Rh-Catalyzed Diastereoselective Addition of Arylboronic Acids to α-Keto *N-tert*-**Butanesulfinyl Aldimines: Synthesis of α-Amino Ketones**

Cece Wang,¹ Lu Zhou,¹Jian Qiu,¹ Kai Yang¹* and Qiuling Song^{1,2}*

¹ Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China.

² Institute of Next Generation Matter Transformation, College of Materials Science Engineering at Huaqiao University, Xiamen, Fujian 361021, China.

E-mail: kyang@fzu.edu.cn; qsong@hqu.edu.cn

Supporting Information

Table of Contents

1. General information	2
2. General procedure <i>I</i> of synthesis of <i>N</i> -Sulfinyl imines 1	
3. General procedure 2 of synthesis of α-amino ketones 3	
4. Scale-up synthesis and synthetic applications	
5. Reference	
6. Copies of ¹ H, ¹³ C and ¹⁹ F Spectra	44

1. General information

All experiments were conducted with a Schlenk tube under an argon atmosphere. Flash column chromatography was performed over silica gel (200-300 mesh). ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded at ambient temperature using Bruker Ascend TM 400 (400 MHz) spectrometer, Bruker AVANCE III 500M spectrometers or JNM-ECZ500R/S1 (500 MHz) spectrometer. ¹H NMR chemical shifts (in ppm) were referenced to CDCl₃ (δ = 7.26 ppm), CD₃OD (δ = 3.31 ppm) as internal standards. ¹³C NMR spectra were obtained by using the same NMR spectrometers and were calibrated with CDCl₃ (δ = 7.0 ppm). The following abbreviations are used: s = singlet, d = doublet, t = triplet, q = quartet, dd, = double doublet, dt = double triplet, td = triple doublet, m = multiplet. HRMS data were obtained on Thermo Scientific Orbitrap Elite Mass Spectrometer with an ESI source (Ion Trap). Analytical thin-layer chromatography (TLC) was carried out on Merck 60 F254 pre-coated silica gel plate (0.2 mm thickness). Visualization was accomplished by UV light (254 nm). Enantioselectivities were recorded on Waters or Agilent HPLC. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification.

Figure S1. Proposed catalytic cycle.

2. General procedure 1 of synthesis of N-Sulfinyl imines 1

Step 1: SeO₂ (9 mmol), 1,4-dioxane (9 mL) and water (1 mL) were added to a 100 mL three-necked bottle and fitted it with an condenser. The mixture was heated to 50-55 °C and stirred until the solid dissolved. Then followed by addition of Compound A (5 mmol) and the reaction was maintained at reflux temperature. After the reaction was complete, as monitored by TLC, the mixture was filtered through a pad of Celite. The filtrate was evaporated to afford a crude product **B**.¹

Step 2: To a solution of Compound **B** and (*R*)-tert-butanesulfinamide (1.1 equiv) in dry dichloromethane (15 mL) under argon was added anhydrous $CuSO_4$ (2 equiv) and the reaction mixture was stirred at room temperature for 24 h. The solid was filtered off, washed with ethyl acetate (3 × 10 mL) and the organic layer was evaporated .The resulting residue was purified by column chromatography silica gel, to yield pure compounds **1**. Yields, physical and spectroscopic data for these compounds follow.²

(R)-2-methyl-N-(2-oxo-2-phenylethylidene) propane-2-sulfinamide (1a)

Following the general procedure *I* on 5 mmol scale, yellow oil liquid, yield: 65% (750 mg), $R_f = 0.7$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 20: 1, v/v). Known compound.² ¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.47 (s, 1H), 8.12 (dd, *J* = 8.5, 1.4 Hz, 2H), 7.69 – 7.58 (m, 1H), 7.50 (dd, *J* = 8.3, 7.4 Hz, 2H), 1.27 (s, 9H).

(R)-2-methyl-N-(2-oxo-2-(p-tolyl)ethylidene)propane-2-sulfinamide (1b)

Following the general procedure *1* on 5 mmol scale, yellow oil liquid, yield: 60% (750 mg), $R_f = 0.7$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 20: 1, v/v).

¹**H NMR** (500 MHz, Chloroform-d) δ 8.37 (s, 1H), 7.95 (d, J = 8.3 Hz, 2H), 7.21 (d, J = 8.1 Hz, 2H), 2.33 (s, 3H), 1.19 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-d) δ 187.2, 160.8, 145.1, 131.6, 129.8, 129.1, 58.1, 22.2, 21.4. **HRMS (ESI) m/z**: [M+H]⁺ Calcd. for C₁₃H₁₈NO₂S⁺ 252.1053; Found: 252.1050. [α]²⁵**D**: -54.5 (*c* 0.5, Chloroform).

(*R*)-2-methyl-*N*-(2-oxo-2-(m-tolyl)ethylidene)propane-2-sulfinamide (1c)

Following the general procedure *I* on 5 mmol scale, yellow oil liquid, yield: 58% (739 mg), $R_f = 0.7$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 20: 1, v/v).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.50 (s, 1H), 7.94 – 7.90 (m, 2H), 7.48 – 7.43 (m, 1H), 7.39 (t, *J* = 7.9 Hz, 1H), 2.42 (s, 3H), 1.28 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 188.2, 161.0, 138.6, 135.1, 134.5, 130.4, 128.6, 127.4, 58.6, 22.7, 21.3.

HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₃H₁₈NO₂S⁺ 252.1053; Found: 252.1051.

 $[\alpha]^{25}$ **D**: -234.5 (c 0.5, Chloroform).

(*R*)-*N*-(2-(4-ethylphenyl)-2-oxoethylidene)-2-methylpropane-2-sulfinamide(1d)

1d

Following the general procedure *1* on 5 mmol scale, yellow oil liquid, yield: 60% (750 mg), $R_f = 0.7$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 20: 1, v/v).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.48 (s, 1H), 8.06 (d, *J* = 8.3 Hz, 2H), 7.34 – 7.31 (d, *J* = 10 Hz, 2H), 2.72 (q, *J* = 7.6 Hz, 2H), 1.27 (s, 9H), 1.25 (d, *J* = 7.7 Hz, 3H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 187.6, 161.1, 151.6, 132.2, 130.3, 128.3, 58.5, 29.0, 22.7, 15.0. HRMS (ESI) m/z: $[M+H]^+$ Calcd. for C₁₄H₂₀NO₂S⁺ 266.1209; Found: 266.1206. [α]²⁵D: -21.2 (*c* 0.5, Chloroform). (R)-N-(2-(3-methoxyphenyl)-2-oxoethylidene)-2-methylpropane-2-sulfinamide (1e)

Following the general procedure *1* on 5 mmol scale, yellow oil liquid, yield: 60% (761 mg), $R_f = 0.65$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 15: 1, v/v).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.29 (s, 1H), 7.58 – 7.53 (m, 1H), 7.47 (d, *J* = 2.1 Hz, 1H), 7.27 – 7.22 (m, 1H), 7.05 – 6.99 (m, 1H), 3.68 (s, 3H), 1.13 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 187.2, 160.6, 159.3, 135.1, 129.2, 122.4, 120.4, 113.4, 58.0, 54.9, 22.1.

HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₃H₁₈NO₃S⁺ 268.1002; Found: 268.1003.

 $[\alpha]^{25}$ **D**: -54.8 (*c* 0.5, Chloroform).

(R)-N-(2-(3,4-dimethoxyphenyl)-2-oxoethylidene)-2-methylpropane-2-sulfinamide (1f)

Following the general procedure *I* on 5 mmol scale, yellow oil liquid, yield: 50% (742 mg), $R_f = 0.7$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 10: 1, v/v).

¹**H NMR** (500 MHz, Chloroform-d) δ 8.43 (s, 1H), 7.80 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.61 (d, *J* = 2.0 Hz, 1H), 6.88 (d, *J* = 8.5 Hz, 1H), 3.91 (s, 3H), 3.88 (s, 3H), 1.23 (s, 9H).

¹³C NMR (126 MHz, Chloroform-d) δ 186.1, 161.1, 154.4, 149.2, 127.5, 125.8, 111.0, 110.0, 58.3, 56.0, 55.8, 22.5.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{14}H_{20}NO_4S^+$ 298.1108; Found: 298.1109.

 $[\alpha]^{25}$ **D**: -16.3 (*c* 0.5, Chloroform).

(R)-2-methyl-N-(2-(4-(methylthio)phenyl)-2-oxoethylidene)propane-2-sulfinamide (1g)

1g

Following the general procedure *1* on 5 mmol scale, yellow oil liquid, yield: 48% (693 mg), $R_f = 0.7$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 15: 1, v/v).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.43 (s, 1H), 8.05 (d, J = 8.6 Hz, 2H), 7.27 (d, J = 8.7 Hz, 2H), 2.51 (s, 3H), 1.26 (s, 9H). ¹³**C NMR** (126 MHz, Chloroform-*d*) δ 186.8, 161.0, 148.2, 130.7, 130.4, 124.8, 58.5, 22.6, 14.5. **HRMS (ESI) m/z**: [M+H]⁺ Calcd. for C₁₃H₁₈NO₂S₂⁺ 284.0773; Found: 284.0771. [α]²⁵**D**: 31.0 (*c* 0.5, Chloroform).

(R)-N-(2-(4-iodophenyl)-2-oxoethylidene)-2-methylpropane-2-sulfinamide (1h)

1h

Following the general procedure *1* on 5 mmol scale, yellow oil liquid, yield: 70% (1272 mg), $R_f = 0.7$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 20: 1, v/v). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.39 (s, 1H), 7.85 (d, *J* = 5.0 Hz, 4H), 1.26 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 187.2, 160.6, 138.0, 133.6, 131.3, 102.9, 58.7, 22.7. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₂H₁₅INO₂S⁺ 363.9863; Found: 363.9861. [α]²⁵D: -4.3 (*c* 0.5, Chloroform).

(*R*)-*N*-(2-(3-iodophenyl)-2-oxoethylidene)-2-methylpropane-2-sulfinamide (1i)

Following the general procedure *1* on 5 mmol scale, yellow oil liquid, yield: 63% (1143 mg), $R_f = 0.7$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 20: 1, v/v).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.48 (t, *J* = 1.8 Hz, 1H), 8.38 (s, 1H), 8.12 - 8.05 (m, 1H), 7.97 - 7.90 (m, 1H), 7.24 (t, *J* = 7.8 Hz, 1H), 1.29 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 186.4, 160.4, 142.8, 138.9, 136.1, 130.3, 129.2, 94.2, 58.9, 22.7.
HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₂H₁₅INO₂S⁺ 363.9863; Found: 363.9865.
[a]²⁵D: -31.8 (*c* 0.5, Chloroform).

(R)-N-(2-(3-bromophenyl)-2-oxoethylidene)-2-methylpropane-2-sulfinamide (1j)

Following the general procedure 1 on 5 mmol scale, yellow oil liquid, yield: 60% (946 mg), $R_f = 0.7$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 20: 1, v/v).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.38 (s, 1H), 8.28 (t, *J* = 1.8 Hz, 1H), 8.06 (m, 1H), 7.74 (m, 1H), 7.38 (t, *J* = 7.9 Hz, 1H), 1.28 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 186.5, 160.4, 137.0, 136.1, 133.0, 130.2, 128.6 122.8, 58.9, 22.7.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{12}H_{15}BrNO_2S^+$ 316.0001; Found: 315.9995.

