6.99-6.91 (m, 2H), 4.25 (t, J = 5.34 Hz, 2H), 3.85 (s, 3H) 2.69-2.64 (m, 2H), 2.01-1.92 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 159.1, 155.2, 143.3, 141.2, 139.6, 133.2, 129.1, 128.1, 127.9, 127.0, 120.2, 118.5, 114.1, 113.8, 66.3, 55.3, 24.0, 22.5; HRMS (ESI) *m*/*z* calcd for C₂₂H₂₁O₂ [M+H]⁺317.1536, found 317.1531.

5-(4-Bromophenyl)-7-(4-methoxyphenyl)chromane (5ay):

Following the *General Procedure*, to the mixture of 5-hexyn-1-ol (2a)(0.1 g, 1.01 mmol) and (*E*)-3-(4-bromophenyl)-1-(4-methoxyphenyl)prop-2-en-1-one (4y) (0.160 g, 0.505 mmol)in anhydrous PhF (2 mL) was added AgOTf (0.012 g, 0.05mmol) under argon atmosphere at

room temperature and reaction mixture was stirred for 6 h at rt. Purification of the crude product by column chromatography (SiO₂, 1% EtOAc/hexanes) afforded 5-(4-bromophenyl)-7-(4methoxyphenyl)chromane (**5ay**) (0.135 g, 67%). TLC: $R_f = 0.80$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.76-7.73 (m, 1H), 7.54-7.50 (m, 1H), 7.47-7.43 (m, 1H), 7.32-7.25 (m,

3H), 7.03-7.00 (m, 2H), 6.99-6.95 (m, 2H), 4.25 (t, J = 5.13 Hz, 2H), 3.87 (s, 3H), 2.68 (t, J = 6.50 Hz, 2H), 2.00-1,92 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 158.8, 155.4, 143.2, 142.9, 138.3, 133.2, 130.2 (2C), 130.1, 130.0, 125.5, 122.8, 120.5, 120.0 114.0, 113.6, 66.3, 55.3, 24.1, 22.4; HRMS (ESI) *m*/*z* calcd for C₂₂H₂₀O₂Br [M+H]⁺ 395.0641, found 395.0645.

7-(4-Nitrophenyl)-5-(*p*-tolyl)chromane (5az):

Following the *General Procedure*, to the mixture of 5-hexyn-1-ol (2a)(0.1 g, 1.01 mmol) and (E)-1-(4-nitrophenyl)-3-(p-tolyl)prop-2en-1-one (4z) (0.134 g, 0.505 mmol)in anhydrous PhF (2 mL) was added AgOTf (0.012 g, 0.05mmol)under argon atmosphere at room temperature and reaction mixture was stirred for 6 h at rt. Purification of the crude product by column chromatography (SiO₂,

2% EtOAc/hexanes) afforded 7-(4-nitrophenyl)-5-(*p*-tolyl)chromane (**5az**) (0.120 g, 69%). TLC: $R_f = 0.70$ (SiO₂, 20% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.52-7.47 (m, 2H), 7.36-7.30 (m, 2H), 7.23 (d, J = 7.9 Hz, 2H), 7.15-7.08 (m, 2H), 7.05 (dd, J = 19.4, 1.9 2H), 4.24 (t, J = 5.1 Hz, 2H), 2.63 (t, J = 6.4 Hz, 2H), 2.39 (s, 3H), 2.00-1.92 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 163.3, 160.8, (unidentified aromatic impurity) 155.3, 142.2, 140.0, 137.6, 137.1, 137.0, 130.7, 130.6, 129.4, 126.8, 120.4, 118.9, 115.1, 114.9, 114.2, 66.3, 29.7 (grease), 24.0, 22.5, 21.1.

5-(4-Methoxyphenyl)-7-(naphthalen-1-yl)chromane(5aa'):

Following the *General Procedure*, to the mixture of 5-hexyn-1-ol (**2a**) (0.1 g, 1.01 mmol) and (*E*)-3-(4-methoxyphenyl)-1-(naphthalen-1-yl)prop-2-en-1-one (**4a**') (0.145 g, 0.505 mmol) in anhydrous PhF (2 mL) was added AgOTf (0.012 g, 0.05mmol)under argon atmosphere at room temperature and reaction mixture was stirred for 6h at rt. Purification of the crude product by column chromatography (SiO₂,

1% EtOAc/hexanes) afforded5-(4-methoxyphenyl)-7-(naphthalen-1-yl)chromane (5aa')

(0.155 g, 84%). TLC: R_f = 0.80 (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 8.11-8.09 (m, 1H), 7.93-7.88 (m, 1H), 7.85 (d, J = 7.79 Hz, 1H), 7.54-7.43 (m, 4H), 7.37-7.32 (m, 2H), 7.02-6.93 (m, 4H), 4.31-4.27 (m, 2H), 3.86 (s, 3H), 2.76 (t, J = 6.41 Hz, 2H), 2.08-1.96 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 158.7, 154.8, 142.4, 139.8, 139.4, 133.8, 133.3, 131.5, 130.3, 128.2, 127.5, 126.8, 126.2, 125.9, 125.7, 125.4, 123.7, 119.1, 117.1, 113.5, 66.3, 55.3, 24.3, 22.6; HRMS (ESI) *m*/*z* calcd for C₂₆H₂₃O₂ [M+H]⁺367.1693, found 367.1696.

5-(4-Methoxyphenyl)-7-phenylspiro[chromane-3,1'-cyclohexane] (5bj):

Following the *General Procedure*, to the mixture of (1-(but-3-yn-1-yl)cyclohexyl)methanol (**2b**) (0.1 g, 0.60 mmol) and (*E*)3-(4-methoxyphenyl)-1-phenylprop-2-en-1-one (**4j**) (0.071 g, 0.30 mmol)in anhydrous PhF (2 mL) was added AgOTf (0.007 g, 0.03mmol)under argon atmosphere at room temperature and reaction mixture was stirred for 6 h at rt. Purification of the crude

product by column chromatography (SiO₂, 1% EtOAc/hexanes) afforded 5-(4methoxyphenyl)-7-phenylspiro[chromane-3,1'-cyclohexane] (**5bj**) (0.088 g, 77%). TLC: R_f = 0.90 (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.63-7.62 (m, 1H), 7.61-7.59 (m, 1H), 7.46-7.39 (m, 2H), 7.36-7.29 (m, 3H), 7.10-7.06 (m, 2H), 7.01-6.99 (m, 1H), 6.99-6.98 (m, 1H), 3.94 (s, 2H), 3.89 (s, 3H), 2.50 (s, 2H), 1.49-1.34 (m, 10H); ¹³C NMR (CDCl₃, 101 MHz): δ 158.6, 154.4, 143.2, 140.7, 133.5, 130.2, 128.7, 127.2, 126.9, 121.0, 118.2, 113.5 (2C), 73.3, 55.3, 33.2, 31.2, 26.4, 21.5; IR (KBr, cm⁻¹): ν 3019, 2932, 2855, 1609, 1563, 1514, 1466, 1341, 1215, 1150, 929, 869, 767, 669; HRMS (ESI) *m/z* calcd for C₂₇H₂₉O₂ [M+H]⁺ 385.2162, found 385.2168.

5-(4-Ethylphenyl)-7-phenylspiro[chromane-3,1'-cyclohexane] (5bb'):

Following the *General Procedure*, to the mixture of (1-(but-3-yn-1-yl)cyclohexyl)methanol (**2b**)(0.1 g, 0.60 mmol) and (*E*)-3-(4-ethylphenyl)-1-phenylprop-2-en-1-one (**4b'**) (0.070 g, 0.30 mmol)in anhydrous PhF (2 mL) was added AgOTf (0.007 g, 0.030 mmol) under argon atmosphere at room temperature and reaction mixture was stirred for 6 h at rt. Purification of the crude product

by column chromatography (SiO₂, 1% EtOAc/hexanes) afforded 5-(4-ethylphenyl)-7-phenylspiro[chromane-3,1'-cyclohexane] (**5bb'**) (0.075 g, 66%). TLC: $R_f = 0.90$ (SiO₂, 10%)

EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.61-7.57 (m, 2H), 7.42-7.36 (m, 2H), 7.33-7.25 (m, 5H), 7.08-7.05 (m, 2H), 3.93 (s, 2H), 2.72 (q, *J* = 7.63 Hz, 15.26 Hz, 2H), 2.48 (s, 2H), 1.51-1.34 (m, 9H), 1.33-1.28 (m, 4H); ¹³C NMR (CDCl₃, 101 MHz): δ 154.4, 143.6, 142.9, 140.7, 139.6, 138.4, 129.0, 128.6, 127.6, 127.1, 126.9, 121.0, 118.1, 113.6, 73.5, 35.9, 33.2, 31.2, 28.6, 26.4, 21.5, 15.4; HRMS (ESI) *m*/*z* calcd for C₂₈H₃₁O [M+H]⁺ 383.2369, found 383.2374.

5-(4-Methoxyphenyl)-3,3-dimethyl-7-(naphthalen-1-yl)chromane (5ca'):

Following the *General Procedure*, to the mixture of 2,2dimethylhex-5-yn-1-ol (2c) (0.1 g, 0.79 mmol) and (E)-3-(4methoxyphenyl)-1-(naphthalen-1-yl)prop-2-en-1-one (4a') (0.112 g, 0.39 mmol) in anhydrous PhF (2 mL) was added AgOTf (0.010 g, 0.039mmol) under argon atmosphere at room temperature and reaction mixture was stirred for 6 h at rt.

