Boron-Catalyzed α -C-H Fluorination of Aryl Acetic Acids

Haipeng Hu,*^a Cuilin Wang,^b Xin Wu,^b Yangu Liu,^a Guizhou Yue,^a Gehong Su,^a Juhua Feng^a

^aCollege of Science Sichuan Agricultural University, Ya'an, Sichuan, 625014 (P. R. China)

^bSichuan Normal University, Chengdu 610068, (P. R. China).

E-mail: chemhhp@yeah.net.

Content

1.	General Information	3
2.	Optimization of Reaction Conditions.	4
3.	General Procedure for the Catalytic α -Fluorination Reaction of Free Carboxylic acids.	8
4.	Gram-Scale Synthesis.	8
5.	Failed Examples	9
6.	The X-ray Structure of Product 4b	9
7.	Characterization of the Products	11
8.	Reference	23
9.	Copy of ¹ H, ¹³ C{ ¹ H} and ¹⁹ F NMR Spectra	25

1. General Information

Unless otherwise noted, all the reactions were performed under nitrogen atmosphere in the glove box. The solvents (THF, toluene and CH₂Cl₂) were dried according to the standard procedures. ¹H NMR spectra were recorded on a Bruker DRX400 (400 MHz), Bruker DRX600 (600 MHz) by using CDCl₃ as solvent. Chemical shifts (δ) values were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard. Spectra were reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), integration and assignment. ¹³C{¹H} NMR spectra were collected on commercial instruments (150 MHz) with complete proton decoupling. Chemical shifts are reported in ppm from the tetramethylsilane with the solvent resonance as internal standard (CDCl₃, δ = 77.0). ¹⁹F NMR spectra were collected at 565 MHz. HRMS was recorded on a commercial apparatus (ESI Source). The aryl acetic acids **2a-9a**, **11a-24a**, **30a-34a**, **39a-42a** and boron catalysts (PhB(OH)₂, B(OH)₃, C₆F₅B(OH)₂, B₂pin₂) were commercially available. Carboxylic acids **1a**,¹ **10a**,¹ **25a-29a**,²⁻⁶ (AcO)₄B₂O⁷ were prepared according to reported procedures.

2. Optimization of Reaction Conditions.

	COOH + Selectfluor	[B] (20 mol%) DBU (2.5 equiv) Toluene (1.0 mL) 40 °C, 24 h	СООН	
	1a 2		1b	
Entry ^[a]	Catalyst	Base	Yield ^[b] (%)	
1	(AcO)4B2O	DBU	88	
2	PhB(OH)2	DBU	64	
3	B(OH) 3	DBU	74	
4	C ₆ F ₅ B(OH) ₂	DBU	66	
5	B2pin2	DBU	60	
6 ^[c]	(AcO)4B2O	DBU	22	

Table S1. The screening of catalyst and [F] sources.

[a] All the reactions were performed with **1a** (0.10 mmol), **2** (0.10 mmol), [**B**] (20 mol%), DBU (2.5 equiv) in toluene (1.0 mL) at 40 °C under N₂ atmosphere for 24 h. [b] The yield was determined by ¹H NMR by using dimethyl terephthalate as internal standard. [c] The reaction was performed with **1a** (0.10 mmol), NFSI (0.10 mmol), [B] (20 mol%), DBU (2.5 equiv) in toluene (1.0 mL) at 40 °C under N₂ atmosphere for 24 h.

	COOH +	Selectfluor	(AcO) ₄ B ₂ O (20 mol%) Base (2.5 equiv) Toluene(1.0 mL) 40 °C, 24 h	СООН
	1a	2		1b
Entry ^[a]	Base		Cat.	Yield ^[b] (%)
1	Pyrrolidine		(AcO) ₄ B ₂ O	NR
2	Pyridine		$(AcO)_4B_2O$	24
3	Et ₃ N		$(AcO)_4B_2O$	NR
4	DABCO		$(AcO)_4B_2O$	NR
5	DMAP		(AcO) ₄ B ₂ O	60
6	DBU		$(AcO)_4B_2O$	88
7	TMG		(AcO) ₄ B ₂ O	54
8	Na ₂ CO ₃		$(AcO)_4B_2O$	NR

Table S2. The screening of base.

[a] All the reactions were performed with **1a** (0.10 mmol), **2** (0.10 mmol), (AcO)₄B₂O (20 mol%), base (2.5 equiv) in toluene (1.0 mL) at 40 °C under N₂ atmosphere for 24 h. [b] The yield was determined by ¹H NMR by using dimethyl terephthalate as internal standard; NR = No Reaction.

	COOH +	Selectfluor	(AcO) ₄ B ₂ O (20 mol%) DBU (2.5 equiv) Solvent (1.0 mL) 40 °C, 24 h	СООН
	1a	2		1b
Entry ^[a]	Solvent		Base	Yield ^[b] %
1	MTBE		DBU	NR
2	MeCN		DBU	NR
3	Et ₂ O		DBU	NR
4	THF		DBU	70
5	DME		DBU	84
6	Toluene		DBU	96
7 ^[c]	Toluene		DBU	67
8 ^[d]	Toluene		DBU	91
9 ^[e]	Toluene		DBU	60

Table S3. The screening of solvents and reaction temperature.

[a] All the reactions were performed with **1a** (0.10 mmol), **2** (0.10 mmol), (AcO)₄B₂O (20 mol%), DBU (2.5 equiv) in toluene (1.0 mL) at 40 °C under N₂ atmosphere for 24 h. [b] The yield was determined by ¹H NMR by using dimethyl terephthalate as internal standard. [c] The reaction temperature was 0 °C. [d] The reaction temperature was 35 °C. [e] The reaction temperature was 60 °C. NR = No Reaction.

	COOH +	Selectfluor	(AcO) ₄ B ₂ O (x mol%) DBU (y equiv) Toluene (1.0 mL) 40 °C. 24 h	СООН
	1a	2		1b
Entry ^[a]	1a:2 (x:y)		DBU (x equiv)	Yield ^[b] (%)
1	1:1		2.5	88
2	1:1.05		2.5	88
3	1:1.2		2.5	95
4	1:1.5		2.5	96
5	1:2		2.5	32
6	1:3		2.5	20
7	1:1.5		1.0	69
8	1:1.5		1.5	84
9	1:1.5		2.0	96
10 ^[c]	1:1.5		2.0	trace
11 ^[d]	1:1.5		2.0	26
12 ^[e]	1:1.5		2.0	90

Table S4. Screening on the base and catalyst loading, and the ratio of carboxylic acid to selectfluor.

[a] All the reactions were performed with **1a** (0.10 mmol), **2** (0.10 mmol), $(AcO)_4B_2O$ (20 mol%), DBU (2.5 equiv) in toluene (1.0 mL) at 40 °C under N₂ atmosphere for 24 h. [b] The yield was determined by ¹H NMR by using dimethyl terephthalate as internal standard. [c]. The catalyst loading was 5 mol%. [d] The catalyst loading was 10 mol%. [e] The catalyst loading was 15 mol%.