[α]²⁵**D**: -69.2 (*c* 0.5, Chloroform).

(R)-N-(2-(4-chlorophenyl)-2-oxoethylidene)-2-methylpropane-2-sulfinamide (1k)

Following the general procedure *1* on 5 mmol scale, yellow oil liquid, yield: 60% (813 mg), $R_f = 0.7$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 20: 1, v/v).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.41 (s, 1H), 8.10 (d, *J* = 8.3 Hz, 2H), 7.48 (d, *J* = 8.2 Hz, 2H), 1.27 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 186.7, 160.6, 141.0, 132.7, 131.5, 129.1, 58.8, 22.7.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{12}H_{15}CINO_2S^+$ 272.0507; Found: 272.0500.

 $[\alpha]^{25}$ **D**: -18.2 (*c* 0.5, Chloroform).

(R)-N-(2-(4-fluorophenyl)-2-oxoethylidene)-2-methylpropane-2-sulfinamide (11)

11

Following the general procedure *I* on 5 mmol scale, yellow oil liquid, yield: 61% (770mg), $R_f = 0.7$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 20: 1, v/v).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.41 (s, 1H), 8.20 (dd, *J* = 9.0, 5.4 Hz, 2H), 7.17 (dd, *J* = 9.0, 8.3 Hz, 2H), 1.27 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 186.4, 166.4 (d, *J* = 257.6 Hz), 160.8, 133.0 (d, *J* = 9.4 Hz), 130.9 (d, *J* = 3.1 Hz), 116.0 (d, *J* = 21.9 Hz), 58.7, 22.7.

¹⁹**FNMR** (471 MHz, Chloroform-*d*) δ -102.17.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{12}H_{15}FNO_2S^+$ 256.0802; Found: 256.0800.

 $[\alpha]^{25}$ **D**: -7.2 (*c* 0.5, Chloroform).

(R)-2-methyl-N-(2-oxo-2-(4-(trifluoromethyl)phenyl)ethylidene)propane-2-sulfinamide (1m)

Following the general procedure *1* on 5 mmol scale, yellow oil liquid, yield: 63% (961 mg), $R_f = 0.7$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 20: 1, v/v).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.38 (s, 1H), 8.23 (dd, *J* = 8.9, 0.8 Hz, 2H), 7.73 (d, *J* = 8.0 Hz, 2H), 1.25 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 186.9, 160.4, 137.1, 135.1 (q, *J* = 32.8 Hz), 130.4, 125.6 (d, *J* = 3.8 Hz), 58.8, 22.6.

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -63.25.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{13}H_{15}F_3NO_2S^+$ 303.0770; Found: 303.0768.

[α]²⁵**D**: -5.4 (*c* 0.5, Chloroform).

methyl (R)-4-(2-((tert-butylsulfinyl)imino)acetyl)benzoate (1n)

Following the general procedure *1* on 5 mmol scale, yellow oil liquid, yield: 63% (923 mg), $R_f = 0.5$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 10: 1, v/v).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.38 (s, 1H), 8.13 (d, *J* = 15.2 Hz, 4H), 3.90 (s, 3H), 1.23 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 187.4, 165.8, 160.4, 137.5, 134.5, 129.9, 129.6, 58.7, 52.4, 22.6.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{14}H_{18}NO_4S^+$ 296.0951; Found: 296.0946.

 $[\alpha]^{25}$ **D**: -29.1 (*c* 0.5, Chloroform).

(*R*)-2-methyl-*N*-(2-(naphthalen-2-yl)-2-oxoethylidene)propane-2-sulfinamide (10)

Following the general procedure *1* on 5 mmol scale, yellow oil liquid, yield: 50% (729 mg), $R_f = 0.7$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 20: 1, v/v). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.73 (s, 1H), 8.62 (d, *J* = 2.4 Hz, 1H), 8.14 (dd, *J* = 8.8, 2.4 Hz, 1H), 7.98 – 7.91 (m, 2H), 7.89 (d, *J* = 8.2 Hz, 1H), 7.67 – 7.62 (m, 1H), 7.58 (d, *J* = 7.2 Hz, 1H), 1.32 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 187.8, 161.1, 136.1, 133.1, 132.3, 131.9, 129.9, 129.4, 128.8, 127.9, 127.08, 124.5, 58.7, 22.8. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₆H₁₈NO₂S⁺ 288.1053; Found: 288.1049.

 $[\alpha]^{25}$ **D**: -4.3 (*c* 0.5, Chloroform).

(R)-N-(2-(furan-2-yl)-2-oxoethylidene)-2-methylpropane-2-sulfinamide (1p)

Following the general procedure *1* on 5 mmol scale, yellow oil liquid, yield: 65% (750 mg), $R_f = 0.6$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 15: 1, v/v).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.33 (s, 1H), 7.76 (dd, *J* = 1.7, 0.7 Hz, 1H), 7.67 (dd, *J* = 3.6, 0.8 Hz, 1H), 6.62 (dd, *J* = 3.7, 1.7 Hz, 1H), 1.29 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 174.0, 159.6, 150.4, 148.9, 123.0, 112.9, 59.0, 22.8.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{10}H_{14}NO_3S^+$ 228.0689; Found: 228.0684

 $[\alpha]^{25}$ **D**: -73.8 (*c* 0.5, Chloroform).

(R)-2-methyl-N-(2-(1-methyl-1H-pyrrol-2-yl)-2-oxoethylidene)propane-2-sulfinamide (1q)

Following the general procedure *I* on 5 mmol scale, yellow oil liquid, yield: 53% (636 mg), $R_f = 0.7$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 20: 1, v/v).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.46 (s, 1H), 7.35 (dd, *J* = 4.3, 1.7 Hz, 1H), 6.98 (t, *J* = 2.1 Hz, 1H), 6.23 (dd, *J* = 4.3, 2.4 Hz, 1H), 4.02 (s, 3H), 1.28 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 175.5, 161.0, 133.8, 129.7, 123.4, 109.6, 58.5, 37.9, 22.7.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{11}H_{17}N_2O_2S^+$ 241.1005; Found: 241.1001. $[\alpha]^{25}D$: -101.0 (*c* 0.5, Chloroform).

3. General procedure 2 of synthesis of a-amino ketones 3

To a Schlenk tube added [RhCl(COD)]₂ (4.5 mg, 0.0125 mmol, 5 mol %), (*R*)-*N*-tert-butanesulfinyl imines (1) (0.2 mmol), arylboronic acids (2) (0.4 mmol) and KOAc (0.4 mmol) under nitrogen atmosphere. Then toluene (0.75 mL) and water (0.25 mL) were added and the mixture was stirred at 30 °C for 3 h. The reaction mixture was diluted with EtOAc. The organic layer was washed with saturated ammonium chloride aqueous solution and brine. The aqueous layer was extracted with EtOAc (3×15 mLxz). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was subjected to silica gel chromatography to isolate the product.

(R)-N-((R)-1-(4-methoxyphenyl)-2-oxo-2-phenylethyl)-2-methylpropane-2-sulfinamide (3a)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 75% (56 mg), $R_f = 0.3$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). dr: >98: 2

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.88 (dd, *J* = 8.4, 1.3 Hz, 2H), 7.47 (t, *J* = 7.4 Hz, 1H), 7.36 (dd, *J* = 8.4, 7.3 Hz, 2H), 7.23 (d, *J* = 8.7 Hz, 2H), 6.81 (d, *J* = 8.7 Hz, 2H), 5.91 (d, *J* = 3.8 Hz, 1H), 5.08 (d, *J* = 3.8 Hz, 1H), 3.74 (s, 3H), 1.20 (s, 9H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 196.3, 159.5, 134.5, 133.4, 129.9, 129.7, 129.0, 128.6, 114.5, 62.6, 55.9, 55.1, 22.6.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{19}H_{24}NO_3S^+$ 346.1471; Found: 346.1474.

 $[\alpha]^{25}$ **D**: -94.4 (c 0.5, Chloroform).

(R)-N-((R)-1-(4-methoxyphenyl)-2-oxo-2-(p-tolyl)ethyl)-2-methylpropane-2-sulfinamide (3b)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 81% (59 mg), $R_f = 0.3$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). dr: >98: 2

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.80 – 7.77 (m, 2H), 7.24 – 7.19 (m, 2H), 7.16 – 7.12 (m, 2H), 6.80 (d, *J* = 8.8 Hz, 2H), 5.89 (d, *J* = 3.7 Hz, 1H), 5.10 (d, *J* = 3.7 Hz, 1H), 3.73 (s, 3H), 2.32 (s, 3H), 1.19 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 195.7, 159.4, 144.4, 131.8, 130.2, 129.6, 129.2, 129.1, 114.4, 62.4, 55.8, 55.1, 22.5, 21.6.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{20}H_{26}NO_3S^+$ 360.1628; Found: 360.1621.

 $[\alpha]^{25}$ **D**: -180.2 (*c* 0.5, Chloroform).

(*R*)-*N*-((*R*)-1-(4-methoxyphenyl)-2-oxo-2-(m-tolyl)ethyl)-2-methylpropane-2-sulfinamide (3c)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 77% (56 mg), $R_f = 0.3$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). dr: >98: 2

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.71 (s, 1H), 7.66 (d, *J* = 7.6 Hz, 1H), 7.28 (d, *J* = 7.3 Hz, 1H), 7.23 (dd, *J* = 8.3, 6.6 Hz, 3H), 6.81 (d, *J* = 8.7 Hz, 2H), 5.91 (d, *J* = 3.8 Hz, 1H), 5.08 (d, *J* = 3.9 Hz, 1H), 3.73 (s, 3H), 2.32 (s, 3H), 1.19 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 196.5, 159.4, 138.4, 134.4, 134.2, 130.0, 129.6, 129.5, 128.3, 126.2, 114.4, 62.5, 55.8, 55.1, 22.5, 21.2

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{20}H_{26}NO_3S^+$ 360.1628; Found: 360.1626.

 $[\alpha]^{25}$ **D**: -87.3 (*c* 0.5, Chloroform).

(*R*)-*N*-((*R*)-2-(4-ethylphenyl)-1-(4-methoxyphenyl)-2-oxoethyl)-2-methylpropane-2-sulfinamide (3d)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 72% (54 mg), R_f = 0.3 (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). dr: >98: 2

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.82 (d, *J* = 8.4 Hz, 2H), 7.23 (d, *J* = 8.7 Hz, 2H), 7.18 (d, *J* = 8.3 Hz, 2H), 6.81 (d, *J* = 8.8 Hz, 2H), 5.89 (d, *J* = 3.8 Hz, 1H), 5.09 (d, *J* = 3.8 Hz, 1H), 3.74 (s, 3H), 2.62 (q, *J* = 7.6 Hz, 2H), 1.21 – 1.17 (m, 12H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 195.8, 159.4, 150.5, 132.0, 130.2, 129.6, 129.3, 128.1, 114.4, 62.4, 55.8, 55.1, 28.8, 22.5, 14.9.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{21}H_{28}NO_3S^+$ 374.1784; Found: 374.1778.

 $[\alpha]^{25}$ **D**: -161.3 (*c* 0.5, Chloroform).