Purification of the crude product by column chromatography (SiO₂, 1% EtOAc/hexanes) afforded 5-(4-methoxyphenyl)-3,3-dimethyl-7-(naphthalen-1-yl)chromane (**5ca'**) (0.110 g, 72%). TLC: $R_f = 0.90$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 8.13 (d, J = 8.39 Hz, 1H), 7.93-7.84 (m, 2H), 7.54-7.46 (m, 4H), 7.37-7.33 (m, 2H), 7.06-6.94 (m, 4H), 3.87 (s, 5H), 2.55 (s, 2H), 1.06 (s, 6H); ¹³C NMR (CDCl₃, 126 MHz): δ 158.7, 153.6, 142.6, 139.8, 139.3, 133.8, 133.4, 131.5, 130.3, 129.0, 128.2, 127.5, 126.9, 126.2, 125.9, 125.7, 125.4, 124.1, 118.3, 116.8, 113.9, 113.5, 75.4, 55.3, 38.2, 28.8, 24.9.

7-Phenylchromane(5ac'):

Following the *General Procedure*, to the mixture of 5-hexyn-1-ol (**2a**)(0.1 g, 1.01 mmol) and1-phenylprop-2-en-1-one (**4c'**) (0.066 g, 0.505 mmol)in anhydrous PhF (2 mL) was added AgOTf (0.012 g, 0.05mmol) under argon atmosphere at room temperature and reaction

mixture was stirred for 6h at rt. Purification of the crude product by column chromatography (SiO₂, 1% EtOAc/hexanes) afforded7 -phenylchromane (**5ac'**)(0.057 g, 54%). TLC: $R_f = 0.90$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.63-7.57 (m, 2H), 7.48-7.41 (m, 2H), 7.38-7.32 (m, 1H), 7.16-7.10 (m, 2H), 7.09-7.06 (m, 1H), 4.25 (t, *J* = 5.13 Hz, 2H), 2.85 (t, *J* = 6.5 Hz, 2H), 2.11-2.02 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 155.1, 140.9, 140.5, 130.1, 128.7, 127.1, 126.9, 121.3, 119.0, 115.2, 66.5, 24.6, 22.4; HRMS (ESI) *m/z* calcd for C₁₅H₁₅O [M+H]⁺ 211.1117, found 211.1110.

7-(4-Nitrophenyl)chromane (5ad'):

Following the *General Procedure*, to the mixture of 5-hexyn-1-ol (**2a**)(0.1 g, 1.01 mmol) and 1-(4-nitrophenyl)prop-2-en-1-one (**4d'**) (0.089 g, 0.505 mmol)in anhydrous PhF (2 mL) was added AgOTf (0.012 g, 0.05mmol) under argon atmosphere at room temperature and reaction mixture was stirred for 6 h at rt. Purification of the

crude product by column chromatography (SiO₂, 1% EtOAc/hexanes) afforded 7-(4nitrophenyl)chromane (**5ad'**) (0.078 g, 60%). TLC: $R_f = 0.90$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 8.33-8.22 (m, 2H), 7.75-7.65 (m, 2H), 7.18-7.05 (m, 3H), 4.31-4.21 (m, 2H), 2.85 (t, J = 6.50 Hz, 2H), 2.13-1.99 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 155.4, 147.3, 146.9, 137.8, 130.6, 127.5, 124.0, 123.3, 119.0. 115.5, 66.6, 24.7, 22.2.

7-(4-Methoxyphenyl)chromane(5ae'):

Following the *General Procedure*, to the mixture of 5-hexyn-1-ol (2a)(0.1 g, 1.01 mmol) and 1-(4-methoxyphenyl)prop-2-en-1-one $(4e^2)$ (0.081 g, 0.505 mmol)in anhydrous PhF (2 mL) was added AgOTf (0.012 g, 0.05 mmol) under argon atmosphere at room temperature and reaction mixture was stirred for 6h at rt. Purification

of the crude product by column chromatography (SiO₂, 1% EtOAc/hexanes) afforded 7-(4methoxyphenyl)chromane (**5ae'**) (0.071 g, 59%). TLC: $R_f = 0.90$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.58-7.42 (m, 2H), 7.11-7.03 (m, 2H), 7.02-6.94 (m, 3H), 4.23 (t, J = 5.13 Hz, 2H), 3.85 (s, 3H), 2.86-2.80 (m, 2H), 2.13-2.00 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 159.0, 155.1, 140.1, 133.5, 130.1, 127.9, 120.7, 118.6, 114.7, 114.1, 66.5, 55.3, 24.6, 22.4.

5-(2,6-Dimethoxyphenyl)-2-methyl-7-phenylchromane (5dk):

Following the *General Procedure*, to the mixture of hept-6-yn-2-ol (**2d**) (0.1 g, 0.8 mmol) and (*E*)-3-(2,6-dimethoxyphenyl)-1-phenylprop-2-en-1-one (**4k**) (0.119 g, 0.4 mmol) in anhydrous PhF (2 mL) was added AgOTf (0.011 g, 0.04mmol)under argon atmosphere at room temperature and reaction mixture was stirred

for 6 h at rt. Purification of the crude product by column chromatography (SiO₂, 1% EtOAc/hexanes) afforded 5-(2,6-dimethoxyphenyl)-2-methyl-7-phenylchromane (**5dk**) (0.138 g, 86%). TLC: $R_f = 0.70$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ

7.65 (d, J=7.63 Hz, 2H), 7.41 (t, J = 7.63 Hz, 2H), 7.37-7.28 (m, 2H), 7.12 (d, J = 1.53 Hz, 1H), 7.03 (d, J = 1.53 Hz, 1H), 6.69 (d, J = 8.39 Hz, 2H), 4.25-4.21 (m, 1H), 3.77 (s, 3H), 3.75 (s, 3H), 2.59-2.53 (m, 1H), 2.46-2.38 (m, 1H), 1.99-1.81 (m, 1H), 1.81-1.67 (m, 1H), 1.45 (d, J = 6.10 Hz, 3H); ¹³C NMR (CDCl₃, 101 MHz): δ 157.9, 157.6, 155.1, 141.1, 139.2, 135.3, 128.8, 128.5, 127.0, 126.8, 121.5, 120.9, 118.1, 114.2, 104.0, 103.9, 71.9,55.9, 55.8, 29.3, 22.6, 21.6; HRMS (ESI) *m*/*z* calcd for C₂₄H₂₅O₃ [M+H]⁺ 361.1798 found, 361.1800.

2-Methyl-5,7-diphenylchromane (5df):

Following the *General Procedure*, to the mixture of hept-6-yn-2-ol (**2d**) (0.1 g, 0.8 mmol) and (*E*)-chalcone (**4f**) (0.092 g, 0.4 mmol) in anhydrous PhF (2 mL) was added AgOTf (0.011 g, 0.04 mmol) under argon atmosphere at room temperature and reaction mixture was stirred for 6 h at rt. Purification of the crude product by column chromatography (SiO₂, 1% EtOAc/hexanes) afforded2-methyl-5,7-

diphenylchromane (**5df**) (0.093 g, 70%). TLC: $R_f = 0.90$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.64-7.59 (m, 2H), 7.47-7.30 (m, 8H), 7.13-7.07 (m, 2H), 4.28-4.19 (m, 1H), 2.84-2.73 (m, 1H), 2.63-2.54 (m, 1H), 2.02-1.94 (m, 1H), 1.72-1.60 (m, 1H), 1.43 (d, J = 6.25 Hz, 3H); ¹³C NMR (CDCl₃, 101 MHz): δ 155.5, 143.1, 141.3, 140.7, 139.9, 129.1, 128.7, 128.1, 127.2, 127.0, 126.9, 120.4, 118.8, 114.3, 72.1, 29.4, 24.0, 21.4; HRMS (ESI) m/z calcd for C₂₂H₂₁O [M+H]⁺ 301.1587, found 301.1587.

4-(2-Methyl-7-phenylchroman-5-yl)phenylmethanesulfonate(5dq):

Following the *General Procedure*, to the mixture of hept-6-yn-2-ol (**2d**) (0.1 g, 0.8 mmol) and(*E*)-4-(3-oxo-3-phenylprop-1-en-1-yl)phenyl methanesulfonate (**4q**) (0.134 g, 0.4 mmol) in anhydrous PhF (2 mL) was added AgOTf (0.011 g, 0.04mmol)under argon atmosphere at room temperature and reaction mixture was stirred for 6h at rt. Purification of the crude

product by column chromatography (SiO₂, 2% EtOAc/hexanes) afforded 4-(2-methyl-7phenylchroman-5-yl)phenyl methanesulfonate (**5dq**) (0.116 g, 67%). TLC: $R_f = 0.70$ (SiO₂, 20% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.63-7.58 (m, 2H), 7.46-7.39 (m, 4H), 7.37-7.31 (m, 3H), 7.14-7.11 (m, 1H), 7.05-7.03 (m, 1H), 4.34-4.12 (m, 1H), 3.21 (s, 3H), 2.80-2.71 (m, 1H), 2.65-2.52 (m, 1H), 2.06-1.95 (m, 1H), 1.73-1.60 (m, 1H), 1.45 (d, *J* = 6.25 Hz, 3H); ¹³C NMR (CDCl₃, 101 MHz): δ 155.6, 148.2, 141.6, 140.6, 140.4, 140.1, 130.7, 128.7, 127.4, 126.9, 121.7, 120.4, 118.7, 115.3, 114.8, 72.1, 37.5, 26.9, 24.0, 21.4; HRMS (ESI) m/z calcd for C₂₃H₂₃O₄S [M+H]⁺ 395.1312, found 395.1305.