3. General Procedure for the Catalytic α-Fluorination Reaction of Free Carboxylic acids.

Procedure: In the glove-box, a dry reaction tube was charged with free carboxylic acids **1a-34a** (0.1 mmol), $(AcO)_4B_2O$ (20 mol%, 5.5 mg), DBU (2.0 equiv, 38.1 mg) and toluene (1.0 mL). After stirring for 0.5 h, the selectfluor **2** (1.5 equiv) was added to the mixture and kept stirring at 40 °C for the indicated time.

Work up: The solvent was removed under reduced pressure, and 1M HCl was added to the obtained residue. Next, the mixture was extracted with MTBE (2 mL \times 3), and the combined organic phase was extracted with 1.0 M NaOH₍aq.) (2 mL \times 3). The collected aqueous phase was acidified with 1M HCl to PH =1, and subsequently extracted with MTBE (2 mL \times 3). The combined organic phase was removed under reduced pressure and the residue was subjected to column chromatography on silica gel, eluting with petroleum ether–ethyl acetate (20% EA to 100% EA) to afford the corresponding product **1b-34b**.

4. Gram-Scale Synthesis.

Procedure for the gram-scale synthesis of 1b: In the glove-box, a dry reaction tube was charged with free carboxylic acids **1a** (8.0 mmol, 1.09 g), $(AcO)_4B_2O$ (20 mol%, 0.44 g), DBU (16.0 mmol, 2.43 g) and toluene (40.0 mL). After stirring for 0.5 h, the selectfluor **2** (12.0 mmol, 4.20 g) was added to the mixture. And the reaction mixture was stirred at 40 °C for 24 h.

Procedure for the gram-scale synthesis of 4b: In the glove-box, a dry reaction tube was charged with free carboxylic acids **4a** (7.0 mmol, 1.50 g), $(AcO)_4B_2O$ (20 mol%, 0.38 g), DBU (14.0 mmol, 2.10 g) and toluene (70.0 mL). After stirring for 0.5 h, the selectfluor **2** (10.5 mmol, 3.70 g) was added to the mixture. Then, the reaction mixture was stirred at 40 °C for 24 h.

Work up: The solvent was removed under reduced pressure, and 1M HCl was added to the obtained residue. Next, the mixture was extracted with MTBE ($20 \text{ mL} \times 3$), and the combined organic phase was extracted with 1.0 M NaOH₍aq.) ($20 \text{ mL} \times 3$). The collected aqueous phase was acidified with 1M HCl to PH =1, and subsequently extracted with MTBE ($20 \text{ mL} \times 3$). The combined organic phase was removed under reduced pressure and thhe residue was subjected to column chromatography on silica gel, eluting with petroleum ether–ethyl acetate (v/v, 4:1 to 1:1) to afford the corresponding product.

5. Failed Examples.

The following alkyl carboxylic acids **39a-42a** were not applicable under the standard reaction conditions, possibly due to the lack of conjugation effect of the phenyl ring leading to poorer nucleophilicity of α -position of alkyl carboxylic acids.

6. The X-ray Structure of Product 4b.

Single crystal of compound **4b** [C₈H₆BrFO₂] was obtained in PE and CH₂Cl₂. CCDC 2120636 contains the supplementary crystallographic data which can be obtained free of charge from the Cambridge Crystallographic Data Center via <u>https://www.ccdc.cam.ac.uk/structures/</u>.

Tuble I Ciystal data and set	ceture remement for compound in
Identification code	compound 4b
Empirical formula	$C_{16}H_{12}O_4F_2Br_2$
Formula weight	466.08
Temperature/K	300(2)
Crystal system	monoclinic
Space group	Pc
a/Å	18.9959(7)
b/Å	6.0086(3)
c/Å	7.7051(3)
$\alpha/^{\circ}$	90
β/°	91.911(4)
$\gamma/^{o}$	90
Volume/Å ³	878.96(6)
Z	2
$\rho_{calc}g/cm^3$	1.761
μ/mm^{-1}	6.202
F(000)	456.0
Radiation	$CuK\alpha \ (\lambda = 1.54178)$
2Θ range for data collection/°	4.654 to 151.758
Index ranges	$-23 \le h \le 23, -7 \le k \le 7, -9 \le l \le 7$
Reflections collected	2780
Independent reflections	2780 [$R_{int} = ?, R_{sigma} = 0.0450$]
Data/restraints/parameters	2780/5/226
Goodness-of-fit on F ²	1.107
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0635, wR_2 = 0.1894$
Final R indexes [all data]	$R_1 = 0.0730, wR_2 = 0.2036$
Largest diff. peak/hole / e Å ⁻³	0.76/-0.49
Flack parameter	0.00(3)

7. Characterization of the Products.

2-fluoro-2-phenylacetic acid (1b)

Following the general procedure, the optimized time is 24 h. Yield: 96% (14.8 mg); white solid; m.p. 80 - 85 °C. **H NMR** (600 MHz, CDCl₃) δ 8.46 (s, 1H), 7.48 (dd, J = 6.9, 2.9 Hz, 2H), 7.42 (q,

J = 3.8 Hz, 3H), 5.81 (d, J = 47.4 Hz, 1H);

¹³C{¹H} NMR (150 MHz, CDCl₃) δ 174.00 (d, J = 28.5 Hz), 133.47 (d, J = 21.0 Hz), 129.95, 128.92,

126.71, 126.68, 88.83 (d, *J* = 186.0 Hz);

¹⁹**F** NMR (565 MHz, CDCl₃) δ -180.78 (d, *J* = 45.2 Hz).

HRMS (ESI-): calculated m/z $[M-H]^{-}$ for $[C_8H_8FO_2]^{-}$: 153.0346, found: 153.0346.

2-fluoro-2-(4-fluorophenyl)acetic acid (2b)

F

Following the general procedure, the optimized time is 24 h. Yield: 92% COOH (15.8 mg); white solid; m.p. 92 - 103 °C.

F ¹H NMR (600 MHz, CDCl₃) δ 8.46 (s, 1H), 7.47 (dd, J = 8.5, 5.2 Hz, 2H), 7.11 (t, J = 8.6 Hz, 2H), 5.80 (d, J = 47.2 Hz, 1H);

¹³C{¹H} NMR (150 MHz, CDCl₃) δ 173.69 (d, *J* = 25.5 Hz), 163.62 (d, *J* = 247.5 Hz), 129.46, 129.44, 129.32, 129.30, 128.82, 128.78, 128.76, 128.72, 116.12, 115.97, 88.20 (d, *J* = 187.5 Hz);

¹⁹**F NMR** (565 MHz, CDCl₃) δ -110.69 – -110.75 (m, 1F), -179.30 (d, 45.2 Hz).

HRMS (ESI-): calculated m/z $[M-H]^{-}$ for $[C_8H_5F_2O_2]^{-}$: 153.0346, found: 153.0346.

2-(4-chlorophenyl)-2-fluoroacetic acid (3b)

Following the general procedure, the optimized time is 24 h. Yield: 92% (17.3 mg); white solid; m.p. 71 - 80 °C.

