Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2022

Supporting Information

Synthesis and application of novel P-chiral monophosphorus ligands

Xiaoxiao Xie^a, Sanliang Li^a, Qiaoyu Chen^b, Hao Guo*^a, Junfeng Yang*^a, and Junliang Zhang*^a

E-mail: hguo@fudan.edu.cn; jfyang@fudan.edu.cn; junliangzhang@fudan.edu.cn

^aDepartment of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438,

China

^bAcademy of for engineering and technology, Fudan University, Shanghai, 200438, China

Contents

1. General Information	S2
2. Optimization of reaction conditions	S3
3. General procedure	S5
4. Gram-scale synthesis of 5c	S42
5. Reference	S50
6. NMR spectra of products:	S52

1. General Information

All reactions were carried out under an atmosphere of nitrogen in flame-dried sealed tube with magnetic stirring. The $[\alpha]_D$ was recorded using PolAAr 3005 High Accuracy Polarimeter. ¹H NMR spectra, ¹³C NMR spectra, ¹⁹F NMR spectra and ³¹P NMR spectra were recorded on a Bruker 400 MHz spectrometer in CDCl₃. All signals are reported in δ units, parts per million (ppm), and were referenced to CDCl₃ (δ 7.26 ppm for ¹H NMR and 77.0 ppm for ¹³C NMR) as the internal standard. Data for ¹H NMR spectra are reported as follows: chemical shift (ppm; s = singlet, d = doublet, t = triplet, dd = doublet of doublets, m = multiplet), coupling constant (Hz), and integration. Data for ¹³C NMR are reported in terms of chemical shift (ppm) relative to residual solvent peak (CDCl₃: 77.0 ppm). HRMS spectra were recorded on GCQTOF 7200 and Bruker McriOTOF11. SAESI-MS spectra were recorded on a Thermo TSQ Quantum Access triplequadrupole mass spectrometer (Thermo Fisher Scientific, Waltham, MA) equipped with a home-made SAESI ion source in positive mode. The instrumentation used for the crystal measurement was D8 VENTURE MetalJet. Reactions were monitored by thin layer chromatography (TLC) using silica gel plates. Toluene and CH₂Cl₂ was freshly distilled from CaH₂; THF, mesitylene, xylene and dioxane were freshly distilled from sodium metal prior to use; EtOAc (AR grade), DCE (AR grade), CH₃OH (AR grade) and *n*-hexane (anhydrous) were purchased from Sinopharm. Flash column chromatography was performed on silica gel 60 (particle size 200-400 mesh ASTM, purchased from Yantai, China) and eluted with CH₃OH/ ethyl acetate or petroleum ether/ethyl acetate. The substrates $(\pm)1^{[1]}$, and $X1^{[3]}$ were synthesized according to published procedures, the others are commercially available. The spectral data of the substrates were consisted with that reported in the literature. The enantionmeric excesses of the products were determined by chiral stationary phase Shimadzu HPLC using a Chiralpak AD-H, IC, OD-H, OZ-H.

2. Optimization of reaction conditions

2.1 Table S1. Investigate the effect of the amount of palladium source on the reaction

Entry	х	у	Yield [%] ^[a]	ee [%] ^[b]
1	5	15	84	98
2	4	12	81	96
3	3	9	79	97
4	2	6	72	97
5	1	3	60	97
6	2	5	74	90
7	2	4	69	85

Reaction conditions: (\pm)-1 (2 mmol, 2.0 equiv.), **2a** (1 mmol, 1.0 equiv.), H₂O (1.0 equiv), DCE (10 mL), under argon atmosphere, 12 h. [a] Isolated yield, the ratio of regioselectivities (3:3' > 20:1 in all conditions) were determined by ¹H NMR analysis of the crude product [b] Enantiomeric excesses were determined by HPLC on chiral stationary phases.

2.2 Table S2. Investigate the effect of amount of substrates on the reaction

Entry	1 (mmol)	2a (mmol)	Yield [%] ^[a]	ee [%] ^[b]
1	1.8	1	76	98
2	1.9	1	82	98
3	2.0	1	72	97
4	2.1	1	68	97
5	2.2	1	61	97
6	15.2	8	80	98

Reaction conditions: $Pd_2(dba)_3$ (2 mol%), (S,Rs)-X1 (6 mol%), H_2O (1.0 equiv), DCE (10 mL), under argon atmosphere, 12 h. [a] Isolated yield, the ratio of regioselectivities (3:3' > 20:1 in all conditions) were determined by ¹H NMR analysis of the crude product. [b] Enantiomeric excesses were determined by HPLC on chiral stationary phases.

2.3 Table S3. Investigate the effect of bases on the reaction

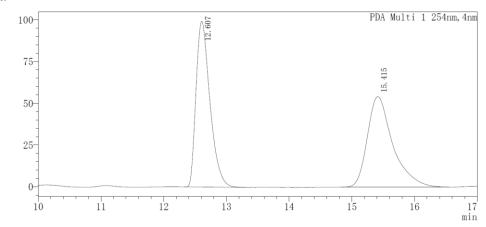
Entry	Base	Yield (4a+4a') [%] ^[a]	dr ^[b]
1	^t BuOLi	56	1:1
2	2 ^t BuONa 3 ^t BuOK 4 CH ₃ ONa	61	2:1
3		65	2:1
4		ND ^[c]	/
5	NaOH	ND ^[c]	1
6	кон	ND ^[c]	/

Reaction conditions: 3a (6 mmol, 1.0 equiv.), THF (30 mL), under Nitrogen atmosphere, 24 h. [a] Isolated yield. [b] dr were determined by 1 H NMR analysis of the crude product. [c] ND = Not detected.

3. General procedure

General procedure A: A sealed tube with a magnetic stir bar was charged with $Pd_2(dba)_3$ (0.16 mmol), (S, R_S)-X1 (0.48 mmol), racemic SPO (15.2 mmol), alkyne (8.0 mmol) and water (8.0 mmol). Anhydrous DCE (80.0 ml) was then added as solvent. The reaction tube was sealed, frozen by liquid nitrogen and evacuated under vacuum and backfilled with argon three times through a three-way stopcock. The reaction tube was sealed and allowed to stir at 35°C for 24-36 h. On completion (monitored by TLC), the mixture was concentrated in vacuum and the residue was purified by flash column chromatography on silica gel with petroleum ether-ethyl acetate as eluent to give the desired product 3. [1] Product 3 could be further elevated to enantiomerically pure level *via* recrystallization from Hexane/DCM.