(*3aS*,9*aR*)-8-(2,6-Dimethoxyphenyl)-6-phenyl-3,3a,9,9a-tetrahydro-2*H*-furo[3,2b]chromen-2-one (5ek):

Following the *General Procedure*, to the mixture of (4S,5R)-5-(but-3-yn-1-yl)-4-hydroxydihydrofuran-2(3*H*)-one (**2e**)(0.1 g, 0.64 mmol) and (*E*)-3-(2,6-dimethoxyphenyl)-1-phenylprop-2en-1-one (**4k**) (0.085 g, 0.32 mmol)in anhydrous PhF (2 mL) was added AgOTf (0.008 g, 0.032 mmol) under argon

atmosphere at room temperature and reaction mixture was stirred for 6 h at rt. Purification of the crude product by column chromatography (SiO₂, 1% EtOAc/hexanes) afforded (*3aS*,*9aR*)-8-(2,6-dimethoxyphenyl)-6-phenyl-3,3a,9,9a-tetrahydro-2*H*-furo[3,2-*b*]chromen-2-one (**5ek**)(0.058 g, 45%).TLC: $R_f = 0.70$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.52-7.58 (m, 2H), 7.44-7.38 (m, 2H), 7.37-7.29 (m, 2H), 7.17-7.15 (m, 2H), 6.68 (dd, J = 8.4, 1.63 Hz, 2H), 4.92-4.87 (m, 1H), 4.83-4.80 (m, 1H), 3.76 (s, 3H), 3.74 (s, 3H), 2.98-2.81 (m, 4H); ¹³C NMR (CDCl₃, 101 MHz): δ 174.8, 157.9, 157.6, 153.6, 140.6, 140.1, 135.2, 129.3, 128.6, 127.2, 127.1, 124.3, 119.4, 116.5, 114.8, 104.2, 103.8, 78.3, 73.1, 55.9, 55.8 37.4, 25.7; HRMS (ESI) m/z calcd for C₂₅H₂₃O₅ [M+H]⁺ 403.1540, found 403.1536.

2,2-Dimethyl-5,7-diphenylchromane (5ff):

Following the *General Procedure*, to the mixture of 2-methylhept-6-yn-2-ol (**2f**) (0.1 g, 0.79 mmol) and (*E*)-chalcone (**4f**) (0.081 g, 0.39 mmol)in anhydrous PhF (2 mL) was added AgOTf (0.010 g, 0.039mmol)under argon atmosphere at room temperature and reaction mixture was stirred for 6 h at rt. Purification of the crude

product by column chromatography (SiO₂, 1% EtOAc/hexanes) afforded 2,2-dimethyl-5,7diphenylchromane (**5ff**) (0.082 g, 67%). TLC: $R_f = 0.90$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.72-7.66 (m, 2H), 7.51-7.43 (m, 6H), 7.41-7.34 (m, 2H), 7.20-7.14 (m, 2H), 2.75-2.69 (m, 2H), 1.84-1.79 (m, 2H), 1.47 (s, 6H); ¹³C NMR (CDCl₃, 101 MHz): δ 154.4, 143.0, 141.3, 140.7, 140.0, 129.1, 128.6, 128.1, 127.1, 127.0, 126.9, 120.1, 117.9, 114.8, 73.9, 32.9, 26.9, 21.5; IR (KBr, cm⁻¹): υ 3019, 2978, 1600, 1563, 1526, 1468, 1440, 1402, 1332, 1217, 1164, 1029, 967, 929, 772, 702, 669; HRMS (ESI) m/z calcd for C₂₃H₂₃O [M+H]⁺ 315.1743, found 315.1740.

5-(2,6-Dimethoxyphenyl)-2,2-dimethyl-7-phenylchromane (5fk):

Following the *General Procedure*, to the mixture of 2-methylhept-6-yn-2-ol (**2f**) (0.1 g, 0.79 mmol) and (*E*)-3-(2,6-dimethoxyphenyl)-1-phenylprop-2-en-1-one (**4k**) (0.105 g, 0.39 mmol) in anhydrous PhF (2 mL) was added AgOTf (0.010 g, 0.039mmol)under argon

atmosphere at room temperature and reaction mixture was stirred for 6h at rt. Purification of the crude product by column chromatography (SiO₂, 1% EtOAc/hexanes) afforded 5-(2,6-dimethoxyphenyl)-2,2-dimethyl-7-phenylchromane (**5fk**) as a white crystal (0.130 g, 89%).TLC: $R_f = 0.60$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.65 (d, J = 7.33 Hz, 2H), 7.43-7.38 (m, 2H), 7.37-7.28 (m, 2H), 7.11 (d, J = 1.37 Hz, 1H), 7.03 (d, J = 1.37 Hz, 1H), 6.73-6.65 (m, 2H), 3.76 (s, 6H), 2.49-2.44 (m, 2H), 1.79 (t, J = 6.87 Hz, 2H), 1.40 (s, 6H); ¹³C NMR (CDCl₃, 101 MHz): δ 157.8, 154.1, 141.1, 139.2, 135.2, 128.8, 128.4, 127.0, 126.7, 121.1, 120.2, 118.2, 114.6, 104.0, 73.9, 55.8, 32.8, 26.8, 20.3; HRMS (ESI) *m/z* calcd for C₂₅H₂₇O₃ [M+H]⁺ 375.1955, found 375.1956.

2,2-Dimethyl-7-phenyl-5-(4-(trifluoromethyl)phenyl)chromane (5fu):

Following the *General Procedure*, to the mixture of 2-methylhept-6-yn-2-ol (**2f**)(0.1 g, 0.79 mmol) and (*E*)-1-phenyl-3-(4-(trifluoromethyl)phenyl)prop-2-en-1-one (**4u**) (0.109 g, 0.39 mmol) in anhydrous PhF (2 mL) was added Ag OTf (0.010 g, 0.039 mmol) under argon atmosphere at room temperature and reaction mixture was stirred for 6h at rt. Purification of the crude product by column

chromatography (SiO₂, 1% EtOAc/hexanes) afforded 2,2-dimethyl-7-phenyl-5-(4-(trifluoromethyl)phenyl)chromane (**5fu**) (0.097 g, 64%). TLC: $R_f = 0.90$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.70 (d, J = 8.00 Hz, 2H), 7.63-7.58 (m, 2H), 7.51 (d, J = 8.00 Hz, 2H), 7.44-7.40 (m, 2H), 7.36-7.32 (m, 1H), 7.13 (d, J = 1.88 Hz, 1H), 7.04 (d, J = 2.00 Hz, 1H), 2.65-2.59 (m, 2H), 1.80-1.75 (m, 2H), 1.41 (s, 6H); ¹³C NMR (CDCl₃, 101 MHz): δ 154.6, 145.1, 145.0, 141.6, 140.4, 140.3, 129.5, 128.7, 127.4, 126.9, 125.1 (2C), 119.9, 117.7, 115.5, 74.1, 32.8, 26.9, 21.4.

5-(4-Chlorophenyl)-2,2-dimethyl-7-phenylchromane (5ft):

Following the *General Procedure*, to the mixture of 2-methylhept-6-yn-2-ol (**2f**) (0.1 g, 0.79 mmol) and (*E*)-1-phenyl-3-(4-(chloro)phenyl)prop-2-en-1-one (**4t**) (0.095 g, 0.39mmol)in anhydrous PhF (2 mL) was added AgOTf (0.010 g, 0.039 mmol) under argon atmosphere at room temperature and reaction mixture was stirred for 6h at rt. Purification of the crude product by column

chromatography (SiO₂, 1% EtOAc/hexanes) afforded 5-(4-chlorophenyl)-2,2-dimethyl-7phenylchromane (**5ft**) (0.081 g, 59%). TLC: $R_f = 0.90$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.62-7.59 (m, 2H), 7.43-7.39 (m, 4H), 7.35-7.31 (m, 3H), 7.10 (d, J =1.88 Hz, 1H), 7.02 (d, J = 2.0 Hz, 1H), 2.63 (t, J = 6.75 Hz, 2H), 1.79-1.75 (m, 2H), 1.40 (s, 6H); ¹³C NMR (CDCl₃, 101 MHz): δ 154.6, 141.8, 140.5, 140.2, 139.8, 133.1, 130.5, 128.7, 128.3, 127.6, 127.3, 126.9, 120.0, 117.8, 115.2, 74.0, 32.9, 26.9, 21.5; HRMS (ESI) *m/z* calcd for C₂₃H₂₂OCl [M+H]⁺ 349.1554, found 349.1353.

7-Cyclopropyl-2,2-dimethyl-5-(3-phenoxyphenyl)chromane(5ff'):

Following the *General Procedure*, to the mixture of 2-methylhept-6-yn-2-ol (**2f**) (0.1 g, 0.79 mmol) and(*E*)-1-cyclopropyl-3-(3phenoxyphenyl)prop-2-en-1-one (**4f**') (0.103 g, 0.39 mmol) in anhydrous PhF (2 mL) was add AgOTf (0.010 g, 0.039 mmol) under argon atmosphere at room temperature and reaction mixture

was stirred for 6h at rt. Purification of the crude product by column chromatography (SiO₂, 1% EtOAc/hexanes) afforded 7-cyclopropyl-2,2-dimethyl-5-(3-phenoxyphenyl)chromane (**5ff'**) (0.086 g, 71%). TLC: $R_f = 0.80$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 500 MHz): δ 7.41-7.34 (m, 3H), 7.11-7.15 (m, 1H), 7.11-7.07 (m, 3H), 7.02-6.98 (m, 2H), 6.59 (d, J = 1.91 Hz, 1H), 6.51 (d, J = 1.91 Hz, 1H), 2.59-2.55 (m, 2H), 1.89-1.81 (m, 1H), 1.73-1.68 (m, 2H), 1.36 (s, 6H), 0.96-0.91 (m, 2H), 0.74-0.69 (m, 2H); ¹³C NMR (CDCl₃, 126 MHz): δ 157.1, 156.9, 154.2, 143.3, 143.1, 141.8, 129.8, 129.3, 124.0, 123.3, 119.6, 119.1, 118.9, 117.1, 115.7, 113.0, 73.8, 33.0, 26.9, 21.3, 15.0, 9.13.