¹**H NMR** (600 MHz, CDCl₃) δ 8.40 (s, 1H), 7.49 – 7.34 (m, 4H), 5.80 (d, *J* =

47.1 Hz, 1H);

¹³C{¹H} NMR (150 MHz, CDCl₃) δ 173.55 (d, *J* = 27.0 Hz), 136.09 (d, *J* = 1.5 Hz), 131.87 (d, *J* = 21.0 Hz), 129.20, 127.99, 127.95, 88.09 (d, *J* = 186.0 Hz);

¹⁹**F** NMR (565 MHz, CDCl₃) δ -181.75 (d, J = 45.2 Hz).

HRMS (ESI-): calculated m/z $[M-H]^{-}$ for $[C_8H_5Cl^{35}FO_2]^{-}$: 186.9957, found: 186.9960; $[C_8H_5Cl^{37}FO_2]^{-}$: 188.9927, found: 188.9930.

2-(4-bromophenyl)-2-fluoroacetic acid (4b)

Following the general procedure, the optimized time is 24 h. Yield: 94% (21.9 mg); white solid; m.p. 96 –103 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.56 (d, J = 8.2 Hz, 2H), 7.36 (d, J = 8.2 Hz, 2H), 7.

2H), 5.78 (d, *J* = 47.2 Hz, 1H);

¹³C{¹H} NMR (150 MHz, CDCl₃) δ 173.28 (d, *J* = 25.5 Hz), 132.4 (d, *J* = 21.0 Hz), 132.16, 128.20 (d, *J* = 7.5 Hz), 124.29, 88.14 (d, *J* = 187.5 Hz);

¹⁹F NMR (565 MHz, CDCl₃) δ -182.21 (d, J = 50.1 Hz).

HRMS (ESI-): calculated m/z $[M-H]^{-}$ for $[C_8H_5Br^{79}FO_2]^{-}$: 230.9451, found: 230.9458; $[C_8H_5Br^{81}FO_2]^{-}$: 232.9431, found: 232.9437.

2-fluoro-2-(4-iodophenyl)acetic acid (5b)

Following the general procedure, the optimized time is 24 h. Yield: 92%
H (25.8 mg); white solid; m.p. 129 –135 °C.
¹H NMR (600 MHz, CDCl₃) δ 7.77 (d, J = 8.1 Hz, 2H), 7.22 (d, J = 8.1 Hz, 2H), 6.09 (s, 1H), 5.77 (d, J = 47.2 Hz, 1H);

¹³C{¹H} NMR (150 MHz, CDCl₃) δ 172.82 (d, *J* = 27.0 Hz), 138.09, 133.10 (d, *J* = 19.5 Hz), 128.27 (d, *J* = 6.0 Hz), 96.11, 88.24 (d, *J* = 187.5 Hz);

¹⁹**F** NMR (565 MHz, CDCl₃) δ -182.61 (d, J = 45.2 Hz).

HRMS (ESI-): calculated m/z $[M-H]^{-}$ for $[C_8H_5IFO_2]^{-}$: 278.9313, found: 278.9322.

2-(4-cyanophenyl)-2-fluoroacetic acid (6b)

Following the general procedure, the optimized time is 24 h. Yield: 60% (10.8 mg); white solid; m.p. 90 – 111 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.73 (d, *J* = 8.1 Hz, 2H), 7.63 (d, *J* = 8.1 Hz, 2H), 7.32 (s, 1H), 5.90 (d, *J* = 47.1 Hz, 1H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 171.77 (d, *J* = 27.0 Hz), 138.43 (d, *J* = 19.5 Hz), 132.66, 126.96, 126.92, 117.98, 113.62, 87.82 (d, *J* = 189.0 Hz);

¹⁹**F NMR** (565 MHz, CDCl₃) δ -186.37 (d, J = 45.2 Hz).

HRMS (ESI-): calculated m/z [M-H]⁻ for [C₉H₅FNO₂]⁻: 178.0299, found: 178.0300.

2-fluoro-2-(4-(trifluoromethyl)phenyl)acetic acid (7b)

Following the general procedure, the optimized time is 24 h. Yield: 87% (19.3 mg); white solid; m.p. 82 - 92 °C.

¹**H NMR** (600 MHz, CDCl₃) δ 8.01 (s, 1H), 7.69 (d, *J* = 8.1 Hz, 2H), 7.62 (d,

J = 8.1 Hz, 2H), 5.90 (d, J = 47.1 Hz, 1H);

F₃C

¹³C{¹H} NMR (150 MHz, CDCl₃) δ 173.01 (d, *J* = 30.0 Hz), 137.15 (d, *J* = 21.0 Hz), 132.02 (d, *J* = 31.5 Hz), 126.76, 126.72, 126.27, 125.94, 125.91, 125.89, 125.86, 125.82, 123.68 (d, *J* = 270.0 Hz), 88.01 (d, *J* = 187.5 Hz);

¹⁹F NMR (565 MHz, CDCl₃) δ -62.92 (s, 3F), -185.09 (d, J = 45.2 Hz).

HRMS (ESI-): calculated $m/z [M-H]^{-}$ for $[C_9H_5F_4O_2]^{-}$: 221.0220, found: 221.0226.

2-fluoro-2-(4-(methoxycarbonyl)phenyl)acetic acid (8b)

Following the general procedure, the optimized time is 24 h. Yield: 92% COOH (19.5 mg); white solid; m.p. 77 - 84 °C.

¹**H NMR** (600 MHz, CDCl₃) δ 8.08 (d, J = 8.0 Hz, 2H), 7.57 (d, J =

8.0 Hz, 2H), 5.89 (d, *J* = 47.3 Hz, 1H), 3.93 (s, 3H);

¹³C{¹H} NMR (150 MHz, CDCl₃) δ 177.86, 167.47, 132.37, 131.07, 127.37, 127.32, 89.23 (d, *J* = 199.5 Hz), 53.40;

¹⁹**F** NMR (565 MHz, CDCl₃) δ -184.35 (d, *J* = 50.9 Hz).

HRMS (ESI-): calculated m/z [M-H] for [C₁₀H₈FO₄] : 211.0401, found: 211.0405.

2-([1,1'-biphenyl]-4-yl)-2-fluoroacetic acid (9b)

Following the general procedure, the optimized time is 24 h. Yield: 95% (21.9 mg); white solid; m.p. 162 – 168 °C.

¹**H NMR** (600 MHz, DMSO-*d*) δ 7.73 (d, *J* = 8.0 Hz, 2H), 7.70 – 7.65 (m,

2H), 7.56 – 7.44 (m, 4H), 7.39 (t, *J* = 7.4 Hz, 1H), 6.03 (d, *J* = 47.6 Hz, 1H);

¹³C{¹H} NMR (150 MHz, DMSO-*d*) δ 170.08 (d, J = 27.0 Hz), 141.50, 139.75, 134.59, 134.46,

129.33, 128.14, 127.89, 127.86, 127.37, 127.12, 88.83 (d, *J* = 178.5 Hz);

¹⁹**F** NMR (565 MHz, DMSO-*d*) δ -170.75 (d, J = 50.9 Hz).