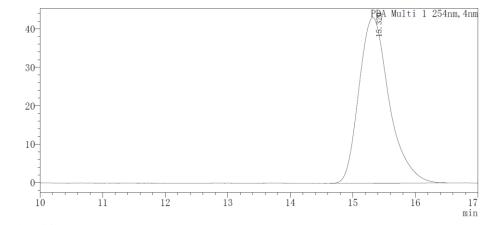
General procedure B: A sealed tube equipped with a stir bar under argon atmosphere was charged with 3 (>99% ee, 4.0 mmol) and ¹BuOK (1.2 equiv). THF (40.0 mL) was added as solvent and then the vial was capped. The reaction mixture was stirred at 80 °C for 20-36 h. After completion of the reaction (monitored by TLC), the mixture was concentrated in vacuum and the residue was purified by flash column chromatography on silica gel with CH₃OH/ethyl acetate as eluent to afford the adduct **4** and **4**' as a pair of diastereomers.^[1]


General procedure C: To a solution of 4 (2.0 mmol, 1 equiv), triethylamine (20.0 mmol, 10 equiv) in toluene (20 mL) at rt was added trichlorosilane (10.0 mmol, 5 equiv). The mixture was heated to 80 °C and stirred under nitrogen for 12 h. To the mixture at 0 °C was added BH₃·THF complex (1.0 M, 26.0 mmol), and the resulting mixture was stirred at rt for about 2 h. Water (30.0 mL) was then added and the aqueous layer was extracted three times with ethyl acetate. The combined organic extracts were dried over Na₂SO₄ and removed in vacuo and the residue was purified by flash column chromatography on silica gel using hexanes/ethyl acetate as eluent to provide the title phosphine borane adducts 5.^[2]

Date of product 3a, 4a, 4a' was matched of the reported literature.^[1]

3.1 (*R*,*E*)-(2-bromostyryl)(tert-butyl)(o-tolyl)phosphine oxide (3b)

Prepared according to general procedure A from **2b** (8.0 mmol), racemic SPO **1** (15.2 mmol), after a flash column chromatography (hexanes: EA = 1:1) afforded the product **3b**. After recrystallization from Hexane/DCM, product **3b** could be obtained as a colorless solid (1.68 g, 56% yield) with 99% *ee*. M.p.: 170.1-171.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.03-7.95 (m, 1H), 7.67-7.60 (m, 2H), 7.59-7.54 (m, 1H), 7.45-7.32 (m, 2H), 7.32-7.18 (m, 3H), 7.01 (dd, J = 23.7, 17.1 Hz, 1H), 2.83 (s, 3H), 1.22 (d, J = 15.0 Hz, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 147.2 (d, $J_{C-P} = 3.7$ Hz), 144.0 (d, $J_{C-P} = 7.2$ Hz), 136.1 (d, $J_{C-P} = 16.0$ Hz), 133.4, 132.9 (d, $J_{C-P} = 10.5$ Hz), 132.5 (d, $J_{C-P} = 10.8$ Hz), 131.2 (d, $J_{C-P} = 2.6$ Hz), 130.5, 128.9, 130.0, 127.5, 124.7 (d, $J_{C-P} = 11.4$ Hz), 124.5, 121.2 (d, $J_{C-P} = 90.9$ Hz), 34.4 (d, $J_{C-P} = 72.6$ Hz), 24.6, 22.2 (d, $J_{C-P} = 2.2$ Hz); ³¹P NMR (162 MHz, CDCl₃) δ 41.8. HRMS (EI): m/z: [M]⁺ Calcd for C₁₉H₂₂BrOP: 376.0592, found 376.0589. HPLC (AD-H, 2-propanol /n-hexane = 5/95, flow rate = 1.0 mL/min, 1 = 254 nm) tR = 15.4 min (major), 12.6 min (minor). [α]_D ²⁰ = 54.8 (c = 0.5, CHCl₃).

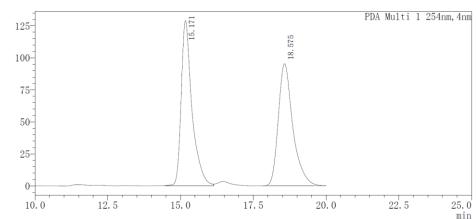

<Chromatogram>
mAU

<Peak Table>

PDA Ch1 25	PDA Chl 254nm						
No.	Ret.Time(min)	Height(mAU)	Height%	Area(mAU*min)	Area%		
1	12.607	99296	64.658	1529785	50.025		
2	15. 415	54274	35. 342	1528248	49. 975		
Total		153570	100.000	3058033	100.000		

<Chromatogram>
mAU

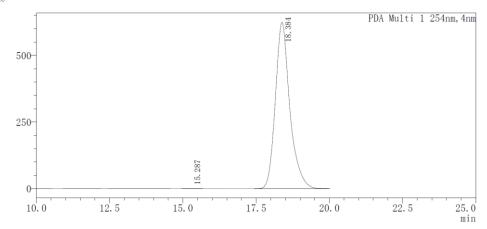
<Peak Table>


No.		Height (mAU)	Height%	Area(mAU*min)	Area%
1	15. 320	43039	100.000	1443016	100.000
总计		43039	100.000	1443016	100.000
Total					

3.2 (R,E)-tert-butyl(2-fluorostyryl)(o-tolyl)phosphine oxide (3c)

Prepared according to general procedure A from 2c (8.0 mmol), racemic SPO 1 (15.2 mmol), after a flash column chromatography (hexanes: EA = 1:1) afforded the product

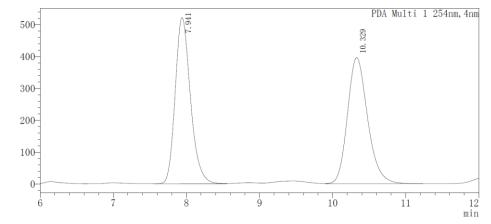
3c. After recrystallization from Hexane/DCM, product 3c could be obtained as a colorless solid (1.29 g, 51% yield) with 99% *ee.* M.p.: 191.1-191.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (t, J = 17.6 Hz, 1H), 7.60-7.51 (m, 2H), 7.42-7.31 (m, 2H), 7.29-7.20 (m, 3H), 7.19-7.15 (m, 1H), 7.12 (dd, J = 10.7, 8.7 Hz, 1H), 2.82 (s, 3H), 1.21 (d, J = 15.0 Hz, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 161.2 (d, $J_{C-P} = 253.5$ Hz), 143.8 (d, $J_{C-P} = 7.2$ Hz), 141.7 (d, $J_{C-P} = 3.0$ Hz), 133.0 (d, $J_{C-P} = 10.4$ Hz), 132.4 (d, $J_{C-P} = 10.9$ Hz), 131.1 (d, $J_{C-P} = 2.5$ Hz), 130.9 (d, $J_{C-P} = 8.8$ Hz), 130.0 (d, $J_{C-F} = 3.2$ Hz), 128.8 (d, $J_{C-P} = 91.5$ Hz), 124.7 (d, $J_{C-P} = 11.5$ Hz), 124.3 (d, $J_{C-F} = 3.5$ Hz), 121.4 (d, $J_{C-F} = 8.5$ Hz), 120.5 (d, $J_{C-F} = 8.2$ Hz), 116.2 (d, $J_{C-F} = 22.0$ Hz), 34.3 (d, $J_{C-P} = 72.2$ Hz), 24.5, 22.2 (d, $J_{C-P} = 2.3$ Hz); ³¹P NMR (162 MHz, CDCl₃) δ 42.0; ¹⁹F NMR (377 MHz, CDCl₃) δ -115.4. HRMS (EI): m/z: [M]⁺ Calcd for C₁₉H₂₂FOP: 316.1392, found 316.1386. HPLC (AD-H, 2-propanol /n-hexane = 5/95, flow rate = 1.0 mL/min, 1 = 254 nm) tR = 18.3 min (major), 15.2 min (minor). [α]_D ²⁰ = 138.2 (c = 0.5, CHCl₃).