9. Synthesis and characterization of heterocyclic chromanes (5 or E5) fromalkynols (2) and α , β -unsaturated ketone (4)

5-(4-Methoxyphenyl)-7-(5-methylfuran-2-yl)chromane(5ag'):

Following the *General Procedure*, to the mixture of 5-hexyn-1-ol (**2a**) (0.1 g, 1.01 mmol) and (*E*)-3-(4-methoxyphenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one (**4g'**) (0.122 g, 0.505 mmol) in anhydrous PhF (2 mL) was added AgOTf (0.012 g, 0.05mmol) under argon atmosphere at room temperature and reaction mixture was stirred for 6h at rt. Purification of the crude product by column chromatography (SiO₂, 1% EtOAc/hexanes) afforded 5-(4-methoxyphenyl)-7-(5-methylfuran-2-

yl)chromane (**5ag**') (0.130 g, 80%). TLC: $R_f = 0.90$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 200 MHz): δ 7.30-7.23 (m, 2H), 7.09-7.01 (m, 2H), 6.99-6.82 (m, 2H), 6.45 (d, J = 3.09 Hz, 1H), 6.07-5.90 (m, 1H), 4.23-4.15 (m, 2H), 3.84 (s, 3H), 2.59 (t, J = 6.39 Hz, 2H), 2.32 (s, 3H), 2.01-1.81 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 158.7, 155.1, 152.0, 151.7, 142.8, 133.4, 130.1, 129.9, 118.9, 117.1, 113.5, 110.3, 107.5, 105.7,66.2, 55.3, 24.2, 22.5, 13.7; HRMS (ESI) *m*/*z* calcd for C₂₁H₂₁O₃ [M+H]⁺ 321.1485, found 321.1485.

5,7-Di(thiophen-2-yl)chromane(5ah'):

Following the *General Procedure*, to the mixture of 5-hexyn-1-ol (2a)(0.1 g, 1.01 mmol) and (E)-1,3-di(thiophen-2-yl)prop-2-en-1-one (4h') (0.111 g, 0.505 mmol) in anhydrous PhF (2 mL) was added AgOTf (0.012 g, 0.05 mmol) under argon atmosphere at room temperature and reaction mixture was stirred for 6h at rt. Purification of

the crude product by column chromatography (SiO₂, 1% EtOAc/hexanes) afforded5,7di(thiophen-2-yl)chromane (**5ah'**) (0.108 g, 72%). TLC: $R_f = 0.90$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 500 MHz): δ 7.38-7.37(m, 1H), 7.31-7.29 (m, 1H), 7.27-7.24 (m, 2H), 7.16-7.04 (m, 4H), 4.30-4.20 (m, 2H), 2.82 (t, J = 6.49 Hz, 2H), 2.03-1.95 (m, 2H); ¹³C NMR (CDCl₃, 126 MHz): δ 155.4, 143.7, 141.8, 135.6, 133.2, 127.9, 127.1,126.8, 125.5, 124.8, 123.2, 120.3, 120.1, 113.8, 66.2, 24.3, 22.4; HRMS (ESI) *m/z* calcd for C₁₇H₁₅OS₂ [M+H]⁺ 299.0559 found 299.0558.

7-Phenyl-5-(thiophen-3-yl)chromane(5ai'):

Following the *General Procedure*, to the mixture of 5-hexyn-1-ol (**2a**) (0.1 g, 1.01 mmol) and (*E*)-1-phenyl-3-(thiophen-3-yl)prop-2-en-1-one (**4i**') (0.108 g, 0.505 mmol)in anhydrous PhF

(2 mL) was added AgOTf (0.012 g, 0.05 mmol)under argon atmosphere at room temperature and reaction mixture was stirred for 6h at rt. Purification of the crude product by column chromatography (SiO₂, 1% EtOAc/hexanes) afforded 7-phenyl-5-(thiophen-3-yl)chromane (**5ai'**) (0.093 g, 63%). TLC: $R_f = 0.90$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR

(CDCl₃, 400 MHz): δ 7.63-7.58 (m, 2H), 7.46-7.37 (m, 3H), 7.36-7.31 (m, 1H), 7.28 (s, 1H), 7.21-7.18 (m, 1H), 7.15 (d, *J* = 1.5 Hz, 1H), 7.07 (d, *J* = 1.5 Hz, 1H), 4.28-2.23 (m, 2H), 2.78-2.73 (m, 2H), 2.03-1.96 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 155.3, 141.3, 140.6, 140.0, 138.0, 128.8, 128.7, 127.3, 127.0, 125.0, 122.9, 120.6, 119.4, 114.5, 66.3, 24.1, 22.4; IR (KBr, cm⁻¹): ν 3019, 2929, 1600, 1566, 1528, 1474, 1310, 1216, 1017, 772, 669.

5-(furan-2-yl)-2,2-dimethyl-7-phenylchromane(5fj')and phenylchromane (E5fc'):

2,2-Dimethyl-7-

Following the *General Procedure*, to the mixture of 2-methylhept-6-yn-2-ol (2f) (0.1 g, 0.79 mmol) and (*E*)-3-(furan-2-yl)-1-phenylprop-2-en-1-one (4j') (0.077 g, 0.39 mmol) in anhydrous PhF (2 mL) was add

AgOTf(0.010 g, 0.039 mmol)under argon atmosphere at room temperature and reaction mixture was stirred for 6 h at rt. Purification of the crude product by column chromatography (SiO₂, 1% EtOAc/hexanes) afforded 5-(furan-2-yl)-2,2-dimethyl-7-phenylchromane (**5fj**') and 2,2-dimethyl-7-phenylchromane (**E5fc'**) (0.089 g, 70%). TLC: $R_f = 0.90$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.66-7.56 (m, 3H), 7.47-7.39 (m, 4H), 7.37-7.30 (m, 2H), 7.16-7.01 (m, 4H), 2.98-2.92 (m, 1H), 2.83 (t, *J* = 6.75 Hz, 2H), 1.89-1.83 (m, 3H), 1.41 (s, 3H), 1.38 (s, 6H); ¹³C NMR (CDCl₃, 101 MHz): δ 154.2, 141.0, 140.5, 129.8, 128.7, 128.6, 127.2, 127.0 (3C), 126.9, 120.0, 118.5, 117.4, 115.7, 115.0, 74.3, 73.6, 32.8, 27.0, 22.2.

7-Phenyl-5-(thiophen-2-yl)chromane(5ak')and 7-phenylchromane (5ac'):

Following the *General Procedure*, to the mixture of 5hexyn-1-ol (**2a**) (0.1 g, 1.01 mmol) and (*E*)-1-phenyl-3-(thiophen-2-yl)prop-2-en-1-one (**4k'**) (0.108 g, 0.505 mmol)in anhydrous PhF (2 mL) was added AgOTf (0.010 g, 0.05 mmol) under argon atmosphere at room temperature and reaction mixture was stirred for 6h at rt. Purification of the crude product by column chromatography (SiO₂, 1% EtOAc/hexanes) afforded a mixture of 7-phenyl-5-(thiophen-2-yl)chromane (**5ak**') and 7-phenylchromane (**5ac'**) (0.079 g, 90%). TLC: $R_f = 0.90$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.59-7.51(m, 4H), 7.42-7.35 (m, 4H), 7.34-7.26 (m, 3H), 7.23-7.20 (m, 1H), 7.11-6.99 (m, 6H), 4.27-4.13 (m, 4H), 2.84-2.78 (m, 4H), 2.06-1.92 (m, 4H); ¹³C NMR (CDCl₃, 101 MHz): δ 155.5, 155.1, 142.1, 140.9, 140.5,140.4, 140.0, 135.5, 130.1, 128.7, 128.7, 127.4, 127.1, 127.0, 126.9, 126.6, 125.3, 121.4, 121.3, 119.7, 118.9, 115.2, 115.1, 66.5, 66.1, 24.6, 24.3, 22.4.

7-Phenylchromane (5ac'):

Following the *General Procedure*, to the mixture of 5-hexyn-1-ol (**2a**) (0.1 g, 1.01 mmol) and (*E*)-3-(1-methyl-1H-indol-2-yl)-1-phenylprop-2-en-1-one (**4l'**) (0.131 g, 0.505 mmol)in anhydrous PhF (2 mL) was added AgOTf (0.012 g, 0.05mmol)under argon atmosphere at room temperature and reaction mixture was stirred for 6h at rt. Purification of the crude product by column chromatography (SiO₂, 1% EtOAc/hexanes) afforded 7-phenylchromane (**5ac'**) (0.060g, 57%). TLC: $R_f = 0.90$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 200 MHz): δ 7.56-7.44 (m, 2H), 7.39-7.27 (m, 2H), 7.25-7.17 (m, 1H), 7.06-6.92 (m, 3H), 4.20-4.12 (m, 2H), 2.81-2.71 (m, 2H), 2.05-1.82 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 155.1, 140.9, 140.5, 130.1, 128.7, 127.1, 126.9, 121.3, 119.0, 115.2, 66.5, 24.7, 22.4; HRMS (ESI) m/z calcd for C₁₅H₁₅O [M+H]⁺ 211.1117, found 211.1116.

(S)-7-Phenyl-2,3,3a,4-tetrahydro-1H-benzo[b]pyrrolo[1,2-d][1,4]oxazin-1-one (E5gk):

Following the *General Procedure*, to the mixture of (*S*)-5-(hydroxymethyl)-1-(prop-2-yn-1-yl)pyrrolidin-2-one (**2g**) (0.1 g, 0.63 mmol) and (*E*)-3-(2,6-dimethoxyphenyl)-1-phenylprop-2-en-1-one (**4k**) (0.084 g, 0.31mmol)in anhydrous PhF (2 mL) was added AgOTf (0.008 g, 0.031 mmol) under argon atmosphere at room temperature and reaction mixture was stirred for 6h at 85 °C. Purification of the crude product by column chromatography (SiO₂, 1% EtOAc/hexanes)afforded(*S*)-7-phenyl-2,3,3a,4-tetrahydro-1H-benzo[b]pyrrolo[1,2-

d][1,4]oxazin-1-one (**E5gk**) as a white crystal (0.034 g, 40%). TLC: $R_f = 0.90$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 200 MHz): δ 8.59 (d, J = 8.60 Hz, 1H), 7.61-7.57 (m, 1H), 7.55-7.33 (m, 3H), 7.33-7.17 (m, 3H), 4.54 (dd, J = 10.58, 2.98 Hz, 1H), 4.20-4.02 (m, 1H), 3.90-3.74 (m, 1H), 2.82-2.47 (m, 2H), 2.45-2.27 (m, 1H), 1.85-1.66 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz): δ 172.5, 144.7, 140.2, 137.7, 128.8, 127.3, 126.8, 124.21 120.2, 119.5, 115.2, 69.6, 54.0, 31.1, 21.0;HRMS (ESI) *m*/*z* calcd for C₁₇H₁₆O₂N [M+H]⁺ 266.1176, found 266.1173.