HRMS (ESI-): calculated m/z [M-H] for $[C_{10}H_8FO_4]$: 229.0659, found: 229.0665.

2-(4-(tert-butyl)phenyl)-2-fluoroacetic acid (10b)

Following the general procedure, the optimized time is 24 h. Yield: 95%
COOH (19.9 mg); white solid; m.p. 98 – 108 °C
¹H NMR (600 MHz, CDCl₃) δ 8.70 (s, 1H), 7.47 – 7.25 (m, 4H), 5.71 (d, J = 47.5 Hz, 1H), 1.24 (s, 9H);

¹³C{¹H} NMR (150 MHz, CDCl₃) δ 174.36 (J = 28.5 Hz), 153.23, 130.49 (J = 4.5 Hz), 126.60 (J = 4.5 Hz), 125.92, 88.78 (J = 186.0 Hz), 34.79, 31.24;

¹⁹**F NMR** (565 MHz, CDCl₃) δ -179.19 (d, *J* = 45.2 Hz).

HRMS (ESI-): calculated m/z $[M-H]^{-}$ for $[C_{14}H_{10}FO_2]^{-}$: 209.0972, found: 209.0977.

2-fluoro-2-(p-tolyl)acetic acid (11b)

Following the general procedure, the optimized time is 24 h. Yield: 80% (13.4 mg); oil. **H NMR** (600 MHz, CDCl₃) δ 7.29 (d, J = 7.7 Hz, 2H), 7.15 (d, J = 7.8 Hz, 2H)

2H), 5.71 (d, *J* = 47.5 Hz, 1H), 2.30 (s, 3H);

¹³C{¹H} NMR (150 MHz, CDCl₃) δ 173.86, 140.13, 130.55 (d, *J* = 21.0 Hz), 129.61, 126.82, 126.79, 88.83 (d, *J* = 184.5 Hz), 21.32;

¹⁹**F NMR** (565 MHz, CDCl₃) δ -178.61 (d, *J* = 45.2 Hz).

HRMS (ESI-): calculated m/z [M-H] for [C₉H₈FO₂]: 167.0503, found: 167.0503.

2-fluoro-2-(m-tolyl)acetic acid (12b)

Following the general procedure, the optimized time is 24 h. Yield: 89% COOH (15.1 mg); light yellow oil.

¹**H NMR** (600 MHz, CDCl₃) δ 9.09 (s, 1H), 7.33 – 7.19 (m, 4H), 5.77 (d, J

= 47.5 Hz, 1H), 2.37 (s, 3H);

¹³C{¹H} NMR (150 MHz, CDCl₃) δ 174.33 (d, J = 28.5 Hz), 138.85, 133.41, 133.27, 130.76, 128.83, 127.3 (d, J = 6.0 Hz) 127.32, 127.28, 123.88 (d, J = 7.5 Hz), 88.89 (d, J = 186.0 Hz), 21.36;
¹⁹F NMR (565 MHz, CDCl₃) δ -180.18 (d, J = 45.2 Hz).

HRMS (ESI-): calculated m/z [M-H] for $[C_9H_8FO_2]$: 167.0503, found: 167.0503.

2-fluoro-2-(o-tolyl)acetic acid (13b)

Following the general procedure, the optimized time is 24 h. Yield: 90% (15.1 mg); white solid; m.p. 47 - 54 °C.

¹**H NMR** (600 MHz, CDCl₃) δ 7.42 (d, J = 7.6 Hz, 1H), 7.33 – 7.20 (m, 3H),

6.02 (d, *J* = 47.0 Hz, 1H), 5.67 (s, 1H), 2.45 (s, 3H);

¹³C{¹H} NMR (150 MHz, CDCl₃) δ 173.87, 136.66 (d, *J* = 4.5 Hz), 132.12, 131.99, 131.03, 129.96, 127.32 (d, *J* = 7.5 Hz), 126.46 (d, *J* = 4.5 Hz), 86.76 (d, *J* = 184.5 Hz), 19.19;

¹⁹F NMR (565 MHz, CDCl₃) δ -180.08 (d, J = 45.2 Hz).

HRMS (ESI-): calculated m/z [M-H] for [C₉H₈FO₂]: 167.0503, found: 167.0504.

2-(2-chlorophenyl)-2-fluoroacetic acid (14b)

Following the general procedure, the optimized time is 24 h. Yield: 92% (17.3 mg); colorless oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.52 (dd, *J* = 7.5, 1.9 Hz, 1H), 7.44 (d, *J* = 7.7 Hz, 1H), 7.40 – 7.31 (m, 2H), 7.11 (s, 1H), 6.27 (d, *J* = 46.4 Hz, 1H);

¹³C{¹H} NMR (150 MHz, CDCl₃) δ 172.87 (d, J = 28.5 Hz), 133.67 (d, J = 4.5 Hz), 131.68 (d, J = 21.0 Hz), 131.28, 130.06, 128.71 (d, J = 6.0 Hz), 127.41, 85.80 (d, J = 184.5 Hz);

¹⁹**F NMR** (565 MHz, CDCl₃) δ -181.06 (d, *J* = 45.2 Hz).

HRMS (ESI-): calculated m/z $[M-H]^{-}$ for $[C_8H_5Cl^{35}FO_2]^{-}$: 186.9957, found: 186.9959; $[C_8H_5Cl^{37}FO_2]^{-}$:188.9927, found: 188.9929.

2-fluoro-2-(naphthalen-1-yl)acetic acid (15b)

Following the general procedure, the optimized time is 24 h. Yield: 93% (19.0 mg); white solid; m.p. 145 – 151 °C.

¹**H NMR** (600 MHz, CDCl₃) δ 8.14 (d, J = 8.3 Hz, 1H), 7.97 – 7.83 (m, 2H), 7.61 (d, J = 7.1 Hz, 1H), 7.57 – 7.51 (m, 2H), 7.48 (t, J = 7.7 Hz, 1H), 6.39 (d, J = 46.8 Hz, 1H); ¹³C{¹H} **NMR** (150 MHz, CDCl₃) δ 174.11 (d, J = 27.0 Hz), 133.89, 130.90, 130.51, (d, J = 19.5

Hz), 128.92, 127.24, 127.00 (d, *J* = 9.0 Hz), 126.35, 125.11, 123.58, 88.08 (d, *J* = 186.0 Hz);

¹⁹**F** NMR (565 MHz, CDCl₃) δ -178.63 (d, *J* = 45.2 Hz).

HRMS (ESI-): calculated m/z [M-H] for $[C_{12}H_8FO_2]$: 203.0503, found: 203.0506.

2-fluoro-2-(naphthalen-2-yl)acetic acid (16b)

Following the general procedure, the optimized time is 24 h. Yield: 87% (17.8 mg); white solid; m.p. 161 - 171 °C.