<Peak Table>

PDA Chi 254nm					
No.	Ret. Time (min)	Height (mAU)	Height%	Area(mAU*min)	Area%
1	15. 171	128971	57. 504	3328168	50. 121
2	18. 575	95309	42. 496	3312109	49.879
Total		224281	100.000	6640277	100.000

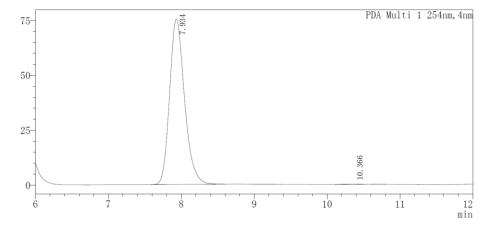
<Chromatogram>
mAU


<Peak Table>

I	PDA Ch1 254nm						
	No.	Ret.Time(min)	Height (mAU)	Height%	Area(mAU*min)	Area%	
	1	15. 287	350	0.056	10002	0.047	
	2	18. 384	624120	99. 944	21470515	99. 953	
	Total		624470	100.000	21480517	100.000	

3.3 (R,E)-tert-butyl(3-chlorostyryl)(o-tolyl)phosphine oxide (3d)

Prepared according to general procedure A from **2d** (8.0 mmol), racemic SPO **1** (15.2 mmol), after a flash column chromatography (hexanes: EA = 1:1) afforded the product **3d**. After recrystallization from Hexane/DCM, product **3d** could be obtained as a colorless solid (1.51 g, 57% yield) with 99% *ee*. M.p.: 160.0-160.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.68-7.49 (m, 3H), 7.39 (dd, J = 11.6, 5.0 Hz, 2H), 7.35-7.30 (m, 2H), 7.29 -7.20 (m, 2H), 7.05 (dd, J = 23.6, 17.2 Hz, 1H), 2.80 (s, 3H), 1.19 (d, J = 15.1 Hz, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 147.0 (d, $J_{C-P} = 2.9$ Hz), 143.8 (d, $J_{C-P} = 7.1$ Hz), 137.4 (d, $J_{C-P} = 16.1$ Hz), 134.8, 133.0 (d, $J_{C-P} = 10.8$ Hz), 132.5 (d, $J_{C-P} = 10.8$ Hz), 131.3 (d, $J_{C-P} = 2.6$ Hz), 130.1, 129.6, 129.0, 128.1, 127.0, 126.3, 124.8 (d, $J_{C-P} = 11.6$ Hz), 34.5 (d, $J_{C-P} = 72.7$ Hz), 24.5, 22.2 (d, $J_{C-P} = 2.2$ Hz); ³¹P NMR (162 MHz, CDCl₃) δ 42.3-41.9 (m). HRMS (EI): m/z: [M]⁺ Calcd for C₁₉H₂₂ClOP: 332.1097, found 332.1092. HPLC (IC, 2-propanol /n-hexane = 20/80, flow rate = 1.0 mL/min, 1 = 254 nm) tR = 7.9 min (major), 10.3 min (minor). [α]_D $^{20} = 169.5$ (c = 0.2, CHCl₃).

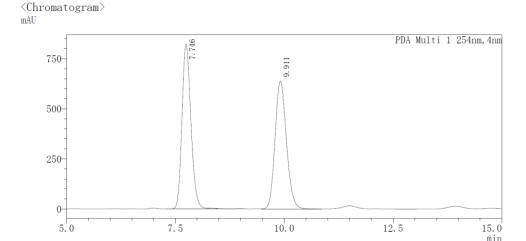


<Peak Table>

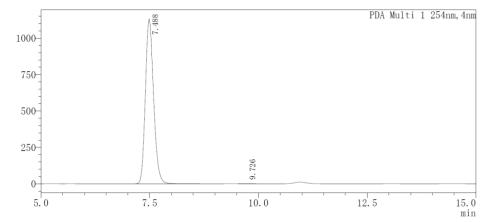
PDA Ch1 25	PDA Ch1 254nm						
No.	Ret.Time(min)	Height (mAU)	Height%	Area(mAU*min)	Area%		
1	7. 941	521342	56.855	7566935	49.969		
2	10. 329	395618	43. 145	7576405	50.031		
Total		916960	100.000	15143340	100.000		

$\verb| \langle Chromatogram \rangle|$

 $m\mathrm{AU}$



<Peak Table>

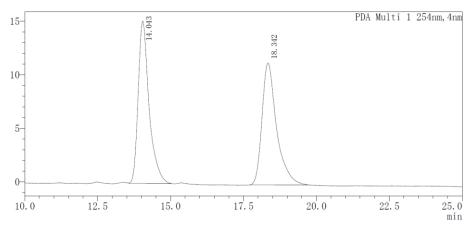

PDA CNI 254NM					
No.	Ret. Time (min)	Height(mAU)	Height%	Area(mAU*min)	Area%
1	7. 934	75372	99.828	1074850	99.836
2	10. 366	130	0. 172	1764	0. 164
Total		75501	100.000	1076614	100.000

3.4 (R,E)-tert-butyl(3-methylstyryl)(o-tolyl)phosphine oxide (3e)

Prepared according to general procedure A from 2e (8.0 mmol), racemic SPO 1 (15.2 mmol), after a flash column chromatography (hexanes: EA = 1:1) afforded the product **3e**. After recrystallization from Hexane/DCM, product **3e** could be obtained as a colorless solid (1.50 g, 60% yield) with 99% *ee*. M.p.: 180.0-180.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (t, J = 17.2 Hz, 1H), 7.57 (dd, J = 11.5, 7.9 Hz, 1H), 7.43-7.34 (m, 3H), 7.30-7.25 (m, 4H), 7.01 (dd, J = 24.4, 17.2 Hz, 1H), 2.82 (s, 3H), 2.39 (s, 3H), 1.20 (d, J = 15.0 Hz, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 148.6 (d, $J_{C-P} = 2.5$ Hz), 143.7 (d, $J_{C-P} = 7.0$ Hz), 138.4, 135.5 (d, $J_{C-P} = 15.9$ Hz), 133.0 (d, $J_{C-P} = 10.6$ Hz), 132.3 (d, $J_{C-P} = 10.7$ Hz), 131.0 (d, $J_{C-P} = 2.7$ Hz), 130.5, 128.9 (d, $J_{C-P} = 91.1$ Hz), 128.6, 128.0, 124.9, 124.6 (d, $J_{C-P} = 11.4$ Hz), 116.5 (d, $J_{C-P} = 93.6$ Hz), 34.3 (d, $J_{C-P} = 72.7$ Hz), 24.5, 22.2 (d, $J_{C-P} = 2.2$ Hz), 21.3; ³¹P NMR (162 MHz, CDCl₃) δ 42.5-42.1 (m). HRMS (EI): m/z: [M]⁺ Calcd for C₂₀H₂₅OP: 312.1643, found 312.1638. HPLC (IC, 2-propanol /n-hexane = 25/75, flow rate = 1.0 mL/min, 1 = 254 nm) tR = 7.4 min (major), 9.7 min (minor). [α]_D ²⁰ = 154.5 (c = 0.5, CHCl₃).