(*R*)-*N*-((*R*)-2-(3-methoxyphenyl)-1-(4-methoxyphenyl)-2-oxoethyl)-2-methylpropane-2-sulfinamide (3e)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 76% (58 mg), $R_f = 0.2$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). dr: >98: 2

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.46 (m, 1H), 7.41 (dd, *J* = 2.6, 1.6 Hz, 1H), 7.25 (t, *J* = 8.0 Hz, 1H), 7.22 (d, *J* = 8.7 Hz, 2H), 7.01 (m, 1H), 6.82 (d, *J* = 8.8 Hz, 2H), 5.89 (d, *J* = 3.9 Hz, 1H), 5.06 (d, *J* = 3.9 Hz, 1H), 3.77 (s, 3H), 3.74 (s, 3H), 1.20 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 196.1, 159.6, 159.5, 135.7, 129.9, 129.6, 129.5, 121.6, 120.0, 114.4, 113.25, 62.7, 55.9, 55.3, 55.1, 22.5.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{20}H_{26}NO_4S^+$ 376.1577; Found: 376.1579.

 $[\alpha]^{25}$ **D**: -150.0 (*c* 0.5, Chloroform).

(*R*)-*N*-((*R*)-2-(3,4-dimethoxyphenyl)-1-(4-methoxyphenyl)-2-oxoethyl)-2-methylpropane-2-sulfinamide (3f)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 75% (62 mg), $R_f = 0.2$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). dr: >98: 2 ¹H NMR (500 MHz, Chloroform-*d*) δ 7.52 (dd, J = 8.5, 2.1 Hz, 1H), 7.44 (d, J = 2.0 Hz, 1H), 7.22 (d, J =

8.7 Hz, 2H), 6.80 (d, J = 8.7 Hz, 2H), 6.76 (d, J = 8.5 Hz, 1H), 5.86 (d, J = 4.0 Hz, 1H), 5.09 (d, J = 3.9 Hz, 1H), 3.86 (s, 3H), 3.84 (s, 3H), 3.72 (s, 3H), 1.18 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 194.6, 159.4, 153.5, 148.8, 130.6, 129.4, 127.2, 123.9, 114.4, 111.1, 110.0, 62.1, 55.9, 55.8, 55.8, 55.1, 22.5.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{21}H_{28}NO_5S^+$ 406.1683; Found: 460.1685.

 $[\alpha]^{25}$ **D**: -118.2 (*c* 0.5, Chloroform).

(*R*)-*N*-((*R*)-1-(4-methoxyphenyl)-2-(4-(methylthio)phenyl)-2-oxoethyl)-2-methylpropane-2-sulfinamide(3g)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 70% (55 mg), $R_f = 0.3$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). dr: >98: 2

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.80 (d, *J* = 8.7 Hz, 2H), 7.22 (d, *J* = 8.7 Hz, 2H), 7.16 (d, *J* = 8.6 Hz, 2H), 6.82 (d, *J* = 8.7 Hz, 2H), 5.86 (d, *J* = 3.7 Hz, 1H), 5.09 (d, *J* = 3.7 Hz, 1H), 3.75 (s, 3H), 2.46 (s, 3H), 1.20 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 195.1, 159.5, 146.8, 130.5, 130.3, 129.6, 129.4, 124.8, 114.5, 62.4, 55.9, 55.2, 22.6, 14.5.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{20}H_{26}NO_3S_2^+$ 392.1349; Found: 392.1349.

[α]²⁵**D**: -59.7 (*c* 0.5, Chloroform).

(R)-N-((R)-2-(4-iodophenyl)-1-(4-methoxyphenyl)-2-oxoethyl)-2-methylpropane-2-sulfinamide (3h)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 82% (78 mg), $R_f = 0.3$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). dr: >98: 2 ¹H NMR (500 MHz, Chloroform-*d*) δ 7.72 (d, *J* = 8.6 Hz, 2H), 7.58 (d, *J* = 8.6 Hz, 2H), 7.19 (d, *J* = 8.7 Hz, 2H), 6.82 (d, *J* = 8.7 Hz, 2H), 5.83 (d, *J* = 3.8 Hz, 1H), 5.03 (d, *J* = 3.7 Hz, 1H), 3.75 (s, 3H), 1.19 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 195.6, 159.6, 137.9, 133.6, 130.2, 129.6, 129.4, 114.6, 101.7, 62.5, 55.9, 55.1, 22.5.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{19}H_{23}INO_3S^+$ 472.0438; Found: 472.0434.

 $[\alpha]^{25}$ **D**: -117.0 (*c* 0.5, Chloroform).

(R) - N - ((R) - 2 - (3 - iodophenyl) - 1 - (4 - methoxyphenyl) - 2 - oxoethyl) - 2 - methylpropane - 2 - sulfinamide (3i)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 74% (71 mg), $R_f = 0.3$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). dr: 81: 19

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.22 (t, *J* = 1.7 Hz, 1H), 7.82 – 7.74 (m, 2H), 7.20 (d, *J* = 8.7 Hz, 2H), 7.09 (t, *J* = 7.8 Hz, 1H), 6.83 (d, *J* = 8.7 Hz, 2H), 5.84 (d, *J* = 3.2 Hz, 1H), 5.00 (d, *J* = 3.8 Hz, 1H), 3.75 (s, 3H), 1.20 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 195.0, 159.6, 142.2, 137.8, 136.1, 130.2, 129.7, 129.2, 128.0, 114.6, 94.3, 62.6, 55.9, 55.2, 22.5.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{19}H_{23}INO_3S^+$ 472.0438; Found: 472.0432.

 $[\alpha]^{25}$ **D**: -107.0 (*c* 0.5, Chloroform).

(R)-N-((R)-2-(3-bromophenyl)-1-(4-methoxyphenyl)-2-oxoethyl)-2-methylpropane-2-sulfinamide (3j)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 62% (53 mg), R_f = 0.3 (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). dr: >98: 2

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.02 (t, *J* = 1.8 Hz, 1H), 7.78 (m, 1H), 7.60 (m, 1H), 7.25 (d, *J* = 7.9 Hz, 1H), 7.21 (d, *J* = 8.7 Hz, 2H), 6.83 (d, *J* = 8.7 Hz, 2H), 5.85 (d, *J* = 3.9 Hz, 1H), 5.00 (d, *J* = 3.9 Hz, 1H), 3.76 (s, 3H), 1.20 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 195.1, 159.7, 136.3, 136.2, 131.9, 130.1, 129.7, 129.2, 127.5, 122.9, 114.6, 62.7, 55.9, 55.2, 22.5.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{19}H_{23}BrNO_3S^+$ 424.0577; Found: 424.0573.

 $[\alpha]^{25}$ **D**: -85.5 (*c* 0.5, Chloroform).

(R)-N-((R)-2-(4-chlorophenyl)-1-(4-methoxyphenyl)-2-oxoethyl)-2-methylpropane-2-sulfinamide (3k)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 78% (60 mg), $R_f = 0.3$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). dr: 93: 7 ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.82 (d, *J* = 8.7 Hz, 2H), 7.33 (d, *J* = 8.6 Hz, 2H), 7.20 (d, *J* = 8.8 Hz, 2H), 6.82 (d, *J* = 8.7 Hz, 2H), 5.86 (d, *J* = 3.8 Hz, 1H), 5.04 (d, *J* = 3.8 Hz, 1H), 3.74 (s, 3H), 1.19 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 195.1, 159.6, 139.9, 132.7, 130.4, 129.6, 129.5, 128.9, 114.6, 62.6, 55.9, 55.1, 22.5.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{19}H_{23}CINO_3S^+$ 379.1082; Found: 380.1074. $[\alpha]^{25}D$: -132.8 (*c* 0.5, Chloroform).

(*R*)-*N*-((*R*)-2-(4-fluorophenyl)-1-(4-methoxyphenyl)-2-oxoethyl)-2-methylpropane-2-sulfinamide (3l)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 83% (61 mg), $R_f = 0.3$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). dr: >98: 2

¹**H** NMR (500 MHz, Chloroform-*d*) δ 7.92 (dd, *J* = 8.9, 5.3 Hz, 2H), 7.21 (d, *J* = 8.7 Hz, 2H), 7.04 (t, *J* = 8.6 Hz, 2H), 6.83 (d, *J* = 8.7 Hz, 2H), 5.86 (d, *J* = 4.0 Hz, 1H), 5.05 (d, *J* = 3.9 Hz, 1H), 3.75 (s, 3H), 1.20 (s, 9H).

¹³C NMR (126 MHz, Chloroform-d) δ 194.7, 159.6, 131.7 (d, J = 9.4 Hz), 130.8 (d, J = 2.4 Hz), 129.8, 129.6 115.8 (d, J = 21.9 Hz), 114.6, 62.6, 55.9, 55.2, 22.5.

¹⁹**F NMR** (471 MHz, Chloroform-d) δ -103.6.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{19}H_{23}FNO_3S^+$ 364.1377; Found: 364.1376.

[*α*]²⁵**D**: -116.0 (*c* 0.5, Chloroform).

(*R*)-*N*-((*R*)-1-(4-methoxyphenyl)-2-oxo-2-(4-(trifluoromethyl)phenyl)ethyl)-2-methylpropane-2-sulfinamide (3m)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 65% (54 mg), $R_f = 0.3$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). dr: >98: 2 ¹H NMR (500 MHz, Chloroform-*d*) δ 7.97 (d, *J* = 8.0 Hz, 2H), 7.63 (d, *J* = 8.0 Hz, 2H), 7.21 (d, *J* = 8.7 Hz, 2H), 6.83 (d, *J* = 8.7 Hz, 2H), 5.90 (d, *J* = 3.8 Hz, 1H), 5.03 (d, *J* = 3.8 Hz, 1H), 3.75 (s, 3H), 1.21 (s, 9H).

¹³C NMR (126 MHz, Chloroform-d) δ 195.5, 159.7, 137.2, 135.7, 134.5 (q, J = 33.1 Hz), 129.5 (d, J = 57.2 Hz), 128.9, 125.6 (d, J = 4.2 Hz), 123.3 (d, J = 272.8 Hz), 114.7, 63.0, 56.0, 55.2, 22.5.

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -63.20.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{20}H_{23}F_3NO_3S^+$ 414.1345; Found: 414.1347.

[**α**]²⁵**D**: -87.1 (*c* 0.5, Chloroform).

methyl 4-((*R*)-2-(((*R*)-tert-butylsulfinyl)amino)-2-(4-methoxyphenyl)acetyl)benzoate (3n)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 70% (54 mg), $R_f = 0.2$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). dr: >98: 2 ¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.02 (d, *J* = 8.6 Hz, 2H), 7.91 (d, *J* = 8.7 Hz, 2H), 7.21 (d, *J* = 8.7 Hz,

2H), 6.82 (d, *J* = 8.8 Hz, 2H), 5.91 (d, *J* = 3.7 Hz, 1H), 5.04 (d, *J* = 3.7 Hz, 1H), 3.90 (s, 3H), 3.74 (s, 3H), 1.21 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 196.0, 166.0, 160.0, 137.8, 134.1, 129.7, 129.7, 129.2, 128.9, 114.6, 63.0, 55.9, 55.2, 52.5, 22.5.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{22}H_{26}NO_5S^+$ 384.1805; Found: 384.1796. $[\alpha]^{25}D$: -88.6 (*c* 0.5, Chloroform).