¹**H NMR** (600 MHz, DMSO-*d*) δ 8.04 (s, 1H), 7.99 (dd, *J* = 8.8, 3.9 Hz, 2H), 7.97 – 7.92 (m, 1H), 7.62 – 7.52 (m, 3H), 6.18 (d, *J* = 47.4 Hz, 1H),

3.44 (s, 1H);

¹³C{¹H} NMR (150 MHz, DMSO-*d*) δ 170.09 (d, *J* = 27.0 Hz), 133.43, 132.91, 132.81, 132.77, 128.88, 128.50, 128.01, 127.31, 127.08, 126.98, 126.94, 126.91, 124.28 (d, *J* = 4.5 Hz), 89.2 (d, *J* = 150 Hz);

¹⁹**F** NMR (565 MHz, DMSO-*d*) δ -171.01 (d, J = 50.9 Hz).

HRMS (ESI-): calculated m/z $[M-H]^{-}$ for $[C_{12}H_8FO_2]^{-}$: 203.0503, found: 203.0507.

2-(3,5-dimethylphenyl)-2-fluoroacetic acid (17b)

Following the general procedure, the optimized time is 24 h. Yield: 92% (16.8 mg); white solid; m.p. 70 - 81 °C.

¹**H NMR** (600 MHz, CDCl₃) δ 8.23 (s, 1H), 7.07 (d, *J* = 20.0 Hz, 3H), 5.73 (d, *J* = 47.6 Hz, 1H), 2.33 (s, 6H);

¹³C{¹H} NMR (150 MHz, CDCl₃) δ 174.25 (d, J = 37..5 Hz), 138.72, 133.29 (d, J = 19.5 Hz),

131.66, 124.55, 124.51, 88.98 (d, *J* = 184.5 Hz), 21.24;

¹⁹**F NMR** (565 MHz, CDCl₃) δ -179.42 (d, J = 45.2 Hz).

HRMS (ESI-): calculated m/z [M-H] for $[C_{10}H_{10}FO_2]$: 181.0659, found: 181.0667.

2-(3,5-dichlorophenyl)-2-fluoroacetic acid (18b)

Following the general procedure, the optimized time is 24 h. Yield: 94% (21.0 mg); white solid; m.p. 82 - 85 °C.

¹**H NMR** (600 MHz, CDCl₃) δ 9.12 (s, 1H), 7.31 (dd, *J* = 14.3, 1.9 Hz, 3H), 5.69 (d, *J* = 47.0 Hz, 1H).

¹³C{¹H} NMR (150 MHz, CDCl₃) δ 172.84 (d, *J* = 27.0 Hz), 136.36 (d, *J* = 22.5 Hz), 135.68, 130.03, 124.89, 124.84, 87.27 (d, *J* = 189.0 Hz).

¹⁹**F** NMR (565 MHz, CDCl₃) δ -184.86 (d, J = 45.2 Hz).

HRMS (ESI-): calculated m/z $[M-H]^{-}$ for $[C_8H_4Cl^{35}_2FO_2]^{-}$: 220.9567, found: 220.9572; $[C_8H_4Cl^{37}_2FO_2]^{-}$: 222.9537, found: 222.9542.

2-(3,4-dimethylphenyl)-2-fluoroacetic acid (19b)

Following the general procedure, the optimized time is 24 h. Yield: 90% (16.4 mg); white solid; m.p. 47 - 55 °C.

¹H NMR (600 MHz, CDCl₃) δ 8.32 (s, 1H), 7.18 – 7.08 (m, 3H), 5.66 (d, J = 47.6 Hz, 1H), 2.20 (s, 6H);

¹³C{¹H} NMR (150 MHz, CDCl₃) δ 174.32 (d, J = 28.5 Hz), 138.82, 137.42, 130.94 (d, J = 21.0 Hz), 130.12, 127.98 (d, J = 6.0 Hz), 124.44 (d, J = 4.5 Hz), 88.91 (d, J = 184.5 Hz), 19.77, 19.67;

¹⁹**F** NMR (565 MHz, CDCl₃) δ -178.73 (d, *J* = 45.2 Hz).

HRMS (ESI-): calculated m/z $[M-H]^{-}$ for $[C_{10}H_{10}FO_2]^{-}$: 181.0659, found: 181.0660.

2-fluoro-2-(3-fluoro-4-methoxyphenyl)acetic acid (20b)

Following the general procedure, the optimized time is 24 h. Yield: 90%
(18.2 mg); white solid; m.p. 103 – 111 °C
¹H NMR (600 MHz, CDCl₃) δ 7.18 – 7.11 (m, 2H), 6.92 (t, J = 8.7 Hz, 1H), 5.68 (d, J = 47.2 Hz, 1H), 4.37 (s, 1H), 3.84 (s, 3H).

¹³C{¹H} NMR (150 MHz, CDCl₃) δ 172.47 (d, *J* = 28.5 Hz), 153.10, 151.46, 149.05 (d, *J* = 186.0 Hz), 126.20, 126.15, 126.01, 123.25, 114.70 (dd, *J* = 19.5, 6.0 Hz), 113.38, 88.01 (d, *J* = 186.0 Hz), 56.29.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -177.74 (d, *J* = 11.3 Hz), -133.52 (d, *J* = 45.2 Hz).

HRMS (ESI-): calculated m/z [M-H] for $[C_9H_7F_2O_3]$: 201.0358, found: 201.0361.

methyl 2-fluoro-2-mesitylacetate (21b)

Following the general procedure, the optimized time is 24 h. Yield: 20% (4.3 mg); colorless oil.

¹**H NMR** (600 MHz, CDCl₃) δ 6.80 (s, 2H), 6.10 (d, *J* = 46.1 Hz, 1H), 3.70 (s, 3H), 2.29 (d, *J* = 2.3 Hz, 6H), 2.20 (d, *J* = 2.1 Hz, 3H).

¹³C{¹H} NMR (150 MHz, CDCl₃) δ 170.00, (d, J = 28.5 Hz), 139.38 (d, J = 1.5 Hz), 137.62 (d, J = 3.0 Hz), 129.85, 128.22 (d, J = 16.5 Hz), 85.93 (d, J = 181.5 Hz), 52.63, 21.00, 19.83.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -182.71 (d, *J* = 45.2 Hz).

HRMS (ESI-TOF): calculated m/z $[M-H]^-$ for $[C_{12}H_{15}FO_2 + H^+]$: 211.1134, found: 211.1133.

2-fluoro-2-phenylpropanoic acid (22b)

Following the general procedure, the optimized time is 24 h. Yield: 65% (10.9 mg); colorless oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.57 – 7.50 (m, 2H), 7.43 – 7.32 (m, 3H), 6.83 (s, – 22.3 Hz, 2H).

1H), 1.95 (d, J = 22.3 Hz, 3H);

¹³C{¹H} NMR (150 MHz, CDCl₃) δ 175.69 (d, J = 22.5 Hz), 138.52 (d, J = 22.5 Hz), 128.89, 128.58,

124.75, 124.69, 94.42 (d, *J* = 220.5 Hz), 24.49 (d, *J* = 24.0 Hz);

¹⁹**F NMR** (565 MHz, CDCl₃) δ -151.26 (q, *J* = 22.6 Hz).

HRMS (ESI-): calculated m/z [M-H] for [C₉H₈FO₂]: 167.0503, found: 167.0503.