10. Scheme S2. Unsuccessful [3+3]-annulation experiments:

Supporting Information

11. X-ray crystallography data:

The single crystal X-ray diffraction measurements were performed for 5fk, E5gk and T3ab at 100 K using APEX3 (Bruker, 2016; Bruker D8 VENTURE Kappa Duo PHOTON II CPAD) diffractometer having graphite-monochromatized (Mo = 0.71073 Å). The X-ray generator was operated at 50 kV and 30 mA. A preliminary set of unit cell parameters and an orientation matrix were calculated from a total of 36 frames, and the cell refinement was performed by SAINT-Plus (Bruker, 2016). An optimized strategy used for data collection consisted of different sets of φ and ω scans with 0.5 o steps φ/ω . The data were collected with a time frame of 10 Sec for all the three components by setting the sample to detector distance fixed at 40 cm. All the data points were corrected for Lorentzian, polarization, and absorption effects using SAINT-Plus and SADABS programs (Bruker, 2016). SHELXS-97 (Sheldrick, 2008) was used for structure solution and full-matrix least-squares refinement on F^2 . The molecular graphics of ORTEP diagrams of all three components were performed by Mercury software. The crystal symmetry of all the three components of single crystals are crosschecked by running the cif files through PLATON (Spek, 2020) software, and notified that there is no additional symmetry was observed. The Encifer software was used to correct the cif files (Figures 1, 2 and 3).

All the three compounds **5fk**, **E5gk** and **T3ab** have been crystallized in Monoclinic space group $P2_1/c$, $P2_1$ and $P2_1/c$ respectively from the 1% EtOAc/pet.ether solvent by the slow evaporation method. The asymmetric unit contains one molecule in compound **5fk** and **T3ab**, while two molecules are present in **E5gk** component (Tables 1 and 2).

Figure S1. ORTEP diagram of **5fk**, herein, the thermal ellipsoids are drawn with 50% of probability. Moreover, the asymmetric unit contains a single molecule.

Figure S2. ORTEP diagram of E5gk, herein, the thermal ellipsoids are drawn with 50% of probability. Moreover, the asymmetric unit contains two molecules.

Figure S3. ORTEP diagram of **T3ab**, herein, the thermal ellipsoids are drawn with 50% of probability. Moreover, the asymmetric unit contains a single molecule.
Crystal data	Compound 5fk	Compound E5gk	Compound T3ab
Chemical	$C_{25}H_{26}O_3$	C ₁₇ H ₁₅ NO ₂	C ₂₄ H ₂₂ O
formula			
Formula weight	374.46	265.30	326.42
(\mathbf{M}_r)			
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	$P2_{1}/c$	<i>P</i> 2 ₁	$P2_{1}/c$
Temperature T	100 (2)	100 (2)	100 (2)
(K)			
a (Å)	14.6475(7)	7.2766(18)	9.9695(5)
b (Å)	10.4651(5)	14.676(4)	7.7193(4)
c (Å)	13.6161(6)	12.381(4)	22.7874(10)
α (°)	90	90	90
β (°)	103.479(2)	101.962(13)	101.538(2)
γ (°)	90	90	90
Z	4	4	4
Volume (Å ³)	2029.69(16)	1293.5(6)	1718.22(15)
Source of	ΜοΚα	ΜοΚα	ΜοΚα
radiation			
D_{calc} (g cm ⁻³)	1.225	1.362	1.262
Crystal size (mm)	0.5x0.19x0.16	0.56x0.24x0.22	0.42Xx0.2x0.12
$\mu (mm^{-1})$	0.079	0.090	0.075
Data collection			
Diffractometer	Bruker D8 VENTURE	Bruker D8 VENTURE	Bruker D8
	Kappa Duo PHOTON II	Kappa Duo PHOTON II	VENTURE Kappa
	CPAD	CPAD	Duo PHOTON II
			CPAD
Absorption	Multi-scan (SADABS;	Multi-scan (SADABS;	Multi-scan
correction	Bruker, 2016)	Bruker, 2016)	(SADABS; Bruker,
			2016)
T_{\min}, T_{\max}	0.3929, 0.7455	0.6561, 0.7451	0.4158, 0.7455
No. of measured,	63797, 4351, 3979	46945, 5615, 5525	32959, 3351, 3027
independent and			
observed [I >			
$2\sigma(1)$ reflections	2 11 27 11		a 40 az 44
Theta range (°)	2.41-27.11	2.78-27.16	2.48-27.11
R _{int}	0.0596	0.0790	0.0765
Ketinement	0.0551	0.0700	0.0701
$R[F^{2}> 2\sigma (F^{2})],$	0.0551	0.0782	0.0721
$WR(F^2)$	1.01.6	1.100	1.054
GOF on F ²	1.216	1.129	1.056
No. of	4351	5615	3351
reflections			
No. of non-motors	25.9	262	207
No. of parameters	230	302	227
INO. OI FESTRAINTS	U	1 aonata	U
n-atom treatment	0.570 0.564	0.665 0.272	
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}$ (e A°-3)	0.370, -0.304	0.003, -0.373	0.709, -0.328
CCDC number	2016842	2016843	2016844

Table S2. Crystallographic information details about the compound 5fk, E5gk and T3ab.

Name of the	$D-H\cdots A$	D–H	H···A	D····A	D–H···A
compound					
Compound 5fk	C21-H21···O2	0.95	2.57	3.2738(15)	131
Compound E5gk	C4–H4…O3	1.00	2.59	3.317(8)	130
	С8-Н8…О1	0.95	2.44	2.995(8)	117
	C25-H25···O3 0.95 2.33 2.946(8) 122		122		
Compound T3ab There is no prominent hydrogen bond			n bond		

Table S3	. Hydrogen-bond	geometry (A°,	°) of comp	ound 5fk,	E5gk and 7	ГЗаb.
----------	-----------------	---------------	------------	-----------	------------	-------

12. Supporting experiments for the postulated reaction mechanism:

12.a. Real-time GC-MS analyses: To gain insight into the probable reaction pathway, the following experiment was carried out under optimized reaction conditions using alkynol **2a** (hex-5-yn-1-ol) and enone **4a** ((*E*)-4-phenylbut-3-en-2-one) in PhF solvent at room temperature, which was monitored through GC-MS analyses at 1 h, 3 h and 5 h reaction times. To our delight we were able to find cyclic eno-lether intermediate (**T1aa**) as a major product at $t_1 = 1$ h with m/z value of 99.1 (Figure 4), 1,3-cyclohexadiene intermediate (**T3aa**) at $t_2 = 2$ h with m/z value of 226.2 (Figure 5) and also the final desired product **5aa**at $t_3 = 2$ h 37 min h with m/z value of 224.2 (Figure 6). This investigation results were in accordance with the proposed mechanistic sequence.

GC-MSMethod Details:

- 1. Instrument name: Agilent 7890N 5977MSD
- 2. Column: HP-5MS column
- 3. Diameter: 30 m X 0.25 micro meter X 0.25 mm

4. temperature: $80 \text{ °C} \xrightarrow{20 \text{ min.}} 280 \text{ °C}$ (1 min.) (10 min.)

- 5. Injected temp: 250 °C
- 6. Detector temp: 280 °C
- 7. Solvent: MeOH

Figure S4. GC-MS chromatogram at $t_1 = 1h$ of the reaction mixture of 2a and 4a.

Figure S5. GC-MS chromatogram at $t_2 = 2h$ of the reaction mixture of 2a and 4a.

Figure S6. GC-MS chromatogram at $t_3 = 2h37$ min of the reaction mixture of 2a and 4a.

12.b. Reactions under oxygen atmosphere:

5-(Furan-2-yl)-2,2-dimethyl-7-phenylchromane(5fj'):

Following the *General Procedure*, to the mixture of 2-methylhept-6-yn-2-ol (**2f**) (0.1 g, 0.79 mmol) and (*E*)-3-(furan-2-yl)-1phenylprop-2-en-1-one (**4j**') (0.077 g, 0.39 mmol)in anhydrous PhF (2 mL) was add AgOTf (0.010 g, 0.039 mmol) under oxygen atmosphere (O₂ balloon pressure) at room temperature and reaction mixture was stirred for 6 h at rt. Purification of the crude

product by column chromatography (SiO₂, 1% EtOAc/hexanes) afforded **5fj**' (0.147 g, 76%). TLC: $R_f = 0.90$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.67-7.62 (m, 2H), 7.55-7.49 (m, 2H), 7.46-7.41 (m, 2H), 7.36-7.31 (m, 1H), 7.06 (d, J = 1.88Hz, 1H), 6.58 (dd, J = 3.38, 0.63 Hz, 1H), 6.53 (dd, J = 3.38, 1.88 Hz, 1H), 2.98-2.90 (m, 2H), 1.89-1.85 (m, 2H), 1.41 (s, 6H); ¹³C NMR (CDCl₃, 101 MHz): δ 154.7, 153.4,141.8, 140.6, 140.1, 131.2, 129.8, 128.7, 128.6, 127.2, 127.0, 126.9, 120.9, 117.9, 117.3, 115.5, 111.2, 73.7, 32.8, 26.9, 26.8, 21.9.