(R)-N-((R)-1-(4-methoxyphenyl)-2-(naphthalen-2-yl)-2-oxoethyl)-2-methylpropane-2-sulfinamide (30)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 66% (66 mg), $R_f = 0.3$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). dr: >98: 2

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.44 (s, 1H), 7.93 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.87 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.79 (d, *J* = 8.7 Hz, 2H), 7.55 (m, 1H), 7.49 (m, 1H), 7.30 (d, *J* = 8.8 Hz, 2H), 6.81 (d, *J* = 8.8 Hz, 2H), 6.10 (d, *J* = 3.7 Hz, 1H), 5.16 (d, *J* = 3.8 Hz, 1H), 3.71 (s, 3H), 1.23 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 196.4, 159.6, 135.7, 132.3, 131.9, 131.2, 130.2, 129.8, 128.9, 128.6, 127.8, 127.0, 124.5, 114.6, 62.7, 56.0, 55.2, 22.7.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{23}H_{26}NO_3S^+$ 396.1628; Found: 396.1631.

 $[\alpha]^{25}$ **D**: -48.8 (*c* 0.5, Chloroform).

(*R*)-*N*-((*R*)-2-(furan-2-yl)-1-(4-methoxyphenyl)-2-oxoethyl)-2-methylpropane-2-sulfinamide (3p)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 90% (66 mg), $R_f = 0.1$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). dr: >98: 2

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.52 (dd, *J* = 1.7, 0.7 Hz, 1H), 7.30 (d, *J* = 8.7 Hz, 2H), 7.14 (dd, *J* = 3.6, 0.8 Hz, 1H), 6.84 (d, *J* = 8.8 Hz, 2H), 6.45 (dd, *J* = 3.6, 1.7 Hz, 1H), 5.72 (d, *J* = 4.0 Hz, 1H), 4.96 (d, *J* = 4.0 Hz, 1H), 3.76 (s, 3H), 1.20 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 184.9, 159.6, 150.4, 147.0, 129.7, 129.4, 119.4, 114.2, 112.5, 62.4, 55.9, 55.2, 22.5.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{17}H_{22}NO_4S^+$ 336.1264; Found: 336.1255.

 $[\alpha]^{25}$ **D**: -153.0 (*c* 0.5, Chloroform).

(*R*)-*N*-((*R*)-1-(4-methoxyphenyl)-2-(1-methyl-1H-pyrrol-2-yl)-2-oxoethyl)-2-methylpropane-2-sulfinamide (3q)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 83% (53 mg), $R_f = 0.1$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 2: 1, v/v). dr: >98: 2

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.27 (d, *J* = 8.8 Hz, 2H), 6.94 (dd, *J* = 4.2, 1.6 Hz, 1H), 6.83 (d, *J* = 8.8 Hz, 2H), 6.78 (t, *J* = 2.0 Hz, 1H), 6.06 (dd, *J* = 4.2, 2.4 Hz, 1H), 5.64 (d, *J* = 4.7 Hz, 1H), 5.01 (d, *J* = 4.7 Hz, 1H), 3.90 (s, 3H), 3.76 (s, 3H), 1.20 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 186.3, 159.2, 132.0, 131.6, 129.1, 128.2, 120.8, 114.2, 108.7, 62.5, 55.8, 55.1, 37.7, 22.6.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{18}H_{25}N_2O_3S^+$ 349.1580; Found: 349.1573. $[\alpha]^{25}D$: -139.2 (*c* 0.5, Chloroform). (R)-2-methyl-N-((R)-2-oxo-1,2-diphenylethyl)propane-2-sulfinamide (3r)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 61% (39 mg), $R_f = 0.3$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). dr: >98: 2

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.90 (d, *J* = 7.0 Hz, 2H), 7.48 (t, *J* = 7.4 Hz, 1H), 7.37 (t, *J* = 7.8 Hz, 2H), 7.33 – 7.27 (m, 4H), 7.27 – 7.22 (m, 1H), 5.96 (d, *J* = 4.0 Hz, 1H), 5.15 (d, *J* = 4.0 Hz, 1H), 1.20 (s, 9H).

13C NMR (126 MHz, Chloroform-d) δ 196.2, 138.0, 134.3 133.6, 129.1, 129.0, 128.6, 128.4, 128.3, 63.3, 55.9, 22.5.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{18}H_{22}NO_2S^+$ 316.1366; Found: 316.1364.

[α]²⁵**D**: -314.0 (c 0.5, Chloroform).

(R)-2-methyl-N-((R)-2-oxo-2-phenyl-1-(p-tolyl)ethyl)propane-2-sulfinamide (3s)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 81% (52 mg), $R_f = 0.3$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). dr: >98: 2

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.90 (d, *J* = 7.7 Hz, 2H), 7.48 (t, *J* = 7.4 Hz, 1H), 7.36 (t, *J* = 7.3 Hz, 2H), 7.20 (dd, *J* = 8.1, 2.2 Hz, 2H), 7.10 (d, *J* = 7.7 Hz, 2H), 5.92 (d, *J* = 3.3 Hz, 1H), 5.11 (d, *J* = 3.9 Hz, 1H), 2.28 (s, 3H), 1.20 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 196.3, 138.2, 134.9, 134.4, 133.5, 129.8, 129.0, 128.6, 128.3, 63.0, 55.9, 22.6, 21.1.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{19}H_{24}NO_2S^+$ 330.1522; Found: 330.1523.

[*α*]²⁵**D**: -133.6 (c 0.5, Chloroform).

(R)-N-((R)-1-(4-isopropylphenyl)-2-oxo-2-phenylethyl)-2-methylpropane-2-sulfinamide (3t)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 61% (44 mg), $R_f = 0.3$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). dr: >98: 2 ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.91 (d, *J* = 7.1 Hz, 2H), 7.48 (t, *J* = 7.4 Hz, 1H), 7.37 (dd, *J* = 8.5,

7.2 Hz, 2H), 7.22 (d, *J* = 8.2 Hz, 2H), 7.14 (d, *J* = 8.2 Hz, 2H), 5.94 (d, *J* = 4.4 Hz, 1H), 5.14 (d, *J* = 4.4 Hz, 1H), 2.83 (p, *J* = 6.9 Hz, 1H), 1.21 (s, 9H), 1.18 (d, *J* = 6.9 Hz, 6H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 196.4, 149.0, 135.1, 134.4, 133.5, 129.1, 128.5, 128.2, 127.1, 62.9, 55.9, 33.6, 23.7, 22.6.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{21}H_{28}NO_2S^+$ 358.1835; Found: 358.1837.

 $[\alpha]^{25}$ **D**: -150.8 (c 0.5, Chloroform).

(*R*)-*N*-((*R*)-1-(4-(tert-butyl)phenyl)-2-oxo-2-phenylethyl)-2-methylpropane-2-sulfinamide (3u)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 53% (40 mg), $R_f = 0.3$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). dr: >98: 2

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.93 (dd, *J* = 8.4, 1.3 Hz, 2H), 7.50 (m, 1H), 7.38 (dd, *J* = 8.4, 7.4 Hz, 2H), 7.30 (d, *J* = 8.5 Hz, 2H), 7.23 (d, *J* = 8.4 Hz, 2H), 5.94 (d, *J* = 4.6 Hz, 1H), 5.11 (d, *J* = 4.6 Hz, 1H), 1.25 (s, 9H), 1.21 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 196.5, 151.3, 134.8, 134.5, 133.5, 129.1, 128.6, 127.9, 126.0, 62.8, 55.9, 34.5, 31.2, 22.6.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for C₂₂H30NO₂S⁺ 372.1992; Found: 372.1998.

[*α*]²⁵**D**: -82.2 (c 0.5, Chloroform).

(*R*)-*N*-((*R*)-1-(3-methoxyphenyl)-2-oxo-2-phenylethyl)-2-methylpropane-2-sulfinamide (3v)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 53% (37 mg), $R_f = 0.2$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). dr: >98: 2 ¹H NMR (600 MHz, Chloroform-*d*) δ 7.91 (d, *J* = 7.1 Hz, 2H), 7.49 (t, *J* = 7.4 Hz, 1H), 7.38 (t, *J* = 10.0 Hz 2H), 7.21 (t, *J* = 7.9 Hz, 1H), 5.92 (d, *J* = 4.1 Hz, 1H), 5.13 (d, *J* = 4.1 Hz, 1H), 3.74 (s, 3H), 1.21 (s, 9H). ¹³C NMR (126 MHz,) δ 196.1, 160.0, 139.4, 134.4, 133.6, 130.1, 129.0, 128.6, 120.8, 113.9, 113.8, 63.2, 56.0, 55.2, 22.6.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{19}H_{24}NO_3S^+$ 346.1471; Found: 346.1479.

 $[\alpha]^{25}$ **D**: -100.2 (c 0.5, Chloroform).

```
(R)-N-((R)-1-(4-methoxy-3-methylphenyl)-2-oxo-2-phenylethyl)-2-methylpropane-2-sulfinamide (3w)
```


Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 70% (51 mg), $R_f = 0.3$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). dr: >98: 2

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.90 (d, *J* = 7.7 Hz, 2H), 7.47 (t, *J* = 7.4 Hz, 1H), 7.36 (t, *J* = 7.4 Hz, 2H), 7.11 (d, *J* = 8.0 Hz, 1H), 7.06 (s, 1H), 6.72 (d, *J* = 8.4 Hz, 1H), 5.87 (d, *J* = 3.3 Hz, 1H), 5.06 (t, *J* = 3.1 Hz, 1H), 3.75 (s, 3H), 2.14 (s, 3H), 1.20 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 196.4, 157.6, 134.5, 133.4, 130.5, 129.3, 129.0, 128.5, 127.4, 127.1, 110.1, 62.6, 55.8, 55.2, 22.6, 16.2.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{20}H_{26}NO_3S^+$ 360.1628; Found: 360.1629.

 $[\alpha]^{25}$ **D**: -74.5 (c 0.5, Chloroform).

(R)-N-((R)-1-(3,4-dimethoxyphenyl)-2-oxo-2-phenylethyl)-2-methylpropane-2-sulfinamide (3x)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 43% (33 mg), $R_f = 0.2$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). dr: 96: 4

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.89 (dd, *J* = 8.4, 1.3 Hz, 2H), 7.48 (t, *J* = 7.4 Hz, 1H), 7.36 (dd, *J* = 8.2, 7.4 Hz, 2H), 6.91 (dd, *J* = 8.2, 2.1 Hz, 1H), 6.77 (d, *J* = 8.2 Hz, 1H), 6.75 (d, *J* = 2.1 Hz, 1H), 5.90 (d, *J* = 3.6 Hz, 1H), 5.05 (d, *J* = 3.6 Hz, 1H), 3.81 (s, 3H), 3.80 (s, 3H), 1.21 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 196.2, 149.4, 149.0, 134.5, 133.5, 130.2, 128.9, 128.5, 121.3, 111.2, 110.8, 62.8, 55.9, 55.8, 55.7, 22.5.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{20}H_{26}NO_4S^+$ 376.1577; Found: 376.1580.

[*α*]²⁵**D**: -122.8 (c 0.5, Chloroform).