2-fluoro-2-phenylbutanoic acid (23b)

CH₃ Following the general procedure, the optimized time is 24 h. Yield: 46% (8.4 mg); light yellow oil.

¹**H** NMR (600 MHz, CDCl₃) δ 7.51 (q, J = 8.6 Hz, 2H), 7.41 – 7.27 (m, 3H), 6.74 (s, 1H), 2.47 – 2.11 (m, 2H), 0.97 (p, J = 7.6 Hz, 3H);

¹³C{¹H} NMR (150 MHz, CDCl₃) δ 175.38 (d, *J* = 31.5 Hz), 137.32 (d, *J* = 24.0 Hz), 128.71, 128.54, 124.86, 124.80, 97.18, 97.18 (d, *J* = 187.5 Hz), 31.27 (d, *J* = 22.5 Hz), 7.45;

¹⁹F NMR (565 MHz, CDCl₃) δ -166.72 (s, 1F).

HRMS (ESI-): calculated m/z $[M-H]^{-}$ for $[C_{10}H_{10}FO_2]^{-}$: 181.0659, found: 181.0661.

2-(2,3-bis((2-chlorobenzyl)oxy)phenyl)-2-fluoroacetic acid (25b)

Following the general procedure, the optimized time is 24 h. Yield: 82% (35.7 mg); colorless oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.50 (s, 1H), 7.48 (dd, *J* = 6.5, 2.8 Hz, 1H), 7.38 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.29 (d, *J* = 7.9 Hz, 1H), 7.27 – 7.22 (m,

1H), 7.19 – 7.10 (m, 4H), 7.06 – 6.95 (m, 3H), 6.09 (d, *J* = 47.1 Hz, 1H), 5.19 (d, *J* = 2.5 Hz, 2H), 5.12 (s, 2H);

¹³C{¹H} NMR (150 MHz, CDCl₃) δ 173.59 (d, *J* = 21.0 Hz), 151.66, 146.33, 146.31, 135.02, 134.03, 132.86 (d, *J* = 12.0 Hz), 129.73, 129.44, 129.31, 129.25, 129.17, 129.15, 128.49 (d, *J* = 19.5 Hz), 127.04, 126.88, 124.91, 120.82, 120.79, 115.88, 84.4 (d, *J* = 183.0 Hz), 72.48, 68.18;

¹⁹**F** NMR (565 MHz, CDCl₃) δ -177.57 (d, J = 50.9 Hz).

HRMS (ESI-): calculated m/z [M-H]⁻ for [C₂₂H₁₆Cl³⁵₂FO₄]⁻: 433.0404, found: 433.0414; [C₂₂H₁₆Cl³⁷₂FO₄]⁻: 435.0375, found: 435.0384.

2-fluoro-2-(3-pentylphenyl)acetic acid (26b)

F Following the general procedure, the optimized time is 24 h. Yield: 74% (16.5 mg); colorless oil.

¹**H NMR** (600 MHz, CDCl₃) δ 7.29 (q, *J* = 7.2 Hz, 3H), 7.23 (d, *J* = 7.4 Hz, 1H), 5.78 (d, *J* = 47.6 Hz, 1H), 2.61 (t, *J* = 7.9 Hz, 2H), 1.61 (t, *J* = 7.5 Hz, 2H), 1.32 (ddt, *J* = 11.3, 7.4, 4.8 Hz, 4H), 0.88 (td, *J* = 7.0, 2.9 Hz, 3H);

¹³C{¹H} NMR (150 MHz, CDCl₃) δ 173.70, 143.87, 133.41 (d, *J* = 21.0 Hz), 130.03, 128.79, 126.70 (d, *J* = 21.0 Hz) 126.70 (d, *J* = 4.5 Hz), 124.03 (d, *J* = 4.5 Hz), 89.03 (d, *J* = 184.5 Hz), 35.80, 31.49, 31.02, 22.50, 14.01;

¹⁹**F NMR** (565 MHz, CDCl₃) δ -179.90 (d, *J* = 45.2 Hz).

HRMS (ESI-): calculated m/z $[M-H]^{-}$ for $[C_{13}H_{16}FO_2]^{-}$: 223.1129, found: 223.1134.

2-fluoro-2-(9-oxo-9,10-dihydroanthracen-2-yl)acetic acid (27b)

Following the general procedure, the optimized time is 24 h. Yield: 30% (8.1 mg); white solid; m.p. 165 - 174 °C.

¹**H** NMR (600 MHz, DMSO-*d*) δ 8.27 (dt, J = 8.0, 1.5 Hz, 1H), 8.18 (dd, J = 7.9,

1.5 Hz, 1H), 7.99 (d, *J* = 7.4 Hz, 1H), 7.89 (ddd, *J* = 8.7, 7.1, 1.6 Hz, 1H), 7.60 (d, *J* = 8.4 Hz, 1H), 7.55 (t, *J* = 7.7 Hz, 1H), 7.49 (t, *J* = 7.5 Hz, 1H), 6.55 (d, *J* = 46.2 Hz, 1H);

¹³C{¹H} NMR (150 MHz, DMSO-*d*) δ 176.07, 169.86 (d, *J* = 27.0 Hz), 155.50, 153.66 (d, *J* = 1.5 Hz), 136.30, 135.91 (d, *J* = 4.5 Hz), 128.26, 126.50, 125.29, 124.98 (d, *J* = 21.0 Hz), 124.68, 121.93, 121.36, 118.52, 84.72 (d, *J* = 21.0 Hz);

¹⁹**F** NMR (565 MHz, DMSO-*d*) δ -176.66 (d, J = 50.9 Hz).

HRMS (ESI-): calculated m/z $[M-H]^{-}$ for $[C_{15}H_8FO_4]^{-}$: 271.0401, found: 271.0410.

2-fluoro-2-(2-fluoro-[1,1'-biphenyl]-4-yl)acetic acid (28b)

¹H NMR (600 MHz, DMSO-*d*₆) δ 7.66 (t, *J* = 8.0 Hz, 1H), 7.62 (d, *J* = 7.7 Hz, 2H), 7.55 (t, *J* = 7.6 Hz, 2H), 7.48 (t, *J* = 7.4 Hz, 1H), 7.46 – 7.41 (m, 2H),

6.12 (d, *J* = 47.4 Hz, 1H), 3.72 (s, 1H);

¹³C{¹H} NMR (150 MHz, DMSO-*d*₆) δ 169.79 (d, *J* = 27.0 Hz), 160.06, 158.43, 137.37, 137.32, 137.23, 137.19, 134.91, 131.72, 131.70, 129.54 (d, *J* = 13.5 Hz), 129.28, 129.15, 128.64, 123.62, 123.59, 123.56, 114.99 (d, *J* = 6.0 Hz), 88.36 (d, *J* = 180.0 Hz);

¹⁹**F NMR** (565 MHz, DMSO-*d*₆) δ -117.64 (t, J = 11.3 Hz), -177.36 (d, J = 50.9 Hz).