<Peak Table> PDA Ch1 254nm Height (mAU) Ret. Time (min) Height% Area(mAU*min) No. Area% 7.746 821920 56.295 11740361 50.237 638115 9.911 43.705 1162961449.763 Total 1460035 23369975 100.000 100.000 <Chromatogram>
mAU

<Peak Table>

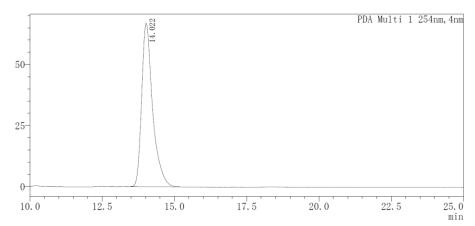

PDA Ch1 254nm							
No.	Ret.Time(min)	Height (mAU)	Height%	Area(mAU*min)	Area%		
1	7. 488	1130402	99. 935	14862908	99. 919		
2	9. 726	738	0.065	12073	0.081		
Total		1131140	100.000	14874982	100.000		

3.5 (R,E)-(2-([1,1'-biphenyl]-4-yl)vinyl)(tert-butyl)(o-tolyl)phosphine oxide (3f)

Prepared according to general procedure A from **2f** (8.0 mmol), racemic SPO **1** (15.2 mmol), after a flash column chromatography (hexanes: EA = 1:1) afforded the product **3f**. After recrystallization from Hexane/DCM, product **3f** could be obtained as a yellow solid (1.41 g, 47% yield) with 99% *ee*. M.p.: 145.0-145.9 °C. ¹H **NMR** (400 MHz, CDCl₃) δ 7.75 (t, J = 17.2 Hz, 1H), 7.70-7.54 (m, 7H), 7.47 (t, J = 7.4 Hz, 2H), 7.39 (d, J = 6.3 Hz, 2H), 7.33-7.21 (m, 2H), 7.09 (dd, J = 24.2, 17.2 Hz, 1H), 2.84 (s, 3H), 1.23 (d, J = 15.0 Hz, 9H); ¹³**C NMR** (101 MHz, CDCl₃) δ 148.0 (d, J - P = 2.7 Hz), 143.7 (d, J - P = 7.1 Hz), 142.4, 140.2, 134.5 (d, J - P = 16.1 Hz), 133.0 (d, J - P = 10.7 Hz), 132.4 (d, J - P = 10.7 Hz), 131.1 (d, J - P = 2.5 Hz), 128.8 (d, J - P = 93.4 Hz), 128.8, 128.0, 127.7, 127.4, 127.0, 124.7 (d, J - P = 11.5 Hz), 116.7 (d, J - P = 93.4 Hz), 34.4 (d, J - P = 72.7 Hz), 24.5, 22.2 (d, J - P = 2.1 Hz); ³¹P **NMR** (162 MHz, CDCl₃) δ 42.9-42.1 (m). **HRMS** (EI): m/z: [M]⁺ Calcd for C₂₅H₂₇OP: 374.1800, found 374.1794. HPLC (AD-H, 2-propanol /n-hexane = 15/85, flow rate = 1.0 mL/min, 1 = 254 nm) tR = 14.0 min

(major), 18.3 min (minor). $[\alpha]_D^{20} = 187.8$ (c = 0.5, CHCl₃).

<Chromatogram> mAU

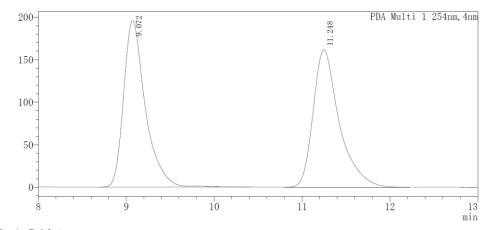


<Peak Table>

PDA Ch1 254nm

No.	Ret.Time(min)	Height (mAU)	Height%	Area(mAU*min)	Area%
1	14. 043	15160	57. 143	394566	49. 990
2	18. 342	11370	42.857	394729	50.010
Total		26530	100.000	789295	100.000

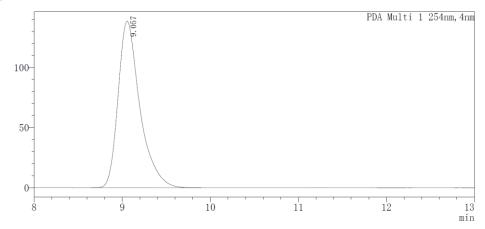
<Chromatogram>


<Peak Table>

IDA CIII 20					
No.	Ret. Time (min)	Height (mAU)	Height%	Area(mAU*min)	Area%
1	14. 022	66996	100.000	1768878	100.000
总计		66996	100.000	1768878	100.000
Total					

3.6 (R,E)-tert-butyl(o-tolyl)(4-(trifluoromethyl)styryl)phosphine oxide (3g)

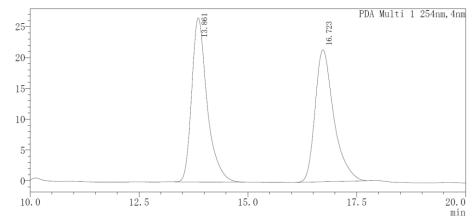
Prepared according to general procedure A from **2g** (8.0 mmol), racemic SPO **1** (15.2 mmol), after a flash column chromatography (hexanes: EA = 1:1) afforded the product **3g**. After recrystallization from Hexane/DCM, product **3g** could be obtained as a colorless solid (1.26 g, 43% yield) with 99% *ee*. M.p.: 156.0-156.9 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.75 (d, J = 17.0 Hz, 1H), 7.67 (s, 4H), 7.55 (dd, J = 11.5, 7.9 Hz, 1H), 7.40 (t, J = 7.4 Hz, 1H), 7.29-7.23 (m, 2H), 7.16 (dd, J = 23.5, 17.2 Hz, 1H), 2.82 (s, 3H), 1.21 (d, J = 15.1 Hz, 9H); ¹³**C NMR** (101 MHz, CDCl₃) δ 146.9 (d, J_{C-P} = 2.8 Hz), 143.9 (d, J_{C-P} = 7.3 Hz), 138.9 (d, J_{C-F} = 15.9 Hz), 132.7 (d, J_{C-P} = 10.8 Hz), 132.6 (d, J_{C-P} = 10.5 Hz), 131.3 (d, J_{C-F} = 32.3 Hz), 131.3 (d, J_{C-P} = 2.8 Hz), 128.4 (d, J_{C-P} = 91.8 Hz), 127.8, 126.2 (q, J_{C-F} = 272.7 Hz), 125.8 (q, J_{C-P} = 3.8 Hz), 124.8 (d, J_{C-F} = 11.3 Hz), 120.3 (d, J_{C-P} = 90.7 Hz), 34.4 (d, J_{C-P} = 72.6 Hz), 24.5, 22.2 (d, J_{C-P} = 2.5 Hz); ³¹**P NMR** (162 MHz, C₆D₆) δ 41.8; ¹⁹**F NMR** (377 MHz, CDCl₃) δ -62.8. **HRMS** (EI): m/z: [M]⁺ Calcd for C₂₀H₂₂F₃OP: 366.1360, found 366.1355. HPLC (AD-H, 2-propanol /n-hexane = 15/85, flow rate = 1.0 mL/min, 1 = 254 nm) tR = 9.0 min (major), 11.2 min (minor). [α]_D 20 = 138.3 (c = 0.5, CHCl₃).



