Supplementary Material for

Room temperature synthesis of perylene diimides facilitated by high amic acid solubility

Markus C. Kwakernaak, Marijn Koel, Peter J. L. van den Berg, Erik M. Kelder and Wolter F. Jager*

Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.

* W.F.Jager@tudelft.nl

Table of Contents

1. Experimental Procedures 3
2. Kinetic Modelling 4
3. Graphs and Figures. 6
4. Syntheses 18
5. UV-Vis Absorption and Fluorescence Spectra 19
6. NMR and Mass Spectra. 23

1. Experimental Procedures

Kinetic Measurements

Analysis of the absorption spectra was performed using MS Excel. For the simple reactions (from 12c to $\mathbf{1 3 c}$ or $\mathbf{9 c}$ to $\mathbf{7 c}$), the first spectrum (obtained at $t=0$) was assumed to be from the starting compound (amic acid) and the last spectrum (obtained at $t=24 \mathrm{~h}$) was from the product (imide). Cleanup of the spectrum of the starting compound may be required, because the starting compound already contains small amounts of the reaction product. This cleanup generally comes down to subtracting a fraction of the product spectrum from the starting compound spectrum. The spectra of the reaction mixtures were simulated by a linear combination of the spectra from the starting compound and the reaction product:

Spectrum reaction mixture $=x *$ Spectrum starting compound $+(1-x)^{*}$ Spectrum product

$$
0 \leq x \leq 1
$$

The best fit was obtained when the simulated spectra, calculated according to the formula above, were identical to the experimental spectra. This was visualized by subtracting the simulated spectrum from that of the reaction mixture. A flat base line should result and if need be this process is automated by requiring the choice of x such that the sum of all absorption data points is minimised.

For the more complex reaction from diamic acid $5 \mathbf{c}$ to diimide $7 \mathbf{c}$ via the intermediate $9 \mathbf{c}$, finding the composition of the reaction mixture was less accurate. Here we assume that the first spectrum (obtained at $t=0$) was from the starting compound (diamic acid $\mathbf{5 c}$) and the last spectrum (obtained at $\mathrm{t}=24 \mathrm{~h}$) was from the product (diimide $7 \mathbf{c}$). The spectrum from the reaction intermediate $9 \mathbf{c}$ was unknown, but is expected to resemble that of compound $\mathbf{9 a}$. Cleanup of the spectrum of the starting compound may be required, because the starting compound already contains a little of the intermediate product $\mathbf{9 c}$. This cleanup generally comes down to flattening the spectrum of compound $\mathbf{5 c}$ above 520 nm .

Simulated reaction mixture $=x *$ Spectrum $\mathbf{5 c}+y^{*}$ Spectrum $9 \mathbf{c}+(1-(x+y)) * 7 c$
$0 \leq(x+y) \leq 1$
Since the spectrum of 9 c is unknown, various values of x and $1-(\mathrm{x}+\mathrm{y})$ are tested. By subtracting $x * 5 c+(1-(x+y)) * \mathbf{c}$ from the spectrum of the reaction mixture, the spectrum of $y * \mathbf{9}$ is obtained. Doing this in such a manner that the spectrum of $\mathbf{9 c}$ is consistent in shape and resembling that of $9 \mathbf{9}$, resulted in values of x and y for the different reaction times and thereby the molecular composition. This process is more complex, less accurate (in independently finding x and y) and cannot be automated easily.

2. Kinetic Modelling

In the first part of the reaction from PDA 1 to the diamic acid 5, all steps are second order reactions, as described by Equations S1-3.