7-Phenyl-5-(thiophen-2-yl)chromane(5ak'):

Following the *General Procedure*, to the mixture of 5-hexyn-1-ol (**2a**) (0.1 g, 1.01 mmol) and (*E*)-1-phenyl-3-(thiophen-2-yl)prop-2-en-1one (**4k'**) (0.108 g, 0.505 mmol) in anhydrous PhF (2 mL) was added AgOTf (0.010 g, 0.05 mmol) under oxygen atmosphere (O₂ balloon pressure) at room temperature and reaction mixture was stirred for 2.5 h at rt (both starting materials were completely consumed as per the

TLC visualization). Purification of the crude product by column chromatography (SiO₂, 1% EtOAc/hexanes) afforded **5ak'** (0.125 g, 85%). TLC: $R_f = 0.90$ (SiO₂, 10% EtOAc/hexanes); ¹H NMR (CDCl₃, 400 MHz): δ 7.66-7.57 (m, 2H), 7.48-7.42 (m, 2H), 7.40-7.33 (m, 2H),

7.26 (d, *J* = 1.9 Hz, 1H), 7.16-7.05 (m, 3H), 4.26 (t, *J* = 5.1 Hz, 2H), 2.87 (t, *J* = 6.5 Hz, 2H), 2.06-1.98 (m, 2H); ¹³C NMR (CDCl₃, 101 MHz): δ 155.5, 142.1, 140.4, 140.0, 135.5, 128.7, 127.4, 127.0 (2C), 126.6, 125.3, 121.4, 119.7, 115.1, 66.2, 24.3, 22.4.

13. Quantum chemical calculations:

The quantum chemical calculations have been performed using density functional theory (DFT), as a tool with the aid of the Turbomole 7.2 suite of programs.¹ The PBE functional,² and the TZVP³ basis set has been employed. The resolution of identity (RI),⁴ along with the multipole accelerated resolution of identity (marij)⁵ approximations have been used for an accurate and efficient treatment of the electronic Coulomb term in the DFT calculations. Solvent effects were introduced by using the COSMO model⁶ with the dielectric constant $\varepsilon = 2.38$ for toluene.The option "disp" provided in the Turbomole package (DFT-D3) was employed for dispersion-corrected DFT calculations.⁷ The values reported are Δ G values, with zero point energy corrections, internal energy and entropic contributions included through frequency calculations on the optimized minima with the temperature taken to be 298.15 K. Harmonic frequency calculations were performed for all stationary points to confirm them as local minima.

References and notes:

- TURBOMOLE V 7.0 2015, a development of University of Karlsruhe and For schungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from <u>http://www.turbomole.com</u>.
- 2. J. P.Perdew, K.Burke and M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 3. S.Ansgar, H.Christian and A. Reinhart, J. Chem. Phys. 1994, 100, 5829.
- K.Eichkorn, O.Treutler, H.Ö hm, M.Haser and R. Ahlrichs, *Chem. Phys. Lett.* 1995, 240, 283.
- 5. M.Sierka, A.Hogekamp and R. Ahlrichs, J. Chem. Phys. 2003, 118, 9136.
- 6. A. Klamt and G. Schuurmann, J. Chem. Soc. Perkin Trans., 1993,2, 799-805.
- 7. S. Grimme, J. Comput. Chem. 2004, 25, 1463.

XYZ coordinates for optimized geometries of all the compounds at PBE/TZVP level of theory.

T0

38

0	-0.416898	-2.717829	-1.487655
С	-0.115974	-1.316846	-1.430287
С	-0.141249	-0.689150	-2.794112
С	0.749653	-1.450979	-3.791797
С	0.381110	-2.937227	-3.796693
С	0.444169	-3.498971	-2.389911
С	0.088052	-0.759365	-0.232504
Ag	0.370742	1.248730	0.094947
0	-1.282382	-3.725228	0.626926
S	-1.024130	-5.291000	0.806155
0	-0.888204	-5.974358	-0.502987
0	-1.929896	-5.799091	1.854795
С	0.739013	-5.269378	1.566820
F	1.594616	-4.720754	0.682815
F	1.118032	-6.527529	1.832576
F	0.746990	-4.548067	2.696055
F	-0.786397	6.797410	-0.753288
С	-0.446439	7.899397	-0.017903
С	0.207753	7.713759	1.196023
T0	•		
38			
Η	-19.275972	-5.203827	-10.754047
С	-18.602067	-5.821057	-10.132325

Н -17.969005 -6.408271 -10.811584

C -17.721670 -4.909782 -9.325908

O -18.507593 -4.168831 -8.360057

С	0.551486	8.846495	1.941833
С	0.241778	10.127194	1.469982
С	-0.416737	10.279274	0.244482
С	-0.769251	9.158266	-0.515232
Η	-1.182654	-0.699815	-3.163769
Η	0.168214	0.361013	-2.706371
Η	1.469995	-3.465354	-1.985857
Η	0.062087	-4.524573	-2.322854
Η	1.068514	-3.516613	-4.432383
Η	-0.635409	-3.077864	-4.199715
Η	1.806802	-1.333032	-3.499383
Η	0.639550	-1.019242	-4.797482
Η	0.065567	-1.398926	0.655993
Η	-0.882490	-3.338217	-0.294646
Η	0.438723	6.705956	1.543371
Η	-0.661006	11.275833	-0.127817
Η	1.064301	8.722569	2.897336
Η	0.512984	11.005819	2.057418
Η	-1.283026	9.251287	-1.472889

С	-19.290049	-5.005425	-7.434785
Η	-18.578479	-5.592851	-6.830320
Η	-19.820343	-4.294844	-6.789090
С	-20.232352	-5.902041	-8.214977
Η	-20.770821	-6.543726	-7.500067

Η	-20.983838	-5.278768	-8.726632
С	-19.454778	-6.738640	-9.235661
Η	-18.793782	-7.446357	-8.707186
Η	-20.143588	-7.333343	-9.853682
С	-16.407854	-4.679350	-9.415634
Η	-15.991755	-3.962816	-8.696794
Η	-17.918033	-3.076843	-7.831422
F	-16.138166	-9.131578	-13.680262
С	-15.355238	-8.074149	-13.342115
С	-14.476176	-8.210486	-12.276647
Η	-14.416463	-9.150644	-11.728324
С	-15.473211	-6.896478	-14.085663
С	-14.666029	-5.812657	-13.748718
Η	-14.732380	-4.887881	-14.323008
С	-13.744113	-5.909530	-12.680814
Η	-12.893899	-7.233584	-11.172398
С	-13.657253	-7.114347	-11.943264
Η	-13.026322	-5.105279	-12.506050
Ag	-15.143501	-5.494034	-10.826869
0	-17.393353	-2.160685	-7.478954
F	-15.774350	-2.210386	-4.895013
С	-17.091875	-2.445426	-4.806497
F	-17.315534	-3.768401	-4.940410
0	-19.460705	-1.874759	-6.024237
F	-17.539309	-2.039440	-3.608476
S	-18.032927	-1.499742	-6.186486
0	-17.596906	-0.090812	-6.092659
Η	-16.185729	-6.843234	-14.909339

С	0.096050	1.173950	-4.879263
C	0.020407	1.084053	-3.377988
C	0.189619	-0.068478	-2.698969
0	0.527179	-1.265594	-3.300902
С	0.978100	-1.150847	-4.673018
С	0.080557	-0.232662	-5.490588
С	0.033040	-0.240774	-1.221065
Η	-0.221228	1.980917	-2.804533
Η	2.014173	-0.766325	-4.663856
Η	0.987206	-2.178482	-5.059003
Η	0.424689	-0.221931	-6.535703
Η	-0.943630	-0.639276	-5.483971
Η	1.005787	1.717099	-5.194682
Η	-0.752325	1.764334	-5.263692
Η	-0.725692	-1.008877	-1.002028
Η	0.977121	-0.575960	-0.763191
Η	-0.275626	0.700696	-0.749985
T'			
21			
F	-13.945875	-5.547477	-9.139749

T	-13.7-3073	-3.347477	-7.1377-77
С	-14.800869	-4.545765	-8.821436
С	-15.318347	-3.761682	-9.843057
Η	-15.045766	-3.954384	-10.880746
С	-15.123732	-4.351391	-7.473771
С	-16.007459	-3.331694	-7.135736
Η	-16.280128	-3.172824	-6.091978
С	-16.578700	-2.513958	-8.141877
Η	-16.749652	-2.199543	-10.299262
С	-16.225152	-2.733436	-9.503978

T2

Η	-17.387253	-1.824249	-7.889778
Ag	-14.900018	-1.018523	-8.631149
0	-13.405966	0.504582	-8.362987
F	-14.254106	0.322043	-5.497586
С	-13.022253	0.838605	-5.716883
F	-13.123121	2.176565	-5.800209
0	-11.033358	0.844520	-7.578197
F	-12.230430	0.520713	-4.677658
S	-12.303747	0.111904	-7.340424
0	-12.257098	-1.364216	-7.098107
Η	-14.678864	-4.994268	-6.713867
4			
21			
С	-16.746530	-17.710864	4.079011
С	-15.725709	-16.992157	4.739729
С	-14.969026	-17.659221	5.727228
С	-15.217828	-18.995315	6.043235
С	-16.231707	-19.692577	5.378324
С	-16.994079	-19.044074	4.395919
С	-15.415286	-15.595731	4.449527
С	-16.008417	-14.796885	3.529473
С	-15.646273	-13.392188	3.284615
С	-14.548490	-12.741620	4.102987
0	-16.247387	-12.750905	2.411313
Н	-14.620176	-19.493743	6.808645

Н -16.429630 -20.737962

Н -17.786402 -19.585442

Н -17.350822 -17.222257

Н -14.176629 -17.115120

Н -14.607009 -15.175789

5.622906

3.875437

3.312743

6.247124

5.057984

Η	-16.817629	-15.163553	2.891306
Η	-13.603008	-13.297164	4.012128
Η	-14.400666	-11.714055	3.752450
Η	-14.816919	-12.724708	5.170445
4'			
42			