<Peak Table>

No.	Ret.Time(min)	Height (mAU)	Height%	Area(mAU*min)	Area%
1	9.072	195609	54.806	3365819	50. 227
2	11. 248	161305	45. 194	3335350	49. 773
Total		356913	100.000	6701169	100.000

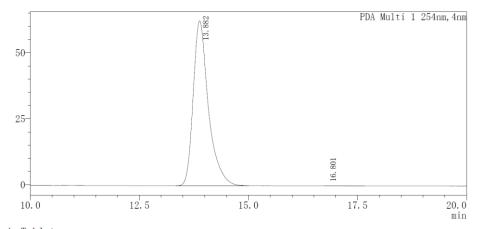
<Chromatogram>


<Peak Table>

PDA Ch1 25	4nm				
No.	Ret.Time(min)	Height (mAU)	Height%	Area(mAU*min)	Area%
1	9. 057	138617	100.000	2380090	100.000
总计		138617	100.000	2380090	100.000
T-+-1				•	

3.7 (R,E)-tert-butyl(4-methoxystyryl)(o-tolyl)phosphine oxide (3h)

Prepared according to general procedure A from **2h** (8.0 mmol), racemic SPO **1** (15.2 mmol), after a flash column chromatography (hexanes: EA = 1:1) afforded the product **3h**. After recrystallization from Hexane/DCM, product **3h** could be obtained as a colorless solid (1.50 g, 57% yield) with 99% *ee*. M.p.: 127.0-127.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.72-7.47 (m, 4H), 7.38 (tt, J = 7.5, 1.5 Hz, 1H), 7.31-7.19 (m, 2H), 6.99-6.75 (m, 3H), 3.85 (s, 3H), 2.81 (s, 3H), 1.20 (d, J = 14.9 Hz, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 160.9, 148.0 (d, J_{C-P} = 2.9 Hz), 143.7 (d, J_{C-P} = 7.2 Hz), 133.1 (d, J_{C-P} = 10.4 Hz), 132.4 (d, J_{C-P} = 10.3 Hz), 131.0 (d, J_{C-P} = 2.7 Hz), 129.7, 129.17, 128.6 (d, J_{C-P} = 16.1 Hz), 124.7 (d, J_{C-P} = 11.4 Hz), 114.2, 113.8 (d, J_{C-P} = 95.3 Hz), 55.4, 34.4 (d, J_{C-P} = 72.7 Hz), 24.6, 22.3 (d, J_{C-P} = 2.2 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 42.9-42.4 (m). HRMS (EI): m/z: [M]⁺ Calcd for C₂₀H₂₅O₂P: 328.1592, found 328.1584. HPLC (AD-H, 2-propanol /n-hexane = 15/85, flow rate = 1.0 mL/min, 1 = 254 nm) tR = 13.9 min (major), 16.8 min (minor). [α]_D ²⁰ = 192.9 (c = 0.5, CHCl₃).


<Chromatogram>

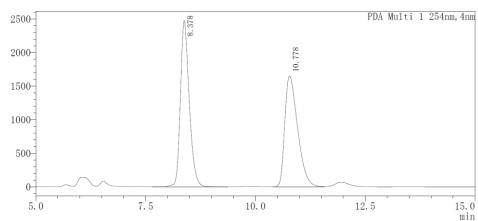
<Peak Table>

No.	Ret. Time (min)	Height (mAU)	Height%	Area(mAU*min)	Area%
1	13. 861	26602	55. 397	655434	50. 545
2	16. 723	21419	44.603	641295	49. 455
Total		48020	100.000	1296729	100.000

<Chromatogram> mAU

<Peak Table>

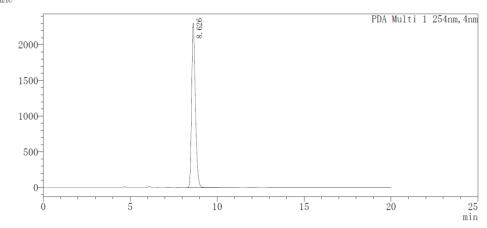
PDA Ch1 254nm


FDA CITI 254IIII						
	No.	Ret.Time(min)	Height(mAU)	Height%	Area(mAU*min)	Area%
	1	13.882	62397	99. 973	1510993	99. 990
	2	16. 801	17	0.027	154	0.010
	Total		62414	100.000	1511147	100.000

3.8 (R,E)-tert-butyl(4-propylstyryl)(o-tolyl)phosphine oxide (3i)

Prepared according to general procedure A from 2i (8.0 mmol), racemic SPO 1 (15.2

mmol), after a flash column chromatography (hexanes: EA = 1:1) afforded the product **3i**. After recrystallization from Hexane/DCM, product **3i** could be obtained as a colorless solid (1.22 g, 45% yield) with 99% *ee*. M.p.: 135.0-135.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.70-7.62 (m, 1H), 7.59-7.49 (m, 3H), 7.37-7.35 (m, 1H), 7.28-7.21 (m, 4H), 7.03-6.92 (m, 1H), 2.81 (s, 3H), 2.62 (t, J = 7.2 Hz, 2H), 1.66 (dd, J = 14.4, 7.1 Hz, 2H), 1.20 (d, J = 14.9 Hz, 9H), 0.96 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 148.5 (d, $J_{C-P} = 2.3$ Hz), 144.8, 143.8 (d, $J_{C-P} = 7.0$ Hz), 133.3, 133.1 (d, $J_{C-P} = 10.7$ Hz), 132.4 (d, $J_{C-P} = 10.6$ Hz), 131.1 (d, $J_{C-P} = 2.5$ Hz), 129.1 (d, $J_{C-P} = 91.3$ Hz), 129.0, 127.6, 124.7 (d, $J_{C-P} = 11.4$ Hz), 115.5 (d, $J_{C-P} = 94.3$ Hz), 37.9, 34.4 (d, $J_{C-P} = 72.7$ Hz), 24.6, 24.4, 22.3, 13.8; ³¹P NMR (162 MHz, CDCl₃) δ 42.5 (s). HRMS (EI): m/z: [M]⁺ Calcd for C₂₂H₂₉OP: 340.1956, found 340.1950. HPLC (AD-H, 2-propanol /n-hexane = 20/80, flow rate = 1.0 mL/min, 1 = 254 nm) tR = 8.3 min (major), 10.7 min (minor). $[\alpha]_D$ ²⁰ = 165.6 (c = 0.5, CHCl₃).

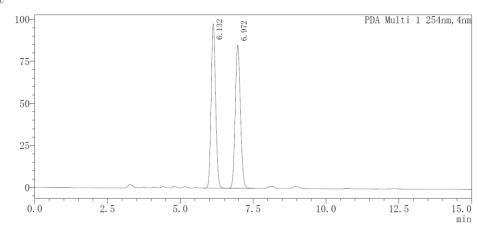


<Peak Table>
PDA Ch1 254nm

No.	Ret. Time (min)	Height(mAU)	Height%	Area(mAU*min)	Area%
1	8. 378	2474725	59. 989	34499116	50.754
2	10.778	1650567	40.011	33474176	49. 246
Total		4125292	100.000	67973292	100.000

<Chromatogram>
mAU

<Peak Table>

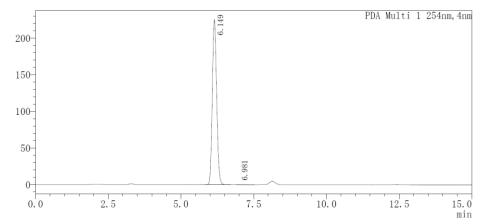

<u>PDA Ch1 25</u>	4nm				
No.	Ret. Time (min)	Height (mAU)	Height%	Area(mAU*min)	Area%
1	8. 626	2304455	100.000	34357769	100.000
总计		2304455	100.000	34357769	100.000
Total					