Because PDA $\mathbf{1}$ is insoluble (in DMF or DMSO), the conversion to compound $\mathbf{8}$ is not a second order reaction but a heterogeneous reaction. This reaction is best described as a pseudo-first order reaction, whose rate scales with the concentration of amine 4 . The apparent rate constant for this reaction k is much smaller than $\mathrm{k}_{1}[\mathbf{1}]$. Equations S 1 and S 3 describe the consumption of PDA 1 and the formation of diamic acid $\mathbf{5}$. For setting up Eqs S4-S8, we have made the assumption that compound $\mathbf{8}$, to some extent, is soluble in the reaction mixture and will be consumed by a fast second-order reaction. This reaction consumes a second molecule of amine 4 , which results in the relation between [1] and [4] formulated in Equation S4.
$\begin{array}{lc}\left.[\mathbf{4}]=2[\mathbf{1}]_{0}+2[\mathbf{1}]\right) & \text { eq } S 4 \\ \frac{d[\mathbf{1}]}{d t}=-k\left(2[\mathbf{1}]_{0}+2[\mathbf{1}]\right) & \text { eq } S 5 \\ {[\mathbf{1}]=2[\mathbf{1}]_{0} \exp ^{-2 k t}-[\mathbf{1}]_{0}} & \text { eq } S 6 \\ \frac{d[\mathbf{8}]}{d t}=k[\mathbf{4}]-k_{1}^{\prime}[\mathbf{8}][\mathbf{4}] \approx o & \text { eq S7 } \\ {[\mathbf{5}]=2[\mathbf{1}]_{0}-2[\mathbf{1}]_{0} \exp ^{-2 k t}} & \text { eq S8 }\end{array}$
The rates of consumption of compound $\mathbf{1}$ and the rate of formation of compound $\mathbf{5}$ according to Equations S6 and S8, are depicted in Figure S11. Experimental data concerning the formation of $5 \mathbf{c}$ and $\mathbf{5 e}$ are obtained from UV experiments are depicted in Figures S4b and S8b, respectively. These experimental data, which demonstrate that formation of amic acid $\mathbf{5}$ is completed in 15-20 minutes, are crude due to non-reproducible sampling from a heterogeneous reaction mixture and do not correlate well with the prediction from our model.

The imide forming reactions from $\mathbf{9}$ to $\mathbf{7}$ and $\mathbf{1 2}$ to $\mathbf{1 3}$ are first-order reactions. The reaction rate constants for these reactions should be very similar and equal k_{2} and k_{2} from the reactions that forms PDI 7 from amic acid 5. The formation of compounds $\mathbf{7}$ and $\mathbf{1 3}$ and the consumption of compounds $\mathbf{9}$ and $\mathbf{1 2}$ are described by simple exponential functions, as illustrated for the latter reaction in Eqs. S9-S12.

$\frac{d[9]}{d t}=-k_{2}[9]$	eq S9
$\frac{d[7]}{d t}=k_{2}[\mathbf{7}]$	eq S10
$[9]=[9]_{0} \exp ^{-k_{2} t}$	eq S11
$[\mathbf{7}]=[9]_{0}\left(1-\exp ^{-k_{2} t}\right)$	eq S12
$\frac{d[\mathbf{1 2}]}{d t}=-k_{2}[12]$	eq S9
$\frac{d[\mathbf{1 3}]}{d t}=k_{2}[13]$	eq S13
$\left[\mathbf{1 2]}=[\mathbf{1 2}]_{0} \exp ^{-k_{2} t}\right.$	eq S14
$[\mathbf{1 3}]=[12]_{0}\left(1-\exp ^{-k_{2} t}\right)$	

3. Graphs and Figures

Figure $\mathrm{S} 1 .{ }^{1} \mathrm{H}$ Spectrum of compound $\mathbf{6 a}$.

Figure $\mathrm{S} 2 .{ }^{13} \mathrm{C}$ Spectrum of compound $\mathbf{6 a}$.

Figure S3. Normalized absorption spectra of compounds 3, 13c and 7c in Chloroform. All compounds are molecularly dissolved and these spectra are representative for PTEs PMIDEs (and corresponding amic esters and amic acids) and PDIs.

Figure S4.a: Absorption spectra taken by adding a fixed volume of the reaction of PDA with amine $\mathbf{4 c}$ (Solvent DMF, base DBU, room temperature) in water at regular intervals. The compound that is visible is compound $\mathbf{5 c}$. The baseline is shifted, in particular at short reaction times, due to the presence of insoluble PDA. b: Absorption at 464 nm , corrected for the shifted baseline, as a function of time.

Figure S5. Absorption spectra taken by adding a fixed volume of the reaction of PDA with amine $\mathbf{4 c}$ (solvent DMF, base DBU, temperature $60^{\circ} \mathrm{C}$) in chloroform at regular intervals. The compounds that are visible are the DBU salt of 5c, (HDBU)25c (446 and 475 nm) and 7c (489 and 526 nm).

Figure S6. a: Absorption spectra taken by adding a fixed volume of the reaction of PDA with amine $\mathbf{4 e}$ (Solvent DMSO, base $\mathrm{K}_{2} \mathrm{CO}_{3}$, room temperature) in water at regular intervals. The compound that is visible is compound 5e. The baseline is shifted due to the presence of insoluble PDA. b: Absorption at 464 nm , corrected for the shifted baseline, as a function of time.

Figure S7. Consumption of PDA $\mathbf{1}$ and formation of diamic acid $\mathbf{5}$ according to equations 6 and 9 . The time axis has arbitrary units.