С	-16.722440	-17.716602	4.053633
С	-15.699825	-17.002181	4.722203
С	-14.937603	-17.654644	5.731823
С	-15.199879	-19.003208	6.057306
С	-16.213053	-19.656271	5.374919
С	-16.979089	-19.045122	4.374360
Ag	-16.566465	-16.308055	6.800808
0	-17.242763	-18.686954	8.866115
S	-16.091822	-17.968647	9.507038
0	-14.780549	-18.685475	9.530810
F	-16.476228	-20.953225	5.678483
0	-18.221917	-14.790619	6.953063
С	-19.162096	-14.751040	7.789906
С	-19.420825	-15.904194	8.716021
С	-19.954609	-13.533615	7.843096
С	-20.957733	-13.309432	8.732948
С	-21.753215	-12.099276	8.870975
С	-22.722030	-12.047035	9.898403
С	-23.509204	-10.911336	10.083440
С	-23.346301	-9.805219	9.241933
С	-22.391567	-9.842360	8.215732
С	-21.601906	-10.973294	8.030425
С	-16.581530	-17.814054	11.353440
F	-16.719269	-19.039869	11.898194

0	-16.004074	-16.499761	9.086629	С	-15.718390	-8.230617	-8.990626
F	-17.755467	-17.155205	11.482408	F	-15.565493	-9.459121	-9.523151
F	-15.634792	-17.140983	12.036936	0	-14.160971	-4.276064	-8.570985
Η	-14.634903	-19.515416	6.834908	С	-14.742462	-3.100549	-8.746716
Η	-14.057747	-17.167809	6.157517	С	-15.775421	-2.952962	-9.635802
Н	-15.398348	-16.017903	4.358418	С	-16.263534	-4.132587	-10.442730
Н	-17.297849	-17.225618	3.268029	С	-15.790094	-4.019222	-11.887581
Η	-17.759165	-19.613802	3.867847	С	-14.848929	-4.928219	-12.392184
Η	-24.250897	-10.887552	10.883681	С	-14.378090	-4.819508	-13.705264
Η	-23.962001	-8.914990	9.383439	С	-14.848317	-3.799825	-14.537696
Н	-22.265183	-8.979966	7.558108	С	-15.789120	-2.886726	-14.045150
Н	-20.863688	-10.983710	7.227084	С	-16.251390	-2.994533	-12.731490
Н	-22.847830	-12.911069	10.554715	С	-14.227172	-1.936027	-7.934930
Η	-21.208487	-14.101746	9.445490	С	-17.794762	-4.377387	-10.390276
Н	-19.657398	-12.772060	7.117819	С	-18.259114	-5.499417	-11.380703
Η	-20.489007	-16.054224	8.916623	С	-19.666744	-6.022444	-11.059467
Η	-18.989855	-16.827818	8.309363	С	-20.416675	-5.032389	-10.189658
Η	-18.921234	-15.709012	9.678416	0	-19.645225	-4.850163	-8.939801
T2	a			С	-18.373063	-4.615227	-9.041155
59				С	-17.636650	-4.561023	-7.793758
С	-11.904320	-4.072698	-3.808188	0	-13.939791	-8.555272	-6.988951
С	-10.803185	-4.485261	-4.562759	0	-16.342946	-9.307818	-6.596728
С	-10.822692	-5.607951	-5.379350	F	-16.986649	-7.809444	-9.257136
С	-12.001848	-6.376282	-5.431301	F	-14.864649	-7.386356	-9.610153
С	-13.137328	-5.993437	-4.669491	Н	-21.391424	-5.387992	-9.843633
С	-13.072602	-4.829377	-3.865698	Н	-20.524346	-4.042300	-10.657119
F	-9.664383	-3.742863	-4.501823	Н	-19.615660	-6.979119	-10.518560
Ag	-13.645570	-5.161493	-6.741383	Н	-20.250682	-6.196166	-11.973959

-6.691579

-7.098420

O -15.776116 -6.839881

S -15.406287 -8.254273

166 -11.973959 Н -18.211553 -5.074899 -12.390002 Н -17.524624 -6.314235 -11.335168

Н	-18.320677	-3.450004	-10.711155
Η	-17.005288	-3.647217	-7.825802
Η	-18.288283	-4.622985	-6.916945
Η	-16.185565	-1.961349	-9.841689
Η	-16.975493	-2.264760	-12.357590
Η	-16.159751	-2.084563	-14.687318
Η	-14.483904	-3.714425	-15.563370
Η	-13.642950	-5.536369	-14.077753
Η	-14.478780	-5.726476	-11.743994
Η	-16.887526	-5.382194	-7.760058
Н	-15.775131	-5.022804	-10.015688
Η	-9.938603	-5.888885	-5.952523
Н	-12.022252	-7.314510	-5.989226
Η	-13.992322	-6.667590	-4.590861
Η	-13.937721	-4.538079	-3.269174
Η	-11.832899	-3.176915	-3.190855
Η	-14.743903	-0.996431	-8.174881
Н	-14.357836	-2.144870	-6.858401
Н	-13.147147	-1.804476	-8.106730
T2	b		
59			

С	-3.972005	-1.818608	1.445549
С	-4.279875	-0.412341	0.978700
С	-5.265738	-0.509410	-0.216448
С	-6.288310	-1.645046	0.003679
С	-6.361708	-2.018605	1.476494
0	-5.071840	-2.505825	1.932446
С	-3.034559	0.444368	0.653740
С	-3.400019	1.717451	-0.090433
С	-2.981075	1.902207	-1.416008

С	-3.309814	3.067252	-2.117227
С	-4.071869	4.064298	-1.502688
С	-4.501787	3.888304	-0.181656
С	-4.165518	2.726928	0.517042
С	-2.786633	-2.450488	1.423958
С	-2.240883	0.752757	1.970082
С	-0.781927	0.961131	1.666799
С	-0.334099	2.282848	1.132383
0	0.001042	0.008500	1.833527
Ag	1.995802	-0.343482	0.827639
0	1.490837	0.605164	-1.235259
S	0.440488	-0.097073	-2.099873
0	-0.110103	0.771799	-3.180990
С	4.978344	-0.059296	0.204323
С	5.388536	0.808931	1.202828
С	5.047706	0.638876	2.550631
С	4.253673	-0.444838	2.908423
С	3.804750	-1.360907	1.927282
С	4.172462	-1.162730	0.566288
F	6.163342	1.873155	0.866863
С	1.492367	-1.412290	-3.015656
F	0.726593	-2.126434	-3.862115
F	2.048372	-2.265367	-2.118755
F	2.485089	-0.826188	-3.714480
0	-0.536172	-0.910570	-1.305606
Н	-7.057899	-2.846882	1.661376
Н	-6.678256	-1.160618	2.096600
Н	-5.990593	-2.543814	-0.558736
Н	-7.287533	-1.356268	-0.353985
Η	-5.772323	0.458795	-0.333327

Η	-4.691946	-0.685858	-1.138937	С	-16.920443	-7.729232	-10.794948
Η	-4.816441	0.084789	1.809035	С	-16.406843	-6.521858	-11.582918
Η	-2.715377	-3.489832	1.746102	0	-14.039679	-4.158965	-8.579765
Η	-2.665355	1.645339	2.450532	Ag	-13.775263	-5.236954	-6.601630
Η	-4.509577	2.606182	1.548057	С	-15.486679	-6.885121	-4.951125
Η	-5.099954	4.661101	0.306151	С	-16.758253	-6.328299	-5.052307
Η	-4.328685	4.975386	-2.047022	С	-16.921865	-4.970736	-4.760025
Н	-2.963213	3.193733	-3.145057	С	-15.868257	-4.144401	-4.396177
Н	-2.380920	1.131214	-1.903990	С	-14.579692	-4.703739	-4.309085
Η	-1.877757	-1.948335	1.100545	С	-14.377694	-6.086088	-4.571978
Η	-2.390466	-0.149965	-0.013208	F	-18.166932	-4.436544	-4.854677
Η	5.278949	0.104959	-0.830406	С	-15.133962	-2.169395	-7.868404
Η	3.962015	-1.934349	-0.177337	С	-15.953592	-3.676093	-12.583126
Η	3.315555	-2.288188	2.232675	С	-15.080189	-3.494202	-13.663444
Н	3.989449	-0.602865	3.954716	С	-15.550794	-3.018938	-14.893581
Н	5.407556	1.352682	3.292218	С	-16.906741	-2.721172	-15.058269
Η	-2.324233	-0.101390	2.653540	С	-17.788837	-2.902549	-13.985293
Η	-0.647086	3.085893	1.816908	С	-17.313792	-3.375507	-12.760290
Η	0.750592	2.311722	0.975122	0	-13.334065	-6.498579	-9.847855
Η	-0.847153	2.480172	0.175961	S	-12.474706	-7.349297	-8.945304
T2	С			0	-12.201977	-6.706870	-7.589671
59				С	-13.627825	-8.806526	-8.477101
С	-16.492364	-4.223584	-8.427505	F	-13.022180	-9.621789	-7.590485
С	-15.268176	-3.375653	-8.786891	F	-13.952912	-9.522619	-9.571105
С	-15.361894	-2.961771	-10.257381	F	-14.766913	-8.336217	-7.915931
С	-15.440449	-4.158709	-11.230455	0	-11.287494	-7.991210	-9.574116
С	-16.259626	-5.314443	-10.690800	Н	-18.395526	-8.110504	-9.223662
С	-16.749463	-5.305539	-9.433237	Н	-18.850819	-6.824560	-10.385590
0	-17.510547	-6.313609	-8.881676	Н	-16.100222	-8.177106	-10.216630
С	-18.010012	-7.283145	-9.833390	Н	-17.316967	-8.506427	-11.465404