(*R*)-*N*-((*R*)-1-(3,5-dimethoxyphenyl)-2-oxo-2-phenylethyl)-2-methylpropane-2-sulfinamide (3y)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 57% (43 mg), $R_f = 0.2$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). dr: >98: 2

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.91 (dd, *J* = 8.4, 1.3 Hz, 2H), 7.55 – 7.43 (m, 1H), 7.38 (dd, *J* = 8.3, 7.4 Hz, 2H), 6.45 (d, *J* = 2.2 Hz, 2H), 6.32 (t, *J* = 2.3 Hz, 1H), 5.85 (d, *J* = 4.1 Hz, 1H), 5.11 (d, *J* = 4.1 Hz, 1H), 3.72 (s, 6H), 1.22 (s, 9H).

¹³C NMR (126 MHz,) δ 196.0, 161.2, 140.1, 134.4, 133.6, 129.0, 128.6, 106.4, 100.1, 63.3, 56.0, 55.3, 22.6.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{20}H_{26}NO_4S^+$ 376.1577; Found: 376.1574.

 $[\alpha]^{25}$ **D**: -162.8 (c 0.5, Chloroform).

(*R*)-*N*-((*R*)-1-(4-(benzyloxy)phenyl)-2-oxo-2-phenylethyl)-2-methylpropane-2-sulfinamide (3z)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 45% (38 mg), $R_f = 0.3$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). dr: >98: 2

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.90 (d, *J* = 7.1 Hz, 2H), 7.49 (t, *J* = 7.4 Hz, 1H), 7.39 – 7.34 (m, 6H), 7.32 (dd, *J* = 7.3, 1.6 Hz, 1H), 7.24 (d, *J* = 8.7 Hz, 2H), 6.90 (d, *J* = 8.7 Hz, 2H), 5.93 (d, *J* = 3.9 Hz, 1H), 5.09 (d, *J* = 3.9 Hz, 1H), 4.98 (s, 2H), 1.21 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 196.3, 158.7, 136.6, 134.4, 133.5, 130.2, 129.7, 129.0, 128.6, 128.0, 127.5, 115.3, 70.0, 62.6, 55.9, 22.5.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{25}H_{28}NO_3S^+$ 422.1784; Found: 422,1781.

 $[\alpha]^{25}$ **D**: -108.2 (c 0.5, Chloroform).

(*R*)-2-methyl-*N*-((1*R*)-2-oxo-2-phenyl-1-(4-((tetrahydro-2H-pyran-2-yl)oxy)phenyl)ethyl)propane-2-sulfinamide (3aa)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 65% (54 mg), $R_f = 0.3$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). dr: 1: 1

¹**H NMR** (500 MHz,) δ 7.95 – 7.80 (m, 2H), 7.51 – 7.43 (m,1H), 7.36 (m, 2H), 7.21 (d, J = 8.7 Hz, 2H), 6.96 (dd, J = 8.7, 0.7 Hz, 2H), 5.91 (dd, J = 4.0, 1.8 Hz, 1H), 5.33 (q, J = 3.6 Hz, 1H), 5.08 (t, J = 3.8 Hz, 1H), 3.85 (m, 1H), 3.64 – 3.38 (m, 1H), 1.94 (m, 1H), 1.82 – 1.72 (m, 2H), 1.68 – 1.53 (m, 3H), 1.20 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 196.3, 157.1, 134.4, 133.5, 130.8, 129.6, 129.5, 129.1, 128.6, 128.5, 116.8, 116.8, 96.4, 96.3, 62.6, 62.6, 62.2, 62.2, 55.9, 30.3, 25.1, 22.6, 18.8, 18.8.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{23}H_{30}NO_4S^+$ 416.1890; Found: 416.1887.

[α]²⁵**D**: -115.6 (c 0.5, Chloroform).

(*R*)-*N*-((*R*)-1-(2,3-dihydrobenzofuran-5-yl)-2-oxo-2-phenylethyl)-2-methylpropane-2-sulfinamide (3ab)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 68% (49 mg), $R_f = 0.3$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). dr: 93: 7

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.90 (d, *J* = 7.2 Hz, 2H), 7.48 (m, 1H), 7.37 (t, *J* = 7.8 Hz, 2H), 7.11 (s, 1H), 7.07 (d, *J* = 8.1 Hz, 1H), 6.69 (d, *J* = 8.2 Hz, 1H), 5.89 (d, *J* = 3.9 Hz, 1H), 5.05 (d, *J* = 3.9 Hz, 1H), 4.52 (m, 2H), 3.13 (t, *J* = 8.7 Hz, 2H), 1.21 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 196.4, 160.2, 134.4, 133.5, 129.7, 129.0, 128.7, 128.6, 128.0, 124.9, 109.7, 71.4, 62.8, 55.8, 29.5, 22.6.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{20}H_{24}NO_3S^+$ 358.1471; Found: 358.1474.

 $[\alpha]^{25}$ **D**: -81.8 (c 0.5, Chloroform).

(*R*)-2-methyl-*N*-((*R*)-1-(4-(methylthio)phenyl)-2-oxo-2-phenylethyl)propane-2-sulfinamide (3ac)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 51% (37 mg), $R_f = 0.3$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). dr: >98: 2

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.88 (d, *J* = 7.1 Hz, 2H), 7.49 (t, *J* = 7.5 Hz, 1H), 7.40 – 7.35 (m, 2H), 7.23 (d, *J* = 8.4 Hz, 2H), 7.15 (d, *J* = 8.4 Hz, 2H), 5.92 (d, *J* = 3.8 Hz, 1H), 5.11 (d, *J* = 3.8 Hz, 1H), 2.42 (s, 3H), 1.20 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 196.0, 139.1, 134.4, 134.3, 133.6, 129.0, 128.8, 128.6, 126.5, 62.7, 55.9, 22.5, 15.2.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{19}H_{24}NO_2S_2^+$ 362.1243; Found: 362.1245.

[*α*]²⁵**D**: -163.0 (c 0.5, Chloroform).

(R)-N-((R)-1-(4-(diphenylamino)phenyl)-2-oxo-2-phenylethyl)-2-methylpropane-2-sulfinamide (3ad)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 55% (41 mg), $R_f = 0.2$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 2: 1, v/v). dr: >98: 2

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.96 – 7.92 (m, 2H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.42 (t, *J* = 7.8 Hz, 2H), 7.23 (dd, *J* = 8.8, 7.1 Hz, 4H), 7.14 (d, *J* = 8.6 Hz, 2H), 7.06 – 6.99 (m, 6H), 6.95 (d, *J* = 8.6 Hz, 2H), 5.91 (d, *J* = 4.4 Hz, 1H), 5.08 (d, *J* = 4.4 Hz, 1H), 1.23 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 196.3, 147.8, 147.2, 134.5, 133.6, 130.9, 129.3, 129.1, 129.1, 128.6, 124.8, 123.4, 122.8, 62.6, 55.9, 22.6.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{30}H_{31}N_2O_2S^+$ 483.2101; Found: 483.2108.

 $[\alpha]^{25}$ **D**: -54.3 (c 0.5, Chloroform).

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 35% (25 mg), $R_f = 0.3$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). dr: >98: 2

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.96 – 7.85 (m, 2H), 7.49 – 7.42 (m, 1H), 7.35 (dd, *J* = 8.4, 7.1 Hz, 2H), 7.15 (d, *J* = 8.8 Hz, 2H), 6.60 (d, *J* = 8.9 Hz, 2H), 5.87 (d, *J* = 3.9 Hz, 1H), 5.02 (d, *J* = 4.0 Hz, 1H), 2.89 (s, 6H), 1.20 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 196.5, 150.2, 134.7, 133.3, 129.4, 129.0, 128.5, 124.8, 112.5, 62.7, 55.8, 40.2, 22.6.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{20}H_{27}N_2O_2S^+$ 359.1788; Found: 359.1785.

[α]²⁵**D**: -152.8 (c 0.5, Chloroform).

(R)-N-((R)-1-(4-fluorophenyl)-2-oxo-2-phenylethyl)-2-methylpropane-2-sulfinamide (3af)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 79% (53 mg), $R_f = 0.3$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). dr: >98: 2

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.87 (dd, *J* = 8.5, 1.3 Hz, 2H), 7.55 – 7.47 (m, 1H), 7.38 (dd, *J* = 8.3, 7.4 Hz, 2H), 7.30 (dd, *J* = 8.7, 5.2 Hz, 2H), 6.99 (t, *J* = 8.6 Hz, 2H), 5.96 (d, *J* = 3.7 Hz, 1H), 5.12 (d, *J* = 3.7 Hz, 1H), 1.20 (s, 9H).

¹³C NMR (126 MHz, Chloroform-d) δ 196.0, 162.5 (d, J = 248.0 Hz), 134.2, 133.9, 133.9, 133.7, 130.2 (d, J = 8.3 Hz), 128.8 (d, J = 41.5 Hz), 116.1 (d, J = 21.7 Hz), 62.3, 56.0, 22.5.

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -112.9.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{18}H_{21}FNO_2S^+$ 334.1272; Found: 334.1269.

 $[\alpha]^{25}$ **D**: -67.6 (c 0.5, Chloroform).

(*R*)-*N*-((*R*)-1-(4-fluoro-2-methylphenyl)-2-oxo-2-phenylethyl)-2-methylpropane-2-sulfinamide (3ag)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 55% (38 mg), $R_f = 0.3$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). dr: >98: 2

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.76 (dd, *J* = 8.4, 1.3 Hz, 2H), 7.51 – 7.45 (m, 1H), 7.35 (dd, *J* = 8.3, 7.4 Hz, 2H), 7.10 (dd, *J* = 8.6, 5.7 Hz, 1H), 6.93 – 6.84 (m, 1H), 6.83 – 6.77 (m, 1H), 5.95 (d, *J* = 4.0 Hz, 1H), 5.11 (d, *J* = 3.9 Hz, 1H), 2.47 (s, 3H), 1.20 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 196.8, 162.33 (d, *J* = 247.6 Hz), 139.1 (d, *J* = 8.0 Hz), 134.5, 133.6, 132.1, 132.0, 130.9 (d, *J* = 8.6 Hz), 128.6 (d, *J* = 4.8 Hz), 118.2 (d, *J* = 21.4 Hz), 113.6 (d, *J* = 21.2 Hz), 60.8, 55.9, 22.5, 19.6.

¹⁹**F NMR** (471 MHz, Chloroform-*d*) δ -113.5.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{19}H_{23}FNO_2S^+$ 348.1428; Found: 348.1420.

[α]²⁵**D**: -54.4 (c 0.5, Chloroform).

(*R*)-*N*-((*R*)-1-(4-chlorophenyl)-2-oxo-2-phenylethyl)-2-methylpropane-2-sulfinamide (3ah)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 53% (37 mg), $R_f = 0.35$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.87 (dd, J = 8.4, 1.3 Hz, 2H), 7.51 (t, J = 7.4 Hz, 1H), 7.39 (dd, J = 8.3, 7.4 Hz, 2H), 7.27 (d, J = 2.8 Hz, 4H), 5.94 (d, J = 3.7 Hz, 1H), 5.13 (d, J = 3.7 Hz, 1H), 1.21 (s, 9H). ¹³C NMR (126 MHz,) δ 195.8, 136.5, 134.4, 134.1, 133.8, 129.7, 129.4, 129.0, 128.7, 62.4, 56.0, 22.5. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₈H₂₁ClNO₂S⁺ 350.0976; Found: 350.0968. [α]²⁵D: -54.6 (c 0.5, Chloroform).