Figure S8. Spectra taken from the imidization of the DBU salt of $\mathbf{5 c}$ in DMF taken 2, 4 and 6 hours, after diluting the reaction mixture (in green). The spectra of starting compound, the DBU salt of $\mathbf{5 c}$ (black) and final product 7c (red) are depicted as well. After subtracting the contributions of starting compound, the DBU salt of $\mathbf{5 c}$, and product $7 \mathbf{c}$ from that of the reaction mixture, the broad, the contributions of the intermediate, the DBU salt of $\mathbf{9 c}$, are revealed (blue). In this manner the composition of the reaction mixture is determined.

Scheme S1. Imidization of compound $\mathbf{1 5}$ using butylamine $\mathbf{4 c}$ via amic acid $\mathbf{9 c}$. The last step of this reaction has been monitored using absorption spectroscopy.

Figure S9. Absorption spectra as a function of time of the reaction of the DBU salt of amic acid 12c in DMF at concentrations around $1 * 10^{-5} \mathrm{M}$. Isosbestic points are observed at 462,479 and 487 nm .

Figure S10. Composition of the reaction mixture obtained from the data displayed in Figure S9. Solid lines represent the theoretical fitting curves obtained using a first-order decay obtained using equations S14 and S15.

Figure S11. Spectrum taken from the acid hydrolysis of compound 5a in DMF after 15,30 and 60 minutes of reaction (blue). The spectra of starting compound $\mathbf{5 a}$ (black) and final product $\mathbf{1}$ (red) are depicted as well. are After subtracting the contributions of starting compound 5a and product $\mathbf{1}$ from the absorption spectra of the reaction mixture (green), the contributions of the intermediate 8a are revealed (blue).

Figure S12. Absorption spectra of compound K9a (black) in DMF and 9a (red), formed after acidification with 1 drop 1 N HCl . In the time-dependent absorption spectra the reaction from $9 \mathrm{a}\left(\lambda_{\max }=506 \mathrm{~nm}\right)$ to compound 15 ($\lambda_{\max }=521$ and 486 nm) is visible. Please note that the first spectrum after acidification already contains (traces of) compound 15. Isosbestic points are observed at 479, 493 and 510 nm .

Figure S13. Absorption spectra of compound K12a (black) in DMF and 12a (red), formed after acidification with 1 drop 1 N HCl . In the time-dependent absorption spectra the reaction from 12a ($\lambda_{\max }=468$ and 441 nm) to compound $11\left(\lambda_{\max }=472\right.$ and 501 nm$)$ is visible. Please note that the first spectrum after acidification already contains (traces of) compound 11. An isosbestic points is observed at 475 nm .

4. Syntheses

Table S1

Entry	Perylene anhydride	amine	base	solvent	Reaction conditions	Yield, in \% (conversion)
S1	PDA (1) 0.5 mmol	4b 2 mmol	DBU 2 mmol	$\begin{aligned} & \hline \text { DMF } \\ & 4 \mathrm{ml} \end{aligned}$	$\begin{aligned} & \text { 168h } \\ & \text { RT } \end{aligned}$	$\begin{array}{\|l\|} \hline \mathbf{7 b} \\ 87 \% \\ \hline \end{array}$
S2	PDA (1) 0.5 mmol	4b 2 mmol	$\mathrm{Zn}(\mathrm{Ac})_{2}, 0.6$ mmol DBU, 2 mmol	$\begin{array}{\|l\|} \hline \mathrm{DMF} \\ 4 \mathrm{ml} \end{array}$	$\begin{array}{\|l\|} \hline 24 \mathrm{~h} \\ \mathrm{RT} \end{array}$	$\begin{array}{\|l\|} \hline \mathbf{7 b} \\ 52 \% \end{array}$
S3	PDA (1) 0.5 mmol	4b 2 mmol	$\mathrm{Zn}(\mathrm{Ac})_{2}, 0.6$ mmol DBU, 2 mmol	$\begin{array}{\|l\|} \hline \mathrm{DMF} \\ 4 \mathrm{ml} \end{array}$	$\begin{aligned} & 24 \mathrm{~h} \\ & 60^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 7b } \\ 78 \% \\ \hline \end{array}$
S4	PDA (1) 0.5 mmol	4b 2 mmol	TEA 2 mmol	$\begin{array}{\|l\|} \hline \text { DMSO } \\ 4 \mathrm{ml} \end{array}$	$\begin{aligned} & \hline 24 \mathrm{~h} \\ & 60^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{\|l\|} \hline 7 \mathbf{7 b} \\ \hline 20 \% \\ \hline \end{array}$
S5	PDA (1) 0.5 mmol	$\begin{array}{\|l\|} \hline \mathbf{4 b} \\ 2 \mathrm{mmol} \\ \hline \end{array}$	$\begin{array}{\|l} \mathrm{K}_{2} \mathrm{CO}_{3} \\ 2 \mathrm{mmol} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { DMSO } \\ 4 \mathrm{ml} \\ \hline \end{array}$	$\begin{aligned} & 24 \mathrm{~h} \\ & 60^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 7b } \\ 32 \% \\ \hline \end{array}$
S6	PDA (1) $0.5 \mathrm{mmol}$	$\begin{array}{\|l\|} \hline \mathbf{4 c} \\ 2 \mathrm{mmol} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { DBU } \\ 2 \mathrm{mmol} \end{array}$	$\begin{array}{\|l\|} \hline \text { DMSO } \\ 4 \mathrm{ml} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 24 \mathrm{~h} \\ \mathrm{RT} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathbf{7 c} \\ 52 \% \\ \hline \end{array}$
S7	PDA (1) 0.5 mmol	$\begin{array}{\|l\|} \hline \mathbf{4 d} \\ 2 \mathrm{mmol} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { DBU } \\ 2 \mathrm{mmol} \\ \hline \end{array}$	$\begin{array}{\|l} \hline \text { DMF } \\ 4 \mathrm{ml} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 24 \mathrm{~h} \\ \mathrm{RT} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 7 \mathbf{d d} \\ 89 \% \\ \hline \end{array}$
S8	PDA (1) 0.5 mmol	$\begin{aligned} & \hline \mathbf{4 f} \\ & 2 \mathrm{mmol} \end{aligned}$	$\begin{aligned} & \hline \text { DBU } \\ & 2 \mathrm{mmol} \end{aligned}$	$\begin{array}{\|l} \hline \text { DMF } \\ 4 \mathrm{ml} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 24 \mathrm{~h} \\ \mathrm{RT} \end{array}$	$\begin{array}{\|l\|} \hline 7 f \\ 66 \% \end{array}$