3.9 (R,E)-tert-butyl(3,5-di-tert-butylstyryl)(o-tolyl)phosphine oxide (3j)

Prepared according to general procedure A from **2j** (8.0 mmol), racemic SPO **1** (15.2 mmol), after a flash column chromatography (hexanes: EA = 1:1) afforded the product **3j**. After recrystallization from Hexane/DCM, product **3j** could be obtained as a colorless solid (2.10 g, 64% yield) with 99% *ee*. M.p.: 138.0-138.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (t, J = 17.3 Hz, 1H), 7.58 (ddd, J = 11.8, 7.8, 1.4 Hz, 1H), 7.47 (t, J = 1.8 Hz, 1H), 7.44-7.37 (m, 3H), 7.28 (q, J = 6.0 Hz, 2H), 7.10-6.80 (m, 1H), 2.95-2.71 (m, 3H), 1.37 (s, 18H), 1.22 (d, J = 14.9 Hz, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 151.3, 149.7 (d, J_{C-P} = 2.8 Hz), 143.8 (d, J_{C-P} = 7.1 Hz), 134.9 (d, J_{C-P} = 15.5 Hz), 133.1 (d, J_{C-P} = 10.9 Hz), 132.4 (d, J_{C-P} = 10.4 Hz), 131.1 (d, J_{C-P} = 2.8 Hz), 129.1 (d, J_{C-P} = 91.3 Hz), 124.8, 124.2, 122.0, 115.6 (d, J_{C-P} = 93.8 Hz), 34.9, 34.4 (d, J_{C-P} = 72.7 Hz), 31.4, 24.6, 22.3 (d, J_{C-P} = 2.4 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 42.72. HRMS (EI): m/z: [M]⁺ Calcd for C₂₇H₃₉OP: 410.2739, found 410.2732. HPLC (IC, 2-propanol /n-hexane = 20/80, flow rate = 1.0 mL/min, 1 = 254 nm) tR = 6.1 min (major), 6.9 min

(minor). $[\alpha]_D^{20} = 118.1$ (c = 0.5, CHCl₃).

<Chromatogram> mAU

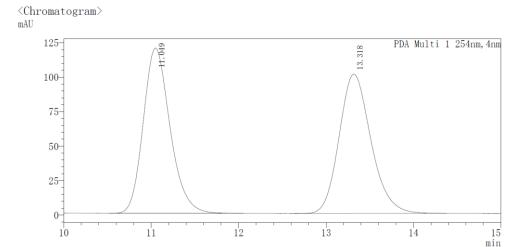


<Peak Table>

PDA Ch1 25	4nm				
No.	Ret.Time(min)	Height(mAU)	Height%	Area(mAU*min)	Area%
1	6. 132	97582	53. 423	1050904	49.842
2	6. 972	85078	46. 577	1057570	50. 158
Total		182660	100.000	2108474	100.000

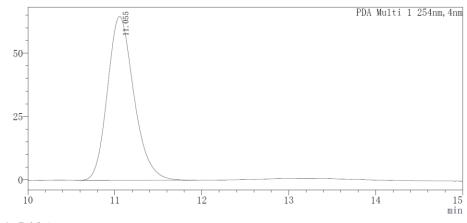
$\langle {\it Chromatogram} \rangle$

mAU



<Peak Table>

No.	Ret.Time(min)	Height(mAU)	Height%	Area(mAU*min)	Area%
1	6.149	225383	99. 995	2343158	99. 999
2	6.981	11	0.005	21	0.001
Total		225394	100.000	2343179	100.000

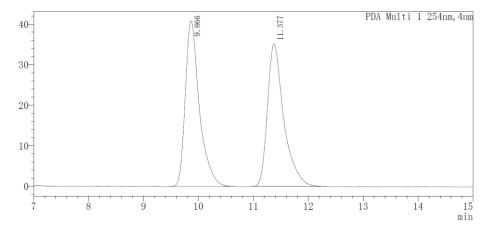

3.10 (R,E)-tert-butyl(2-(naphthalen-2-yl)vinyl)(o-tolyl)phosphine oxide (3k)

Prepared according to general procedure A from **2k** (8.0 mmol), racemic SPO **1** (15.2 mmol), after a flash column chromatography (hexanes: EA = 1:1) afforded the product **3k**. After recrystallization from Hexane/DCM, product **3k** could be obtained as a yellow solid (1.53 g, 55% yield) with 99% *ee*. M.p.: 164.0-164.9 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.92-7.80 (m, 4H), 7.76 (d, J = 8.5 Hz, 1H), 7.62 (dd, J = 11.5, 7.9 Hz, 1H), 7.52 (dd, J = 5.6, 2.7 Hz, 2H), 7.40 (t, J = 7.4 Hz, 1H), 7.34-7.23 (m, 2H), 7.15 (dd, J = 24.1, 17.2 Hz, 1H), 2.85 (s, 3H), 1.24 (d, J = 15.0 Hz, 9H); ¹³**C NMR** (101 MHz, CDCl₃) δ 148.6 (d, J_{C-P} = 2.6 Hz), 143.9 (d, J_{C-P} = 7.1 Hz), 134.0, 133.4, 133.2, 133.1, 133.0, 132.5 (d, J_{C-P} = 10.6 Hz), 131.2 (d, J_{C-P} = 2.6 Hz), 129.4, 129.0, 128.6 (d, J_{C-P} = 4.4 Hz), 127.7, 126.8 (d, J_{C-P} = 32.7 Hz), 126.3, 124.8 (d, J_{C-P} = 11.5 Hz), 123.6, 117.1 (d, J_{C-P} = 93.3 Hz), 34.5 (d, J_{C-P} = 72.8 Hz), 24.6, 22.3 (d, J_{C-P} = 2.2 Hz); ³¹**P NMR** (162 MHz, CDCl₃) δ 42.5-42.1 (m). **HRMS** (EI): m/z: [M]⁺ Calcd for C₂₃H₂₅OP: 348.1643, found 348.1641. HPLC (IC, 2-propanol/n-hexane = 20/80, flow rate = 1.0 mL/min, 1 = 254 nm) tR = 11.0 min (major), 13.3 min (minor). [α]_D δ 10.5 CHCl₃).

<Peak Table> PDA Chl 254nm Height (mAU) Ret. Time (min) Height% Area(mAU*min) No. Area% 11.049 120025 54. 263 2561754 49.969 1 2 13. 318 45.737 50.031 101168 2564912 Total 221193 100.000 5126667 100.000

<Chromatogram>

<Peak Table>


PDA Ch1 25	4nm				
No.	Ret. Time (min)	Height (mAU)	Height%	Area(mAU*min)	Area%
1	11. 055	64713	100.000	1369659	100.000
总计		64713	100.000	1369659	100.000
Total					

3.11 (R,E)-tert-butyl(2-(thiophen-2-yl)vinyl)(o-tolyl)phosphine oxide (3l)