HRMS (ESI-): calculated m/z [M-H]⁻ for [C₁₄H₉F₂O₂]⁻: 247.0565, found: 247.0571.

2-fluoro-2-(4-(((trifluoromethyl)sulfonyl)oxy)phenyl)propanoic acid (29b)

Following the general procedure, the optimized time is 24 h. Yield: 93% H (29.4 mg); white solid; m.p. 132 - 138 °C.

TfO¹ H NMR (600 MHz, Chloroform-*d*) δ 7.64 (d, *J* = 8.9 Hz, 2H), 7.49 (s, 1H),

7.31 (d, *J* = 8.9 Hz, 2H), 1.97 (d, *J* = 22.2 Hz, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 175.22 (d, *J* = 24.0 Hz), 149.74, 138.88 (d, *J* = 22.5 Hz), 127.00,

126.94, 121.90, 121.59, 119.77, 117.65, 115.52, 93.69 (d, *J* = 187.5 Hz), 24.76 (d, *J* = 24.0 Hz);

¹⁹F NMR (565 MHz, CDCl₃) δ -72.82 (s, 1F), -152.48 (g, J = 22.6 Hz).

HRMS (ESI-): calculated m/z $[M-H]^{-}$ for $[C_{10}H_7F_4O_5S]^{-}$: 314.9945, found: 314.9953.

2-fluoro-2-(4-isobutylphenyl)propanoic acid (30b)

Following the general procedure, the optimized time is 24 h. Yield: 54% (12.2 mg); white solid; m.p. 70 - 76 °C

¹**H NMR** (600 MHz, Chloroform-*d*) δ 8.30 (s, 1H), 7.42 (d, *J* = 8.2 Hz, 2H), 7.17 (d, *J* = 8.1 Hz, 2H), 2.48 (d, *J* = 7.2 Hz, 2H), 1.95 (d, *J* = 22.2 Hz, 3H), 1.86 (dq, *J* = 13.5, 6.7, 6.1 Hz, 1H), 0.90 (d, *J* = 6.6 Hz, 6H);

¹³C{¹H} NMR (150 MHz, CDCl₃) δ 176.57 (d, *J* = 27.0 Hz), 142.73, 135.58 (d, *J* = 22.5 Hz), 129.33, 129.22, 124.56 (d, *J* = 7.5 Hz), 94.84, 93.61, 45.03, 30.16, 24.40, 24.25, 22.38;

¹⁹**F** NMR (565 MHz, CDCl₃) δ -150.42 (q, J = 22.6 Hz).

HRMS (ESI-): calculated m/z [M-H] for $[C_{13}H_{16}FO_2]$: 223.1129, found: 223.1134.

2-(3-benzoylphenyl)-2-fluoropropanoic acid (31b)

Following the general procedure, the optimized time is 24 h. Yield: 80% (21.8 mg); colorless oil.

¹**H NMR** (600 MHz, DMSO-*d*) δ 7.92 (t, *J* = 1.9 Hz, 1H), 7.71 (ddd, *J* = 9.5, 6.7, 3.0 Hz, 4H), 7.55 – 7.51 (m, 1H), 7.43 (dt, *J* = 22.3, 7.8 Hz, 3H), 6.05 (s, 1H), 1.92 (d, *J* = 22.3 Hz, 3H);

¹³C{¹H} NMR (150 MHz, DMSO-*d*) δ 196.37, 174.85 (d, *J* = 28.5 Hz), 138.97 (d, *J* = 28.5 Hz), 137.90, 137.08, 132.85, 130.64, 130.16, 128.72 (d, *J* = 7.5 Hz), 128.66, 128.45, 126.35 (d, *J* = 7.5 Hz), 94.05 (d, *J* = 186.0 Hz), 24.69, 24.54;

¹⁹**F** NMR (565 MHz, DMSO-*d*) δ -151.98 (q, J = 22.6 Hz).

HRMS (ESI-): calculated m/z $[M-H]^{-}$ for $[C_{16}H_{12}FO_3]^{-}$: 271.0765, found: 271.0773.

2-fluoro-2-(2-fluoro-[1,1'-biphenyl]-4-yl)propanoic acid (32b)

Following the general procedure, the optimized time is 24 h. Yield: 95% (24.9 mg); white solid; m.p. 98 - 107 °C.

F ¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.55 – 7.50 (m, 2H), 7.45 (dt, *J* = 11.7, 7.9 Hz, 3H), 7.41 – 7.33 (m, 3H), 1.98 (d, *J* = 22.1 Hz, 3H);

¹³C{¹H} NMR (150 MHz, CDCl₃) δ 175.94, 159.59 (d, J = 247.5 Hz), 139.78, 139.73, 139.62, 139.57, 134.98, 130.99 (d, J = 3.0 Hz), 129.67 (d, J = 13.5 Hz), 128.99, 128.97, 128.55, 128.04,

120.76, 120.74, 120.71, 120.68, 113.17, 113.12, 113.01, 112.94, 94.38, 93.13, 24.59 (d, *J* = 22.5 Hz);

¹⁹F NMR (565 MHz, CDCl₃) δ -116.50 (m, 1F), -151.59.

HRMS (ESI-): calculated m/z [M-H] for [C₁₅H₁₁F₂O₂] : 261.0722, found: 261.0729.

2-fluoro-2-(3-phenoxyphenyl)propanoic acid (33b)

Following the general procedure, the optimized time is 24 h. Yield: 65% (16.9 COOH mg); colorless oil.

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.29 – 7.24 (m, 3H), 7.19 – 7.17 (m, 1H), 7.15 (t, *J* = 2.1 Hz, 1H), 7.05 (tt, *J* = 7.5, 1.2 Hz, 1H), 6.98 – 6.92 (m, 2H), 6.89 (ddd, *J* = 8.2, 2.5, 1.0 Hz, 1H), 1.86 (d, *J* = 22.3 Hz, 3H);

¹³C{¹H} NMR (150 MHz, CDCl₃) δ 175.83 (d, *J* = 28.5 Hz), 157.60, 156.64, 140.34 (d, *J* = 22.5 Hz), 129.98, 129.90, 123.70, 119.41 (d, *J* = 9.0 Hz), 119.12, 118.86, 115.40 (d, *J* = 9.0 Hz), 94.47 (d, *J* = 186.0 Hz), 24.60, 24.45;

¹⁹**F** NMR (565 MHz, CDCl₃) δ -151.45 (q, J = 22.6 Hz).

HRMS (ESI-): calculated m/z $[M-H]^{-}$ for $[C_{15}H_{13}FO_3]^{-}$: 259.0765, found: 259.0773.

2-fluoro-2-(4-((2-oxocyclopentyl)methyl)phenyl)propanoic acid (34b)

Ph

Following the general procedure, the optimized time is 24 h. Yield: 60% (15.8 mg); light yellow oil.