5. UV-Vis Absorption and Fluorescence Spectra

Table S3. Spectral data of amic acids, amic acid salts and amic esters

Compound	Solvent	$\lambda_{\text {abs }}$	$\lambda_{\text {em }}$	$\Phi_{\text {F }}$
3	EtOH	468, 440	485, 515	0.86
$\mathrm{K}_{2} 5 \mathrm{a}$	DMF	475, 443	487	0.16
$\mathrm{K}_{2} 5 \mathrm{a}$	EtOH	466, 438	477.5, 509	0.93
$\mathrm{K}_{2} 5 \mathrm{a}$	Water ${ }^{\text {a }}$	463, 435	475, 505	1.0
6 a	CHL	466, 438	482, 511.5	0.88
6a	EtOH	463, 435	479, 507	0.85
K9a	DMF	521	581	0.14
K9a	EtOH	513	584	0.65
K9a	Water ${ }^{\text {a }}$	505	591	0.19
10a	CHL	507, 477,5	530, 566	0.73
10a	EtOH	501, 472	542	0.66
K12a	DMF	481	522	0.19
K12a	EtOH	472, 447	522	0.96
K12a	Water ${ }^{\text {a }}$	468, 444	524	$\sim 0.6{ }^{\text {b }}$
14a	CHL	470, 441.5	487, 517	0.92
14a	EtOH	466, 438	484, 512	0.87

a: $0.01 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$ b: inaccurate measurement due to low solubility

Figure S14. a) Normalized UV-Vis absorption and b) normalized fluorescence emission spectra of the amic acid salts K K_{2} 5a, K9a and K12a in DMF.

Figure S15. a) Normalized UV-Vis absorption and b) normalized fluorescence emission spectra of amic esters $\mathbf{6 a}$, 10a and 14a along with PTE 3 in chloroform.

Figure S16. a) Normalized UV-Vis absorption and b) normalized fluorescence emission spectra of the amic acid salts $\mathrm{K}_{2} 5 \mathrm{a}, \mathrm{K9}$ a and K12a in water.

6 NMR and Mass Spectra

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 a}$ in MeOD. Contains DMSO and impurities from petroleum ether.

Figure S18. Mass spectrum of 5a. Calculated masses are: $\mathbf{5 a}^{2-}$; 481.14, K5a; ; 963.30.

Figure S21. Mass spectrum of $\mathbf{6 a}$. Calculated $\mathbf{6 a}$; 594.2730, $\mathbf{6 a}_{\mathbf{2}}=1188.5460, \mathbf{6 a}_{3}=1783.8222$.

Figure S22. ${ }^{1} \mathrm{H} 1(\mathrm{ppm})$ spectrum of $\mathbf{7 b}$ in CDCl_{3}.