Prepared according to general procedure A from **2l** (8.0 mmol), racemic SPO **1** (15.2 mmol), after a flash column chromatography (hexanes: EA = 1:1) afforded the product **3l**. After recrystallization from Hexane/DCM, product **3l** could be obtained as a yellow solid (1.29 g, 53% yield) with 99% *ee*. M.p.: 167.0-167.9 °C. ¹H **NMR** (400 MHz, CDCl₃) δ 7.74 (t, J = 16.7 Hz, 1H), 7.49 (dd, J = 23.2, 12.2 Hz, 1H), 7.41-7.29 (m, 2H), 7.22 (dd, J = 30.8, 11.9 Hz, 3H), 7.02 (d, J = 3.6 Hz, 1H), 6.87-6.59 (m, 1H), 2.78 (s, 3H), 1.17 (dd, J = 15.0, 3.1 Hz, 9H); ¹³C **NMR** (101 MHz, CDCl₃) δ 143.5 (d, J_{C-P} = 7.1 Hz), 141.2 (d, J_{C-P} = 18.2 Hz), 140.8, 132.9 (d, J_{C-P} = 10.7 Hz), 132.3 (d, J_{C-P} = 10.7 Hz), 131.0 (d, J_{C-P} = 2.5 Hz), 129.5, 129.1, 128.2, 127.6 (d, J_{C-P} = 67.4 Hz), 124.6 (d, J_{C-P} = 11.5 Hz), 115.4 (d, J_{C-P} = 94.3 Hz), 34.3 (d, J_{C-P} = 72.9 Hz), 24.4, 22.1 (d, J_{C-P} = 2.1 Hz); ³¹P **NMR** (162 MHz, CDCl₃) δ 42.7-42.0 (m). **HRMS** (EI): m/z: [M]⁺ Calcd for C₁₇H₂₁OPS: 304.1051, found 304.1047. HPLC (AD-H, 2-propanol /n-hexane = 15/85, flow rate = 1.0 mL/min, 1 = 254 nm) tR = 9.8 min (major), 11.3 min (minor).

$[\alpha]_D^{20} = 208.1 \ (c = 0.5, \text{CHCl}_3).$

<Chromatogram>

<Peak Table>

PDA Ch1 254nm					
No.	Ret.Time(min)	Height (mAU)	Height%	Area(mAU*min)	Area%
1	9.866	40942	53. 777	729229	50.029
2	11. 377	35191	46. 223	728393	49. 971
Total		76133	100.000	1457622	100.000

<Chromatogram>

25-20-15-10-5-0-7 8 9 10 11 12 13 14 15

<Peak Table>

FDW CHI 79	411111				
No.	Ret. Time (min)	Height (mAU)	Height%	Area(mAU*min)	Area%
1	9.864	25972	100.000	478462	100.000
总计		25972	100.000	478462	100.000
Total					

3.12 (1R,2R)-2-(2-bromobenzyl)-1-(tert-butyl)-2,3-dihydrophosphindole 1-oxide (4b)

Prepared according to general procedure B from **3b** (4.5 mmol), after a flash column chromatography (EA: CH₃OH = 40:1, Rf = 0.6) afforded the product **4b** (major isomer) as a colorless liquid (1.20 g, 71% yield). The minor isomer **4b**' (EA: CH₃OH = 40:1, Rf = 0.55) was failed to be isolated as a pure form (80 mg, 4% yield). ¹**H NMR** (400 MHz, CDCl₃) (major isomer) δ 7.82-7.73 (m, 1H), 7.62-7.54 (m, 1H), 7.53-7.43 (m, 1H), 7.38-7.33 (m, 1H), 7.29-7.24 (m, 3H), 7.18-7.04 (m, 1H), 3.49-3.43 (m, 1H), 3.01-2.97 (m, 3H), 2.88-2.73 (m, 1H), 1.24-1.20 (m, 9H); ¹³**C NMR** (101 MHz, CDCl₃) δ 146.0 (d, J_{C-P} = 27.3 Hz), 139.3 (d, J_{C-P} = 11.8 Hz), 133.0, 132.4 (d, J_{C-P} = 2.6 Hz), 132.0, 129.7 (d, J_{C-P} = 8.3 Hz), 128.7 (d, J_{C-P} = 42.4 Hz), 128.2, 127.4, 127.3 (d, J_{C-P} = 9.4 Hz), 126.5 (d, J_{C-P} = 10.5 Hz), 124.6, 35.5 (d, J_{C-P} = 2.0 Hz), 35.0 (d, J_{C-P} = 5.1 Hz), 33.4 (d, J_{C-P} = 67.2 Hz), 30.8 (d, J_{C-P} = 61.4 Hz), 24.0; ³¹**P NMR** (162 MHz, CDCl₃) δ 72.8. **HRMS** (EI): m/z: [M]⁺ Calcd for C₁₉H₂₂BrOP: 376.0592, found 376.0586. [α]_D I_{C-P} = 5.9 (I_{C-P} = 0.25, CHCl₃).

(1R,2S)-1-(tert-butyl)-2-(2-fluorobenzyl)-2,3-dihydrophosphindole 1-oxide (4c)

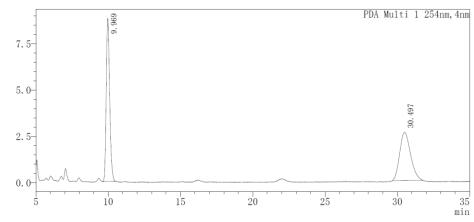
Prepared according to general procedure B from **3c** (4.1 mmol), after a flash column chromatography (EA: CH₃OH = 50:1, Rf = 0.5) afforded the product **4c** (major isomer) as a colorless solid (890 mg, 69% yield). M.p.: 149.0-149.9 °C. The minor isomer **4c'** (EA: CH₃OH = 40:1, Rf = 0.45) was failed to be isolated as a pure form (148 mg, 11% yield). ¹**H NMR** (400 MHz, CDCl₃) (major isomer) δ 7.77 (t, J = 7.4 Hz, 1H), 7.50-7.46 (m, 1H), 7.38-7.34 (m, 1H), 7.29-7.23 (m, 3H), 7.16-6.99 (m, 2H), 3.45-3.29 (m, 1H), 3.08-2.96 (m, 2H), 2.84-2.59 (m, 2H), 1.22 (d, J = 14.8 Hz, 9H); ¹³**C NMR** (101 MHz, CDCl₃) δ 161.4 (d, J_{C-F} = 245.4 Hz), 146.0 (d, J_{C-P} = 26.9 Hz), 132.5 (d, J_{C-F} = 2.2 Hz), 131.6 (d, J_{C-P} = 5.0 Hz), 130.4 (d, J_{C-P} = 90.8 Hz), 129.8 (d, J_{C-F} = 8.1 Hz), 128.2 (d, J_{C-F} = 8.4 Hz), 127.3 (d, J_{C-P} = 9.3 Hz), 127.1 (d, J_{C-P} = 12.4 Hz), 126.5 (d, J_{C-P} = 10.3 Hz), 124.0 (d, J_{C-F} = 3.6 Hz), 115.3 (d, J_{C-F} = 21.9 Hz), 35.4 (d, J_{C-P} = 5.1 Hz), 33.4 (d, J_{C-P} = 67.5 Hz), 31.6 (d, J_{C-P} = 60.0 Hz), 29.3, 24.0; ³¹**P NMR** (162 MHz,

Acetone) δ 71.6; ¹⁹**F NMR** (376 MHz, CDCl₃) δ 117.6. **HRMS** (EI): m/z: [M]⁺ Calcd for C₁₉H₂₂FOP: 316.1392, found 316.1390. [α]_D ²⁰ = 44.4 (c = 0.5, CHCl₃).