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.41 – 7.32 (m, 2H), 7.11 (d, *J* = 8.1

Hz, 2H), 7.06 – 6.82 (m, 1H), 3.06 (dd, *J* = 14.0, 4.2 Hz, 1H), 2.50 – 2.43 (m, 1H), 2.34 – 2.24 (m, 2H), 2.09 – 1.97 (m, 2H), 1.93 – 1.83 (m, 4H), 1.71 – 1.60 (m, 1H), 1.46 (dtd, *J* = 12.7, 11.0, 6.7 Hz, 1H);

¹³C{¹H} NMR (150 MHz, CDCl₃) δ 175.54 (d, *J* = 28.5 Hz), 140.89, 136.40 (d, *J* = 22.5 Hz), 129.11, 124.92, 124.87, 94.22 (d, *J* = 184.5 Hz), 50.94, 38.19, 35.15, 29.17, 24.48, 24.46, 24.32, 24.30, 20.52;

¹⁹F NMR (565 MHz, CDCl₃) δ -150.62 (m, 1F).

HRMS (ESI-): calculated m/z [M-H] for $[C_{15}H_{16}FO_3]$: 263.1078, found: 263.1086.

N-(2-bromophenyl)-2-(4-bromophenyl)-2-fluoroacetamide (35)

Following the reported procedure,⁸ the reaction time is 24 h. Yield: 72% (14.8 mg); white solid; m.p. 121 - 129 °C.

Br $^{-1}$ H NMR (600 MHz, Chloroform-*d*) δ 8.76 (s, 1H), 8.33 (ddd, J = 8.2, 4.1, 1.6 Hz, 1H), 7.58 (dddd, J = 7.0, 5.2, 4.0, 1.2 Hz, 3H), 7.47 – 7.38 (m, 2H), 7.33 (tdd, J = 8.3, 4.1, 1.5 Hz, 1H), 7.04 (dddd, J = 7.8, 6.2, 4.1, 2.1 Hz, 1H), 5.89 (dd, J = 48.0, 3.8 Hz, 1H);

¹³C{¹H} NMR (150 MHz, CDCl₃) δ 166.06 (d, J = 21.0 Hz), 134.44, 133.27 (d, J = 21.0 Hz), 132.47,

132.04, 128.51, 128.15 (d, *J* = 7.5 Hz), 126.12, 124.00, 121.87, 113.97, 91.25 (d, *J* = 190.5 Hz);

¹⁹F NMR (565 MHz, CDCl₃) δ -178.19 (m, 1F).

HRMS (ESI-): calculated m/z [M-H]⁻ for [C₁₄H₉Br₂⁷⁹FNO]⁻: 383.9029, found: 383.9039; [C₈H₅Br⁸¹FO₂]⁻: 385.9009, found: 385.9019.

2-(4-bromophenyl)-2-fluoroethan-1-ol (36)

Following the reported procedure,⁹ the reaction time is 24 h. Yield: 79% (14.8 mg); colorless oil.

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.45 (d, *J* = 8.2 Hz, 2H), 7.14 (d, *J* = 8.3 Hz, 2H), 5.44 (ddd, *J* = 48.3, 7.5, 3.1 Hz, 1H), 3.84 – 3.65 (m, 2H), 2.24 (s, 1H).

¹³C{¹H} NMR (150 MHz, CDCl₃) δ 135.48, 135.35, 131.80, 127.45, 127.41, 122.85, 94.74, 93.59, 66.37, 66.21.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -187.48 (m, 1F).

HRMS (ESI-): calculated m/z [M-H] for $[C_8H_7Br^{79}FO]$: 216.9659, found: 216.9660; $[C_8H_5Br^{81}FO_2]$: 218.9638, found: 218.9643.

8. Reference

- 1. X. P. Yin, Z. Li, M. Aliakbar, R. C. Brian, W. D. Wulff, J. Org. Chem, 2020, 85, 10432.
- 2. D. R. Magnin, R. B. Sulsky, J. A. Rob; T. J. Caulfield, R. A. Parker. US 20030225091Al.
- 3. G. Lyne; G. Brigitte, WO2016054728A1.
- 4. J. A. Blake, E. Gagnon, M. Lukeman, J. C. Scaiano, Org. Lett, 2006, 8, 1057.

- L. Aureli, G. Cruciani, M. C. Cesta, R. Anacardio, L. De Simone, A. Moriconi, J. Med. Chem, 2005, 48, 2469.
- 6. C. C. Li, P. Zhao, R. L. Li, B. Zhang, W. X. Zhao, Angew. Chem., Int. Ed, 2020, 59, 10913.
- 7. T. Knauber, F. Arikan, G. Röschenthaler, L. J. Gooßen, Chem. Eur. J, 2011, 17, 2689.
- L. L. Wu, L. Falivene, E. Drinkel, S. Grant, A. Linden, L. Cavallo, R. Dorta, *Angew. Chem., Int. Ed*, 2012, *51*, 2870.
- 9. M. J. Maclean, S. Walker, T. F. Wang, P. C. H. Eichinger, P. J. Shermana, J. H. Bowie, Org. Biomol. Chem, 2010, 8, 371.

9. Copy of ¹H, ¹³C{¹H} and ¹⁹F NMR Spectra.

Compound 1b

110 100 f1 (ppm) -10

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -10 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

90 100 90 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

-10 f1 (ppm)

Compound 9b

7.74 7.75 7.75 7.67 7.67 7.75 7.54 7.53 7.53 7.53 7.53 7.53 7.53 7.53 7.749 7.53 7.749 7.749 7.749 7.733 7.733 7.733 7.733 7.733 7.733 7.733 7.733 7.733 7.733 7.733 7.733 7.733 7.733 7.733 7.733 7.749 7.733 7.749 7.733 7.749 7.733 7.749 7.749 7.733 7.749 7.733 7.749 7.749 7.749 7.733 7.749 7.749 7.749 7.733 7.749 7.749 7.749 7.733 7.749 7.749 7.749 7.753 7.749 7.749 7.753 7.749 7.749 7.749 7.753 7.749 7.753 7.753 7.753 7.753

- 3.35

100 90 f1 (ppm) -20 210 190 150 140 80 70 50 40 30 20 10 0 -10 200 180 170 160 130 120 110 60

Compound 11b

^{10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210} fl (ppm)

-60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

-40

-50

-30

10 0 -10 -20

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

Compound 15b

10

0

-10

-20

-30

-40

-50

3.5 9.0 8.0 7.5 8.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 f1 (ppm) 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0

<-178.59
<-178.67</pre>

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

Compound 17b

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

-177.95
 -178.04
 -178.04

Compound 23b

f1 (ppm) -10

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

-90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm) -10 -20 -30 -50 -60 -70 -80 -40

Compound 28b

10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

f1 (ppm) -10

Compound 34b

Compound 35

[8,34]
[8,33]
[8,33]
[8,33]
[8,33]
[8,33]
[8,33]
[8,33]
[8,33]
[8,33]
[8,33]
[8,33]
[8,33]
[8,33]
[8,33]
[8,33]
[8,33]
[8,33]
[8,33]
[8,33]
[17,35]
[17,35]
[17,35]
[17,35]
[17,35]
[17,35]
[17,35]
[17,35]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]
[17,36]

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

10	-10	-30	-50	-70	-90	-110	-130	-150	-170	-190	-210
					f1	(ppm)					