Figure S23. ${ }^{13} \mathrm{C}$ - NMR spectrum of $\mathbf{7 b}$ in CDCl_{3}.

Figure S26. FTIR spectrum of 7d.

 f1 (ppm)
Figure $\mathbf{S 2 7 .}{ }^{1} \mathrm{H}$ NMR spectrum of 7 e in $\mathrm{D}_{2} \mathrm{SO}_{4}$. The splitting pattern of the aromatic protons suggests aggregation.

Figure S29. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{9 a}$ in MeOD. NMR contains methanol and water from the solvent, DMSO, and traces of compound 5a.

Figure S30. Mass spectrum of 9a determined by direct injection. Calculated masses are: 9a; 491.16, 9a2H;983.33. Compound $\mathbf{1 5}$ formed after amic acid hydrolysis has a mass of 447.11.

Figure S33. Mass spectrum of 10a. Calculated masses are: 10a; 548.2311, 10a2; 1096.4622.

Bruker Compass DataAnalysis 5.3 printed: 11/1/2021 2:32:41 PM by: demo Page 1 of 1
Figure S35. Mass spectrum of 12a. Calculated masses are: 12a; 566.2173 and .

Figure S36. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{~ 1 3 b}$ in CDCl_{3}.

$$
\mathrm{x} 10^{3} \text { Intensity (25028) }
$$

Formula: C40H43N1O6
Mono Isotopic Mass: 633.3090366
m/z

Formula: C 40 H 43 N 1 O Formula: C40H43N1O6
Mono Isotopic Mass: 633.3090366

Intensity (\%)
 Mono Isotopic Mass: 1266.6180732 Charge Number: 1

Figure S38. Mass spectrum of compound 13b

Figure S39. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 3 c}$ in CDCl_{3}.

Acq. Data Name: WFJ-Cmp13c_21
Creation Parameters: Average(MS Time:0.46..0.54)
Intensity (5746)

m/z

Formula: C36H35N1O6 Mono Isotopic Mass: 577.2464366

Intensity (\%)

Figure S41. Mass spectrum of compound 13c.

Figure S42. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 3 d}$ in CDCl_{3}.

Acq. Data Name: WFJ-Cmp13d 21 Creation Parameters: Average(MS Time:0.55..0.63)

$\times 10^{3}$ Intensity (152747)

 Mono Isotopic Mass: 535.1994866

Intensity (\%)

Experiment Date/Time: 11/1/2021 2:51:00 PM Ionization Mode: FD+(eiFi)
$\times 10^{3}$ Intensity (152747)

m/z
Formula: C33H29N1O6 Mono Isotopic Mass: 535.1994866
(ontion Ion: None Charge Number: 1
Intensity (\%)

m/z
Formula: C66H58N2O12 Mono Isotopic Mass: 1070.3989732
Addition/Desorption Ion: None Charge Number:
Intensity (\%)

Figure S44. Mass spectrum of compound 13d.

Figure S45. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 3 e}$ in CDCl_{3}.

Acq. Data Name: WFJ-Cmp13e_21 Intensity (7707)

Acq. Data Name: WFJ-Cmp13e_21 Experiment Date/Time: 11/1/2021 2:55:06 PM
Creation Parameters: Average(MS Time:0.43..0.62)
Intensity (7707)

Formula: C34H31N1O7 Mono Isotopic Mass: 565.2100512

m/z

Mono Isotopic Mass: $565.2100512 \quad$ Charge Number: 1

Figure S47. Mass spectrum of compound 13e.

Acq. Data Name: WFJ-Cmp13f_21 Intensity (7306)

Formula: C38H39N1O7
Mono Isotopic Mass: 621.2726512
Intensity (\%)

Addition/Desorption lon: None Charge Number:
m / z
${ }^{625}$

Formula: C38H39N1O7
Mono Isotopic Mass: 621.2726512
m/z
Addition/Desorption Ion: None Charge Number: 1
Intensity (\%)

Mono Isotopic Mass: 1242.5453024

Figure S50. Mass spectrum of compound 13 .

Acq. Data Name: WFJ-Cmp14a_21
Creation Parameters: Average(MS Time:0.69..0.71)
$\times 10^{3}$ Intensity (362927)

ormula: C38H41N1O7 Mono Isotopic Mass: 623.2883012

Intensity (\%)
$100-$

Experiment Date/Time: 11/1/2021 3:13:44 PM Ionization Mode: FD+(eiFi)

Addition/Desorption Ion: None Charge Number: 1

Figure S53. Mass spectrum of 14a. Calculated masses are: 14a; 623.2833.