Н	-17.077305	-6.293614	-12.429941
Η	-15.422489	-6.750358	-12.027342
Η	-13.987351	-4.922724	-9.215994
Η	-17.376590	-3.573049	-8.316045
Η	-14.505746	-2.323219	-10.522421
Η	-18.005554	-3.529982	-11.927341
Η	-18.851002	-2.677742	-14.106595
Н	-17.277058	-2.354316	-16.017758
Н	-14.856094	-2.885536	-15.725726
Η	-14.019984	-3.731573	-13.540188
Η	-16.334879	-4.693684	-7.439603
Η	-14.414198	-4.537101	-11.402765
Н	-16.043873	-3.090685	-4.178832
Η	-13.755429	-4.093927	-3.934769
Η	-13.424340	-6.559790	-4.324587
Н	-15.341937	-7.947085	-5.151811
Н	-17.619450	-6.924892	-5.353093
Н	-14.228435	-1.598656	-8.115726
Н	-16.007281	-1.512027	-7.972131
Н	-15.070574	-2.490602	-6.816832
Н	-16.269627	-2.347736	-10.363346
T3			
35			
С	-15.900242	-4.278734	-8.426346
C	-15.463608	-4.424599	-9.859640
С	-16.322108	-4.817730	-10.813223
C	-17.778008	-5.131774	-10.581934
С	-18.168051	-5.142627	-9.119925

C -17.310588 -4.713731 -8.172888

O -17.614422 -4.632475 -6.826818

С	-19.025715	-4.725253	-6.518710
С	-19.685616	-5.874169	-7.264905
С	-19.547103	-5.645781	-8.773478
С	-14.027474	-4.087760	-10.147160
С	-18.659700	-4.158841	-11.374109
С	-19.497289	-4.604959	-12.403807
С	-20.304233	-3.704561	-13.111398
С	-20.280262	-2.343568	-12.794227
С	-19.443942	-1.888048	-11.766268
С	-18.642015	-2.789662	-11.064799
Η	-19.074608	-4.850511	-5.429214
Η	-19.502649	-3.765647	-6.789598
Η	-19.193642	-6.816080	-6.972989
Η	-20.742332	-5.947744	-6.966322
Η	-20.311937	-4.931801	-9.128607
Η	-19.738991	-6.585267	-9.321262
Η	-15.775941	-3.226413	-8.103893
Η	-15.976113	-4.896502	-11.849298
Η	-17.993084	-2.436240	-10.259413
Η	-19.418190	-0.825885	-11.512422
Η	-20.910104	-1.639689	-13.342393
Η	-20.953986	-4.069245	-13.910279
Η	-19.520440	-5.669734	-12.652728
Η	-15.224631	-4.853631	-7.764166
Η	-17.983322	-6.138367	-10.998223
Η	-13.345522	-4.722405	-9.556484
Η	-13.786497	-4.216133	-11.211329
Η	-13.805029	-3.044360	-9.865533
5			

33

С	-16.553635	-4.642184	-8.223386
С	-15.731527	-4.413359	-9.338638
С	-16.240577	-4.687202	-10.619626
С	-17.537502	-5.183169	-10.780916
С	-18.345527	-5.415335	-9.662266
С	-17.850658	-5.140875	-8.383225
С	-14.348640	-3.878113	-9.160500
С	-14.181472	-2.518598	-8.865096
С	-12.904010	-1.961895	-8.692410
С	-11.795997	-2.805598	-8.796360
С	-11.955929	-4.171228	-9.071345
С	-13.231758	-4.734905	-9.276112
0	-10.790189	-4.901366	-9.139187
С	-10.933920	-6.341414	-9.116366
С	-12.040136	-6.805651	-10.047085
С	-13.373243	-6.209875	-9.588684
С	-12.731208	-0.487686	-8.425154
Η	-9.949424	-6.727465	-9.409851
Η	-11.142531	-6.657532	-8.078002
Η	-11.805902	-6.480468	-11.073591
Η	-12.080988	-7.905017	-10.049606
Η	-13.730195	-6.743723	-8.690131
Η	-14.147130	-6.361497	-10.354534
Η	-10.783439	-2.421149	-8.652467
Η	-15.066530	-1.883354	-8.778612
Η	-16.167571	-4.430772	-7.223605
Η	-18.475803	-5.315404	-7.504857
Η	-19.357544	-5.805927	-9.787320
Η	-17.919383	-5.386280	-11.783781
Η	-15.613674	-4.501430	-11.495085

Η	-11.806147	-0.285928	-7.866781
Η	-12.675813	0.077819	-9.369676
Η	-13.577494	-0.083441	-7.851688
H ₂			
2			
Η	0.000000	0.000000	-0.001151
Н	0.000000	0.000000	0.751151

H₂O

3	
-	

0	-0.027895	0.000000	-0.019709
Η	0.019953	0.000000	0.951352
Н	0.903612	0.000000	-0.298306

14. ¹H, ¹³C and 2D NMR Spectra

¹H NMR-Spectrum (400 MHz, CDCl₃) of **S4**:

S53

¹H NMR-Spectrum (400 MHz, CDCl₃) of **2c**:

¹H NMR-Spectrum (400 MHz, CDCl₃) of **2g**:

¹H NMR-Spectrum (200 MHz, CDCl₃) of **40**:

¹H NMR-Spectrum (200 MHz, CDCl₃) of **4p**:

¹H NMR-Spectrum (500 MHz, CDCl₃) of **5aa**:

¹H NMR-Spectrum (500 MHz, CDCl₃) of **T3ab**:

S60

¹H NMR-Spectrum (200 MHz, CDCl₃) of **5ac**:

S61

¹H NMR-Spectrum (400 MHz, CDCl₃) of **5ad**:

¹H NMR-Spectrum (400 MHz, CDCl₃) of **5ae**:

¹³C NMR-Spectrum (101 MHz, CDCl₃)of **5ae**:

Chemical Shift (ppm)

S64

¹H NMR-Spectrum (400 MHz, CDCl₃) of **5ag**:

Chemical Shift (ppm)

¹H NMR-Spectrum (400 MHz, CDCl₃) of **5ai**:

5ai

¹H NMR-Spectrum (400 MHz, CDCl₃) of **5aj**:

¹³C NMR-Spectrum (101 MHz, CDCl₃)of 5aj:

¹H NMR-Spectrum (500 MHz, CDCl₃) of **5ak**:

S69

¹H NMR-Spectrum (400 MHz, CDCl₃) of **5al**:

¹³C NMR-Spectrum (101 MHz, CDCl₃)of **5al**:

Chemical Shift (ppm)

¹H NMR-Spectrum (400 MHz, CDCl₃) of **5am**:

¹H NMR-Spectrum (400 MHz, CDCl₃) of **5an**:

¹³C NMR-Spectrum (101 MHz, CDCl₃) of **5an**:

¹H NMR-Spectrum (400 MHz, CDCl₃) of **5ao**:

¹³C NMR-Spectrum (101 MHz, CDCl₃)of 5ao:

¹H NMR-Spectrum (400 MHz, CDCl₃) of **5ap**:

¹³C NMR-Spectrum (101 MHz, CDCl₃)of **5ap**:

Chemical Shift (ppm)

¹H NMR-Spectrum (400 MHz, CDCl₃) of **5aq**:

S75

¹H NMR-Spectrum (400 MHz, CDCl₃) of **5ar**:

¹H NMR-Spectrum (400 MHz, CDCl₃) of **5as**:

AV-400-20190506-165918-11681_PROTON-3.esp

¹³C NMR-Spectrum (101 MHz, CDCl₃) of **5as**:

¹H NMR-Spectrum (400 MHz, CDCl₃) of **5at**:

¹H NMR-Spectrum (400 MHz, CDCl₃) of **5av**:

¹³C NMR-Spectrum (101 MHz, CDCl₃) of **5av**:

¹H NMR-Spectrum (400 MHz, CDCl₃) of **5aw**:

5aw

¹³C NMR-Spectrum (101 MHz, CDCl₃) of **5ax**:

¹H NMR-Spectrum (400 MHz, CDCl₃) of **5ay**:

HSQC Spectrum of 5az:

NOESY Spectrum of 5az:

S87

Chemical Shift (ppm)

¹H NMR-Spectrum (400 MHz, CDCl₃) of **5bb'**:

Chemical Shift (ppm)

¹H NMR-Spectrum (400 MHz, CDCl₃) of **5ac'**:

¹H NMR-Spectrum (400 MHz, CDCl₃) of **5ad'**:

S92

S93

¹H NMR-Spectrum (400 MHz, CDCl₃) of **5ae'**:

¹H NMR-Spectrum (400 MHz, CDCl₃) of **5dk**:

¹³C NMR-Spectrum (101 MHz, CDCl₃) of **5dk**:

¹H NMR-Spectrum (400 MHz, CDCl₃) of **5ek**:

S98

¹H NMR-Spectrum (400 MHz, CDCl₃) of **5fk**:

¹H NMR-Spectrum (400 MHz, CDCl₃) of **5fu**:

¹H NMR-Spectrum (400 MHz, CDCl₃) of **5ft**:

¹H NMR-Spectrum (500 MHz, CDCl₃) of **5ff'**:

¹H NMR-Spectrum (500 MHz, CDCl₃) of **5ah**':

¹H NMR-Spectrum (400 MHz, CDCl₃) of **5ai'**:

¹³C NMR-Spectrum (101 MHz, CDCl₃) of **5ai'**:

¹H NMR-Spectrum (400 MHz, CDCl₃) of a mixture of **5fj**'and**E5fc'**:

Chemical Shift (ppm)

¹H NMR-Spectrum (400 MHz, CDCl₃) of a mixture of **5ak**' and **5ac**':

¹³C NMR-Spectrum (101 MHz, CDCl₃)of a mixture of **5ak'** and **5ac'**:

¹H NMR-Spectrum (400 MHz, CDCl₃) of **5ac**'(prepared from **2a** and **4l'**):

AV-200-20190708-154227-11738-56.010.001.1r.esp

¹H NMR-Spectrum (200 MHz, CDCl₃) of **E5gk**(prepared from **2g** and **4k**):

S109

¹H NMR-Spectrum (200 MHz, CDCl₃) of **5ab** (prepared from **T3ab**):

¹H NMR-Spectrum (400 MHz, CDCl₃) of **5fj'** (*obtained from the reaction under oxygen atmosphere*):

¹³C NMR-Spectrum (101 MHz, CDCl₃) of **5fj'**:

¹H NMR-Spectrum (400 MHz, CDCl₃) of **5ak'**(*obtained from the reaction under oxygen*