(R)-2-methyl-N-((R)-1-(naphthalen-1-yl)-2-oxo-2-phenylethyl)propane-2-sulfinamide (3ai)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 51% (22 mg), $R_f = 0.3$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). dr: >98: 2

¹**H NMR** (600 MHz, Chloroform-*d*) δ 8.26 (d, *J* = 8.5 Hz, 1H), 7.88 – 7.84 (m, 1H), 7.80 (m, 3H), 7.60 (m, 1H), 7.52 (m, 1H), 7.43 – 7.34 (m, 3H), 7.27 – 7.23 (m, 2H), 6.50 (d, *J* = 4.6 Hz, 1H), 5.27 (d, *J* = 4.6 Hz, 1H), 1.14 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 197.2, 134.5, 134.4, 133.7, 133.5, 130.9, 129.5, 129.1, 128.8, 128.5, 127.8, 127.0, 126.1, 125.4, 123.4, 61.5, 56.0, 22.5.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{22}H_{24}NO_2S^+$ 366.1522; Found: 366.1523.

 $[\alpha]^{25}$ **D**: -108.3 (c 0.5, Chloroform).

(R)-2-methyl-N-((R)-1-(naphthalen-2-yl)-2-oxo-2-phenylethyl)propane-2-sulfinamide (3aj)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 51% (34 mg), $R_f = 0.3$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). dr: >98: 2 ¹H NMR (500 MHz, Chloroform-*d*) δ 7.95 (dd, J = 8.5, 1.3 Hz, 2H), 7.84 (s, 1H), 7.81 (dd, J = 7.7, 2.0 Hz, 1H), 7.78 (dd, J = 8.5, 3.8 Hz, 2H), 7.49 – 7.46 (m, 2H), 7.44 (d, J = 7.4 Hz, 1H), 7.38 (dd, J = 8.6, 1.9 Hz, 1H), 7.34 (dd, J = 8.4, 7.2 Hz, 2H), 6.14 (d, J = 3.7 Hz, 1H), 5.23 (d, J = 3.8 Hz, 1H), 1.20 (s, 9H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 196.1, 135.3, 134.3, 133.6, 133.3, 133.0, 129.2, 129.1, 128.6, 128.1, 128.0, 127.7, 126.6, 126.5, 125.4, 63.4, 56.0, 22.6. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₂H₂₄NO₂S⁺ 366.1522; Found: 366.1525. [a]²⁵D: -54.9 (c 0.5, Chloroform).

(R)-N-((R)-1-(4-methoxynaphthalen-1-yl)-2-oxo-2-phenylethyl)-2-methylpropane-2-sulfinamide (3ak)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 63% (50 mg), $R_f = 0.3$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). dr: >98: 2 ¹H NMR (500 MHz, Chloroform-*d*) δ 8.35 – 8.26 (m, 1H), 8.17 (d, *J* = 8.5 Hz, 1H), 7.81 (dd, *J* = 8.5, 1.3 Hz, 2H), 7.59 (m, 1H), 7.50 (m, 1H), 7.45 – 7.36 (m, 1H), 7.29 (d, *J* = 8.0 Hz, 1H), 7.27 – 7.22 (m, 2H), 6.69 (d, *J* = 8.0 Hz, 1H), 6.40 (d, *J* = 4.7 Hz, 1H), 5.18 (d, *J* = 4.7 Hz, 1H), 3.94 (s, 3H), 1.14 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 197.5, 156.0, 134.7, 133.3, 131.9, 128.7, 128.4, 127.4, 126.4, 125.4, 125.4, 125.4, 123.2, 122.8, 103.2, 61.5, 55.9, 55.4, 22.6.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{23}H_{26}NO_3S^+$ 396.1628; Found: 396.1619.

 $[\alpha]^{25}$ **D**: -241.8 (c 0.5, Chloroform).

(*R*)-*N*-((*R*)-1-(6,9-diphenyl-9H-carbazol-3-yl)-2-oxo-2-phenylethyl)-2-methylpropane-2-sulfinamide (3al)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 65% (73 mg), $R_f = 0.3$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). dr: >98: 2

¹**H NMR** (600 MHz, Chloroform-*d*) δ 8.36 (d, *J* = 1.8 Hz, 1H), 8.18 (d, *J* = 1.5 Hz, 1H), 8.00 (dd, *J* = 8.4, 1.3 Hz, 2H), 7.72 (dd, *J* = 8.3, 1.3 Hz, 2H), 7.66 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.59 (dd, *J* = 8.3, 7.3 Hz, 2H), 7.52 (dd, *J* = 8.4, 1.3 Hz, 2H), 7.51 – 7.46 (m, 3H), 7.46 – 7.41 (m, 2H), 7.40 – 7.33 (m,5H), 6.21 (d, *J* = 3.6 Hz, 1H), 5.26 (d, *J* = 3.7 Hz, 1H), 1.23 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 196.3, 141.6, 141.0, 140.6, 137.2, 134.5, 133.8, 133.4, 129.9, 129.5, 129.1, 128.8, 128.5, 127.6, 127.2, 126.8, 126.7, 126.4, 125.8, 124.0, 123.4, 120.6, 118.9, 110.6, 110.2, 63.5, 55.8, 22.6.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{36}H_{33}N_2O_2S^+$ 557.2257; Found: 557.2250. $[\alpha]^{25}D$: -114.0 (c 0.5, Chloroform).

(*R*)-*N*-((*R*)-1-(6,9-diphenyl-9H-carbazol-3-yl)-2-(4-iodophenyl)-2-oxoethyl)-2-methylpropane-2-sulfinamide (3am)

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 58% (79 mg), $R_f = 0.3$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v). dr: >98: 2

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.34 (dd, *J* = 1.8, 0.6 Hz, 1H), 8.12 (dd, *J* = 1.8, 0.7 Hz, 1H), 7.73 – 7.70 (m, 3H), 7.69 (d, *J* = 7.2 Hz, 3H), 7.67 – 7.65 (m, 1H), 7.60 (dd, *J* = 8.2, 7.2 Hz, 2H), 7.55 – 7.52 (m, 2H), 7.49 (dd, *J* = 8.3, 7.0 Hz, 3H), 7.43 (dd, *J* = 8.6, 0.7 Hz, 1H), 7.39 – 7.30 (m, 3H), 6.12 (d, *J* = 3.5 Hz, 1H), 5.20 (d, *J* = 3.5 Hz, 1H), 1.22 (s, 9H).

¹³**C NMR** (126 MHz, Chloroform-*d*) δ 195.7, 141.6, 141.1, 140.7, 137.9, 137.2, 133.9, 133.7, 130.4, 129.9, 129.1, 128.8, 127.8, 127.3, 126.9, 126.7, 126.4, 126.0, 124.1, 123.3, 120.6, 118.9, 110.8, 110.2, 101.6, 63.5, 55.9, 22.6.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{36}H_{32}IN_2O_2S^+$ 683.1224; Found: 683.1221.

 $[\alpha]^{25}$ **D**: -94.4 (c 0.5, Chloroform).

4. Scale-up synthesis and synthetic applications

Scale-up synthesis

To a Schlenk tube added [RhCl(COD)]₂ (35 mg, 0.0125 mmol, 2.5 mol %), *N*-Sulfinyl imine (**1h**) (3 mmol), arylboronic acid (**2a**) (6 mmol) and KOAc (6 mmol) under nitrogen atmosphere. Then toluene (3 mL) and water (1 ml) were added and the mixture was stirred at 30 °C for 3 h. The reaction mixture was diluted with EtOAc. The organic layer was washed with saturated ammonium chloride aqueous solution and brine. The aqueous layer was extracted with EtOAc. The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was subjected to silica gel chromatography (eluent: petroleum ether/EtOAc 3: 1) to isolate the product **3h** (1074 mg, >98: 2 dr) as yellow oil.

Synthetic applications

The synthesis of (*R*)-*N*-(2-(4-iodophenyl)-1-(4-methoxyphenyl)-2-oxoethyl)-2-methylpropane-2sulfonamide (4)

In a Schlenk tube, *m*-CPBA (0.4 mmol, 2 equiv) was added to the solution of **3h** (0.2 mmol) in DCM (1.5 mL) at 0 $^{\circ}$ C. The mixture was stirred for 1 h at rt and subsequently quenched with a aqueous solution containing both sodium bicarbonate and sodium metabisulfite. The reaction mixture was poured into a separatory funnel containing a mixture of water and diethyl ether. The organic layer was separated, washed with brine, dried over Na₂SO₄, and filtered. Solvent was removed under reduced pressure and dried in

vacuo to provide the crude product. The crude reaction product was purified by flash column chromatography (PE/EA, 4: 1) to get product **4**.³

(R)-N-(2-(4-iodophenyl)-1-(4-methoxyphenyl)-2-oxoethyl)-2-methylpropane-2-sulfonamide (4)

4

White solid (mp: 150-153 °C), yield: 90% (87 mg), $R_f = 0.5$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.73 (d, *J* = 8.6 Hz, 2H), 7.61 (d, *J* = 8.6 Hz, 2H), 7.21 (d, *J* = 8.8 Hz, 2H), 6.81 (d, *J* = 8.7 Hz, 2H), 6.03 (d, *J* = 7.3 Hz, 1H), 5.68 (dd, *J* = 7.3, 1.3 Hz, 1H), 3.73 (s, 3H), 1.26 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 195.1, 159.7, 138.0, 133.2, 130.3, 129.3, 128.9, 114.7, 102.1, 61.7, 59.8, 55.2, 24.0.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{19}H_{23}INO_4S^+$ 488.0387; Found: 488.0383.

HPLC analysis: DAICEL CHIRALCEL OD-H, hexane/isopropanol = 90/10, 1 mL/min, λ = 254 nm, t_R (minor) = 3.993 min, t_R (major) = 18.541 min, 95% ee.

 $[\alpha]^{25}$ **D:** -12.00 (c 0.5, Chloroform).

Peak Result								
	Retention Time (min)	Int Type	Width (sec)	Area (µV*sec)	Height (µV)	% Area		
1	3.993	BB	21.000	15097	2035	2.50		
2	18.541	Bb	142.000	589364	13048	97.50		

The synthesis of (*R*)-*N*-((1*R*,2*S*)-2-hydroxy-2-(4-iodophenyl)-1-(4-methoxyphenyl)ethyl)-2methylpropane-2-sulfinamide (5)

To a Schlenk tube added **3h** (94.2 mg, 0.2 mmol, 1.0 equiv) and MeOH (0.5 mL, 0.4 M). The resulting solution was cooled to 0 °C and NaBH₄ was added in one portion (9 mg, 0.24 mmol, 1.2 equiv). The reaction mixture was stirred at 0 °C for 1 h. The reaction mixture was diluted with EtOAc (3 mL) and was washed with distilled water. The aqueous layer was extracted with EtOAc (3 x 10 ml), and the combined organic extracts were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was subjected to silica gel chromatography (eluent: petroleum ether/EtOAc 2: 1) to isolate the product **5** (74 mg, >98: 2 dr) as white solid.⁴

(R) - N - ((1R, 2S) - 2 - hydroxy - 2 - (4 - iodophenyl) - 1 - (4 - methoxyphenyl) ethyl) - 2 - methyl propane - 2 - (4 - iodophenyl) - 1 - (4 - methoxyphenyl) - 2 - methyl propane - 2 - (4 - iodophenyl) - 1 - (4 - methoxyphenyl) - 2 - methyl propane - 2 - (4 - iodophenyl) - 1 - (4 - methoxyphenyl) - 2 - methyl propane - 2 - (4 - iodophenyl) - 1 - (4 - methoxyphenyl) - 2 - methyl propane - 2 - (4 - iodophenyl) - 1 - (4 - methoxyphenyl) - 2 - methyl propane - 2 - (4 - iodophenyl) - 2 - (4 - iodophenyl) - 2 - methyl propane - 2 - (4 - iodophenyl) - (4 - iodophenyl) - (4 - iodophenyl) - (4 - iodophenyl) -

sulfinamide (5)

White solid (mp: 210-214 °C), yield: 78% (73 mg), $R_f = 0.2$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 2: 1, v/v).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.51 (d, *J* = 8.4 Hz, 2H), 6.93 (d, *J* = 8.7 Hz, 2H), 6.77 (d, *J* = 8.8 Hz, 2H), 6.70 (d, *J* = 8.4 Hz, 2H), 4.97 (d, *J* = 4.1 Hz, 1H), 4.68 (dd, *J* = 6.3, 4.0 Hz, 1H), 4.06 (d, *J* = 6.5 Hz, 1H), 3.77 (s, 3H), 1.19 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 159.0, 138.6, 136.7, 129.5, 129.1, 128.9, 113.5, 93.3, 76.8, 64.4, 56.0, 55.1, 22.7.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{19}H_{23}INO_4S^+$ 474.0594; Found: 474.0597.

 $[\alpha]^{25}$ **D:** -58.00 (c 0.5, Chloroform).

The synthesis of *N*-((1*R*, 2*S*)-2-hydroxy-2-(4-iodophenyl)-1-(4-methoxyphenyl)ethyl)-2methylpropane-2-sulfonamide (6)

To a Schlenk tube add *m*-CPBA (2 equiv) was added to the solution of **5** in anhydrous DCM (1.5 mL) at 0 \mathbb{C} . The mixture was stirred for 1 h at rt and subsequently quenched with a aqueous solution containing both sodium bicarbonate and sodium metabisulfite. The reaction mixture was poured into a separatory funnel containing a mixture of water and diethyl ether. The organic layer was separated, washed with brine, dried over Na₂SO₄, and filtered. Solvent was removed under reduced pressure and dried in vacuo to provide the crude product. The crude reaction product was purified by flash column chromatography (PE/EA, 4: 1) to get product **6**.³

N-((1*R*, 2*S*)-2-hydroxy-2-(4-iodophenyl)-1-(4-methoxyphenyl)ethyl)-2-methylpropane-2-sulfonamide (6)

White solid (mp: 179-181 °C), yield: 83% (60 mg), $R_f = 0.2$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 2: 1, v/v).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.52 (d, *J* = 8.4 Hz, 2H), 6.86 (d, *J* = 8.7 Hz, 2H), 6.75 (d, *J* = 8.7 Hz, 2H), 6.73 (d, *J* = 8.3 Hz, 2H), 5.19 (d, *J* = 10.0 Hz, 1H), 5.08 (t, *J* = 4.1 Hz, 1H), 4.65 (dd, *J* = 10.0, 3.5 Hz, 1H), 3.77 (s, 3H), 3.17 (d, *J* = 4.8 Hz, 1H), 1.24 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 159.0, 139.2, 137.0, 129.0, 128.5, 128.4, 113.5, 93.4, 77.4, 63.1, 60.0, 55.1, 24.0.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{19}H_{23}INO_4S^+$ 490.0543; Found: 490.0539.

[α]²⁵**D:** 29.20 (c 0.5, Chloroform).

3r (63 mg, 0.2 mmol, 1.0 equiv) was taken up in MeOH (1.3 mL, 0.15 M) and was treated with 4.0 M HCl in dioxane (0.25 mL, 5.0 equiv. HCl) at room temperature for 3 h. The reaction mixture was concentrated in vacuo, and the amine hydrochloride was precipitated with dry diethyl ether. The precipitate was collected by filtration and washed with diethyl ether to yield the amine hydrochloride (40 mg, 80%) as white solid.⁴

(R)-2-amino-1,2-diphenylethan-1-one hydrochloride (7)

White solid (mp: >230 °C), yield: 70% (34 mg), Known compound.⁵

¹**H NMR** (500 MHz, Methanol- d_4) δ 8.02 – 7.97 (d, J = 7.5 Hz, 2H), 7.60 (t, J = 7.5 Hz, 1H), 7.54 – 7.50 (m, 2H), 7.49 – 7.42 (m, 5H), 6.22 (s, 1H).

¹³C NMR (151 MHz, Methanol-d4) δ 194.0, 135.4, 134.3, 133.4, 131.1, 130.7, 130.1, 129.8, 129.8, 60.5.

HRMS (ESI) m/z: $[M+Na]^+$ Calcd. for C₁₄H₁₄ClNNaO⁺ 270.0656; Found: 270.0660. [α]²⁵D: -102.6 (c 0.5, CH₃OH).

Benzyl (R)-(2-oxo-1,2-diphenylethyl)carbamate (8)

In a Schlenk tube, 2-Oxo-1,2- diphenylethan-1-aminium chloride **7** (50 mg, 0.2 mmol, 1.0 equiv) was suspended in tetrahydrofuran (THF, 1 mL) and cooled to 0 °C in an ice–salt bath. Triethylamine (131 mg, 180 μ l, 1.3 mmol, 6.5 equiv) was added dropwise to the reaction mixture and stirred at the same temperature for 30 min. During the addition of triethylamine, the initially cloudy reaction mixture became clear. To the reaction mixture, benzyl chloroformate (34 mg, 0.4 mmol, 2.0 equiv) in THF (1 mL) was added dropwise and the resulting reaction mixture was stirred at 0 °C for 30 min followed by overnight stirring at rt. Once the reaction was complete (assessed by TLC), water (15 mL) and DCM (5 mL) were added and the organic layer was separated. The aqueous layer was extracted with DCM (3 × 10 mL). The combined organic layers were washed with brine (10 mL), dried over MgSO₄, and concentrated under reduced pressure to give the crude product. The crude material was purified by column chromatography (PE/EA, 5: 1) to afford product **8** as a white solid (0.410 g, 1.31 mmol, 94%).⁵

benzyl (R)-(2-oxo-1,2-diphenylethyl)carbamate (8)

White solid (mp: 92-94 °C), yield: 94% (64 mg), $R_f = 0.4$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 5: 1, v/v). Known compound.⁵

¹**H NMR** (600 MHz, Chloroform-*d*) δ 8.03 – 7.90 (m, 2H), 7.57 – 7.46 (m, 1H), 7.44 – 7.37 (m, 4H), 7.35 (d, *J* = 4.4 Hz, 4H), 7.33 – 7.30 (m, 4H), 7.27 (d, *J* = 7.4 Hz, 1H), 6.41 (d, *J* = 7.4 Hz, 1H), 6.34 (d, *J* = 7.4 Hz, 1H), 5.39 – 4.68 (m, 2H).

HPLC analysis: DAICEL CHIRALCEL OD-H, hexane/isopropanol = 90/10, 1 mL/min, λ = 254 nm, t_R (major) = 18.23 min, t_R (minor) = 20.82 min, 98% ee.

 $[\alpha]^{25}$ **D**: -162.2 (c 0.5, Chloroform).

To a Schlenk tube added 3r (126 mg, 0.4 mmol, 1.0 equiv) in MeOH (0.5 mL, 0.4 M). The resulting solution was cooled to 0 °C and NaBH₄ was added in one portion (18 mg, 0.48 mmol, 1.2 equiv). The
reaction mixture was stirred at 0 °C for 1 h. The reaction mixture was diluted with EtOAc (3 mL) and was washed with distilled water. The aqueous layer was extracted with EtOAc (3 x 10 ml), and the combined organic extracts were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was subjected to silica gel chromatography (eluent: petroleum ether/EtOAc 2: 1) to isolate the product **9**.⁴ (*R*)-*N*-((1R,2S)-2-hydroxy-1,2-diphenylethyl)-2-methylpropane-2-sulfinamide (9)

White solid (mp: >320 °C), yield: 80% (101 mg), $R_f = 0.2$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 2: 1, v/v).

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.30 – 7.27 (m, 3H), 7.24 – 7.21 (m, 3H), 7.09 (dd, *J* = 7.5, 2.1 Hz, 2H), 6.99 – 6.95 (m, 2H), 5.07 (d, *J* = 4.3 Hz, 1H), 4.78 (dd, *J* = 7.2, 4.3 Hz, 1H), 3.88 (d, *J* = 7.3 Hz, 1H), 1.21 (s, 9H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 138.45, 138.40, 128.22, 127.96, 127.88, 127.69, 127.61, 127.24, 77.62, 65.53, 56.02, 22.71.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{18}H_{24}NO_2S^+$ 318.1522; Found: 318.1516.

[*α*]²⁵**D**: -87.9 (c 0.5, Chloroform).

To the solution of t-butanesulfinamide **9** (0.32 mmol) in MeOH (0.42 ml) was added HCl in 1,4-dioxane 4.0 M (0.64 mmol, 0.16 ml). The solution was stirred for 1 h, then Et_2O was added. The precipitate was filtered off and washed with diethyl ether to afford the amine hydrochloride. The amine hydrochloride was basified with 1 M NaOH (30 ml) and extracted with EtOAc (15 ml x 2). The EtOAc layers were combined, washed with water and brine, dried over Na₂SO₄, and concentrated in vacuo .10 was obtained as a white solid.

(1S,2R)-2-amino-1,2-diphenylethan-1-ol (10)

white solid (mp: 142 – 145 °C), yield: 80% (54 mg), $R_f = 0.3$ (silica gel, EA), column chromatography (silica gel, PE: DCM = 1: 1, v/v). Known compound.⁷

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.32 – 7.26 (m, 6H), 7.26 – 7.20 (m, 4H), 4.73 (d, *J* = 6.3 Hz, 1H), 4.15 (d, *J* = 6.3 Hz, 1H).

HPLC analysis: DAICEL CHIRALCEL OJ-H, hexane/isopropanol = 95/5, 1mL/min, λ = 254 nm,

Absolute configurations were determined by HPLC compared with commercial (1S,2R)-2-amino-1,2-diphenylethan-1-ol

HPLC diagram of commercial (1S, 2R) - 2-amino-1,2-diphenylethane-1-alcohol

Data file:	SR-OJH-100595.dx		
Sequence Name:	LC1260-2021-11-03 16-12-36+08- 00	Project Name:	WH
Sample name:	SR-OJH-100595	Operator:	SYSTEM
Instrument:	LC1260	Injection date:	2021-11-03 16:13:33+08:00
Inj. volume:	10.000 µL	Location:	P1-F3
Acq. method:	P2 10 0595 30min.amx	Туре:	Sample
Processing method:	GC_LC Area Percent_DefaultMethod.pmx	Sample amount:	0.00
Manually modified:	Manual Integration		

HPLC diagram of 10

Manually modified:

Data file:	MAKE-OJH-100595.dx			
Sequence Name:	LC1260-2021-11-03 15-56-16+08- 00	Project Name:	WH	
Sample name:	MAKE-OJH-100595	Operator:	SYSTEM	
Instrument:	LC1260	Injection date:	2021-11-03 15:57:12+08:00	
Inj. volume:	10.000 µL	Location:	P1-F2	
Acq. method:	P2 10 0595 30min.amx	Туре:	Sample	
Processing method:	GC_LC Area Percent_DefaultMethod.pmx	Sample amount:	0.00	

Manual Integration

Name	Area%	Height	Area	Width [min]	Туре	RT [min]
	100.00	36.44	504.04	0.51	MM m	7.180
			504.04	Sum		

(R)-2-methyl-N-((R)-2-(1-methyl-1H-pyrrol-2-yl)-2-oxo-1-phenylethyl)propane-2-sulfinamide

Following the general procedure 2 on 0.2 mmol scale, yellow oil liquid, yield: 70% (43 mg), $R_f = 0.3$ (silica gel, PE: EA = 3: 1, v/v), column chromatography (silica gel, PE: EA = 3: 1, v/v).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.38 – 7.34 (m, 2H), 7.33 – 7.29 (m, 2H), 7.27 – 7.23 (m, 1H), 6.97 (dd, J = 4.2, 1.6 Hz, 1H), 6.79 (t, J = 2.0 Hz, 1H), 6.07 (dd, J = 4.3, 2.4 Hz, 1H), 5.68 (d, J = 5.0 Hz, 1H), 5.08 (d, J = 5.0 Hz, 1H), 3.91 (s, 3H), 1.20 (s, 9H).

¹³C NMR (126 MHz, Chloroform-*d*) δ 186.1, 139.6, 132.2, 128.8, 128.2, 128.0, 127.9, 121.0, 108.7, 63.2, 55.9, 37.7, 22.6.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{17}H_{23}N_2O_2S^+$ 319.1475; Found: 319.1468.

[**α**]²⁵**D**: -188.6 (*c* 0.5, Chloroform).

(R)-2-amino-1-(1-methyl-1H-pyrrol-2-yl)-2-phenylethan-1-one hydrochloride (14)

13 (50.0 mg, 0.2 mmol, 1.0 equiv) was taken up in MeOH (1.3 mL, 0.15 M) and was treated with 4.0 M HCl in dioxane (0.25 mL, 5.0 equiv. HCl) at room temperature for 3 h. The reaction mixture was concentrated in vacuo, and the amine hydrochloride was precipitated with dry diethyl ether. The precipitate was collected by filtration and washed with diethyl ether to yield the amine hydrochloride (40 mg, 80%) as gray solid.⁴ Known compound.⁶

HPLC analysis: DAICEL CHIRALCEL OZ-3, hexane/isopropanol = 85/15, 1 mL/min, $\lambda = 254$ nm, t_R (major) = 20.9 min, t_R (minor) = 26.1 min, >99% ee. (The ee value was determined after an amidation with benzyl chloroformate)

¹**H NMR** (500 MHz, Methanol-*d*₄) δ 7.58 – 7.50 (m, 2H), 7.48 – 7.36 (m, 3H), 7.10 (dd, *J* = 4.3, 1.7 Hz, 1H), 7.07 (t, *J* = 2.0 Hz, 1H), 6.12 (dt, *J* = 4.3, 2.1 Hz, 1H), 5.83 (d, *J* = 1.8 Hz, 1H), 3.96 (d, *J* = 1.7 Hz, 3H).

In a Schlenk tube, hydrochloride **14** (50 mg, 0.2 mmol, 1.0 equiv) was suspended in DCM (10 ml) and cooled to 0 °C in an ice–salt bath. Triethylamine (131 mg, 180 μ l, 1.3 mmol, 6.5 equiv) was added dropwise to the reaction mixture and stirred at the same temperature for 30 min. During the addition of triethylamine, the initially cloudy reaction mixture became clear. To the reaction mixture, Benzyl chloroformate (34 mg, 0.4 mmol, 2.0 equiv) in DCM (1 mL) was added dropwise and the resulting reaction mixture was stirred at 0 °C for 30 min followed by overnight stirring at rt. Once the reaction was complete (assessed by TLC), water (15 mL) and DCM (15 mL) were added and the organic layer was separated. The aqueous layer was extracted with DCM (3 × 10 mL). The combined organic layers were washed with brine (10 mL), dried over Na₂SO₄, and concentrated under reduced pressure to give the crude product. The crude material was purified by column chromatography (PE/EA, 5: 1) to afford product as colorless liquid.⁵

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.45 – 7.41 (m, 2H), 7.34 (d, *J* = 4.4 Hz, 4H), 7.31 (d, *J* = 7.6 Hz, 3H), 7.28 – 7.23 (m, 1H), 7.07 (dd, *J* = 4.3, 1.7 Hz, 1H), 6.80 (t, *J* = 2.0 Hz, 1H), 6.33 (d, *J* = 7.6 Hz, 1H), 6.10 (dd, *J* = 4.3, 2.4 Hz, 1H), 6.04 (d, *J* = 7.5 Hz, 1H), 5.24 – 4.95 (dd, *J* = 45.1 Hz, *J* = 12.3 Hz, 2H), 3.91 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 185.3, 155.4, 138.8, 136.4, 132.2, 128.9, 128.5, 128.5, 128.3, 128.0, 127.58, 126.9, 121.1, 108.8, 66.8, 59.9, 37.6.

HRMS (ESI) m/z: $[M+H]^+$ Calcd. for $C_{21}H_{21}N_2O_3^+$ 349.1547; Found: 349.1540.

[α]²⁵**D**: -176.0 (*c* 0.5, Chloroform).

Peak Result								
	Retention Time (min)	Int Type	Width (sec)	Area (µV*sec)	Height (µV)	% Area		
1	20.523	Bb	198.000	3006282	58085	50.48		
2	26.300	Bb	201.000	2949180	42017	49.52		

Peak	Res	ult
i can	1103	uit

		Retention Time (min)	Int Type	Width (sec)	Area (µV*sec)	Height (µV)	% Area
1 2	1	20.958	Bb	184.000	1300857	25362	99.75
	2	26.148	bb	12.000	3304	669	0.25

5. Reference

1. S. Samanta, S. Mondal and A. Hajra, A convergent synthesis of vinyloxyimidazopyridine via Cu(I)catalyzed three-component coupling. *Org. Biomol. Chem.* 2018, **16**, 1088-1092.

2. E. Maciá, F. Foubelo and M. Yus, Stereoselective allylation and reduction of *N-tert*-butanesulfinyl- α -keto aldimines. *Tetrahedron: Asymmetry*, 2017, **28**, 1407-1413.

3. A. Llobat, J. Escorihuela, D. M. Sedgwick, M. Rodenes, R. Román, V. A. Soloshonok, J. Han, M. Medio-Simón and S. Fustero, The Ruthenium-Catalyzed Domino Cross Enyne Metathesis/Ring-Closing Metathesis in the Synthesis of Enantioenriched Nitrogen-Containing Heterocycles. *Eur. J. Org. Chem.* 2020, **2020**, 4193-4207.

4. M. A. Beenen, D. J. Weix and J. A. Ellman, Asymmetric Synthesis of Protected Arylglycines by Rhodium-Catalyzed Addition of Arylboronic Acids to *N-tert*-Butanesulfinyl Imino Esters. *J. Am. Chem. Soc.* 2006, **128**, 6304-6305.

5. S. K. Gediya, G. J. Clarkson and M. Wills, Asymmetric Transfer Hydrogenation: Dynamic Kinetic Resolution of α-Amino Ketones. *J. Org. Chem.* 2020, **85**, 11309-11330.

6. R. D. Santo, R. Costi, A. Roux, M. Artico, O. Befani, T. Meninno, E. Agostinelli, Palmegiani, P. P. Turini, R. Cirilli, R. Ferretti, B. Gallinella, F. L. Torre, Design, Synthesis, and Biological Activities of Pyrrolylethanoneamine Derivatives, a Novel Class of Monoamine Oxidases Inhibitors. *J. Med. Chem.* 2005, **48**, 4220-4223.

7. M.-T. Huang, H.-Y. Wu and R.-J. Chein, Enantioselective synthesis of diaryl aziridines using tetrahydrothiophene-based chiral sulfides as organocatalysts. *Chem. Commun.* 2014, **50**, 1101-1103.

6. Copies of ¹H, ¹³C and ¹⁹F Spectra

¹H NMR spectrum of 1a

¹H NMR spectrum of 1b

¹H NMR spectrum of 1c

¹³C NMR spectrum of 1c

¹H NMR spectrum of 1d

¹H NMR spectrum of 1g

¹H NMR spectrum of 1h

¹³C NMR spectrum of 1h

¹³C NMR spectrum of 1i

¹H NMR spectrum of 1k

¹³C NMR spectrum of 1k

-50 f1 (ppm)

¹H NMR spectrum of 1m

¹⁹F NMR spectrum of 1m

¹H NMR spectrum of 1n

10.0 9.5 9.0 8.5 8.0 7.5 6.5 5.0 4.5 fl (ppm) 3.5 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 7.0 6.0 5.5 4.0 3.0

¹³C NMR spectrum of 10

¹H NMR spectrum of 1p

¹³C NMR spectrum of 3a

¹³C NMR spectrum of 3c

1.03 1.80 1.99 2.03[₽]

7.0

6.5

7.5

8.0

1.00₌

6.0

5.5

0.94

5.0

4.5

3.19 3.20 [₽]

4.0 3.5 f1 (ppm) 3.0

2.5

2.0

-0.5

9.18₌

1.0

0.5

0.0

1.5

¹H NMR spectrum of 3h

¹³C NMR spectrum of 3h

¹H NMR spectrum of 3i

8.5

8.0

7.5

7.0

6.5

6.0

5.5

5.0

4.5

4.0 3.5 f1 (ppm) 3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

-1. (
¹³C NMR spectrum of 3l

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25(f1 (ppm)

¹H NMR spectrum of 3n

¹³C NMR spectrum of 3p

3r

0.97₄ ا 1.00 2.08 1.59 1.59 1.98₌ 1.00₁ 8.0 7.5 6.0 2.0 1.5 0.5 5.5 4.0 fl (ppm) 3.0 2.5 1.0 7.0 6.5 5.0 4.5 3, 5 0.0

-**0**. 5

¹³C NMR spectrum of 3r

¹³C NMR spectrum of 3s

81

¹³C NMR spectrum of 3t

¹³C NMR spectrum of 3u

¹³C NMR spectrum of 3v

¹H NMR spectrum of 3w

¹³C NMR spectrum of 3w

¹³C NMR spectrum of 3x

¹³C NMR spectrum of 3y

¹H NMR spectrum of 3z

¹³C NMR spectrum of 3z

¹H NMR spectrum of 3ab

¹³C NMR spectrum of 3ac

¹H NMR spectrum of 3ad

¹³C NMR spectrum of 3ad

¹³C NMR spectrum of 3ae

¹³C NMR spectrum of 3af

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25(f1 (ppm)

¹H NMR spectrum of 3ag

¹⁹F NMR spectrum of 3ag

¹H NMR spectrum of 3ah

¹³C NMR spectrum of 3ah

¹H NMR spectrum of 3ai

¹³C NMR spectrum of 3ai

¹H NMR spectrum of 3aj

¹³C NMR spectrum of 3aj

¹H NMR spectrum of 3ak

¹³C NMR spectrum of 3ak

¹³C NMR spectrum of 4

¹³C NMR spectrum of 7

¹H NMR spectrum of 8

¹H NMR spectrum of 9

¹H NMR spectrum of 10

¹H NMR spectrum