3.13 (1R,2S)-1-(tert-butyl)-2-(3-chlorobenzyl)-2,3-dihydrophosphindole 1-oxide (4d)

Prepared according to general procedure B from **3d** (4.6 mmol), after a flash column chromatography (EA: CH₃OH = 40:1, Rf = 0.5) afforded the product **4d** (major isomer) as a colorless solid (842 mg, 55% yield). M.p.: 110.0-110.9 °C. The minor isomer **4d**' (EA: CH₃OH = 40:1, Rf = 0.45) was failed to be isolated as a pure form (270 mg, 18% yield). ¹**H NMR** (400 MHz, CDCl₃) (major isomer) δ 7.79-7.75 (m, 1H), 7.51-7.48 (m, 1H), 7.40-7.35 (m, 1H), 7.29-7.24 (m, 4H), 7.15 (d, J = 7.1 Hz, 1H), 3.40-3.29 (m, 1H), 3.10-3.03 (m, 1H), 2.96-2.86 (m, 1H), 2.75-2.54 (m, 2H), 1.22 (d, J = 14.8 Hz, 9H); ¹³**C NMR** (101 MHz, CDCl₃) δ 145.8 (d, J_{C-P} = 27.0 Hz), 142.3 (d, J_{C-P} = 11.8 Hz), 134.4, 132.7 (d, J_{C-P} = 2.4 Hz), 130.2 (d, J_{C-P} = 90.8 Hz), 130.0, 129.7, 129.0, 127.5 (d, J_{C-P} = 9.4 Hz), 127.4, 126.7 (d, J_{C-P} = 10.9 Hz), 126.6, 35.4 (d, J_{C-P} = 5.2 Hz), 34.8 (d, J_{C-P} = 2.6 Hz), 33.5 (d, J_{C-P} = 67.6 Hz), 33.0 (d, J_{C-P} = 61.3 Hz), 24.1. ³¹**P NMR** (162 MHz, CDCl₃) δ 72.5. **HRMS** (EI): m/z: [M]⁺ Calcd for C₁₉H₂₂ClOP: 332.1097, found 332.1092. [α]_D Σ ²⁰ = 58.5 (Σ = 0.5, CHCl₃).

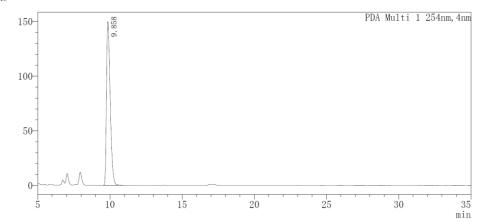
3.14 (1R,2S)-1-(tert-butyl)-2-(3-methylbenzyl)-2,3-dihydrophosphindole 1-oxide (4e)


Prepared according to general procedure B from **3e** (4.8 mmol), after a flash column chromatography (EA: CH₃OH = 40:1, Rf = 0.6) afforded the product **4e** (major isomer) as colorless solids (580 mg, 38% yield). M.p.: 151.0-151.9 °C. ¹H NMR (400 MHz,

CDCl₃) δ 7.80-7.77 (m, 1H), 7.51-7.47 (m, 1H), 7.40-7.35 (m, 1H), 7.28-7.22 (m, 2H), 7.09-7.06 (m, 3H), 3.38-3.33 (m, 1H), 3.13-2.90 (m, 2H), 2.74-2.68 (m, 1H), 2.65-2.56 (m, 1H), 2.38 (s, 3H), 1.24 (d, J = 14.6 Hz, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 146.1 (d, J_{C-P} = 27.5 Hz), 140.1 (d, J_{C-P} = 12.4 Hz), 138.1, 132.5 (d, J_{C-P} = 2.4 Hz), 130.8, 129.9 (d, J_{C-P} = 8.3 Hz), 129.7, 128.4, 127.3 (d, J_{C-P} = 9.4 Hz), 127.1, 126.6 (d, J_{C-P} = 10.2 Hz), 126.0, 35.3 (d, J_{C-P} = 5.3 Hz), 34.8 (d, J_{C-P} = 2.3 Hz), 33.5 (d, J_{C-P} = 66.9 Hz), 33.1 (d, J_{C-P} = 61.6 Hz), 24.1, 21.4; ³¹P NMR (162 MHz, CDCl₃) δ 72.4. HRMS (EI): m/z: [M]⁺ Calcd for C₂₀H₂₅OP: 312.1643, found 312.1638. [α]_D ²⁰ = 60.6 (c = 0.5, CHCl₃).

3.15 (1R,2R)-1-(tert-butyl)-2-(3-methylbenzyl)-2,3-dihydrophosphindole 1-oxide (4e')

Prepared according to general procedure B from **3e** (4.8 mmol), after a flash column chromatography (EA: CH₃OH = 40:1, Rf = 0.5) afforded the product **4e**' (minor isomer) as colorless solids (289 mg, 20% yield). M.p.: 155.0-155.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.99-7.95 (m, 1H), 7.48-7.39 (m, 2H), 7.30-7.21 (m, 2H), 7.11-7.10 (m, 3H), 3.36-3.29 (m, 1H), 3.07-2.87 (m, 2H), 2.53-2.25 (m, 5H), 1.21 (d, J = 14.7 Hz, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 145.2 (d, J_{C-P} = 13.1 Hz), 143.6 (d, J_{C-P} = 7.7 Hz), 138.5, 132.5 (d, J_{C-P} = 5.9 Hz), 131.6 (d, J_{C-P} = 2.3 Hz), 129.1 (d, J_{C-P} = 9.5 Hz), 128.7, 127.7, 127.6, 127.2, 126.7 (d, J_{C-P} = 10.1 Hz), 123.4, 39.8 (d, J_{C-P} = 4.3 Hz), 38.0 (d, J_{C-P} = 2.9 Hz), 33.3 (d, J_{C-P} = 70.4 Hz), 32.3 (d, J_{C-P} = 56.8 Hz), 24.0, 21.5; ³¹P NMR (162 MHz, CDCl₃) δ 40.7. HRMS (EI): m/z: [M]⁺ Calcd for C₂₀H₂₅OP: 312.1643, found 312.1638. HPLC (AD-H, 2-propanol /n-hexane = 20/80, flow rate = 1.0 mL/min, 1 = 254 nm) tR = 9.9 min (major), 30.5 min (minor). [α]_D ²⁰ = 70.5 (c = 0.5, CHCl₃).


<Chromatogram>
mAU

<Peak Table>

PDA Ch1 25	OA Ch1 254nm							
No.	Ret.Time(min)	Height(mAU)	Height%	Area(mAU*min)	Area%			
1	9. 969	8802	77. 116	144588	51.348			
2	30. 497	2612	22.884	136997	48.652			
Total		11414	100.000	281585	100.000			

<Chromatogram>

<Peak Table>

PDA Ch1 25	254nm							
No.	Ret. Time (min)	Height (mAU)	Height%	Area(mAU*min)	Area%			
1	9. 858	149859	100.000	2675075	100.000			
总计		149859	100.000	2675075	100.000			
Total								

 $3.16 \qquad (1R,2S)\text{-}2\text{-}([1,1'\text{-biphenyl}]\text{-}4\text{-ylmethyl})\text{-}1\text{-}(\text{tert-butyl})\text{-}2,3\text{-}$ dihydrophosphindole 1-oxide (4f)

Prepared according to general procedure B from **3f** (3.8 mmol), after a flash column chromatography (EA: CH₃OH = 40:1, Rf = 0.5) afforded the product **4f** (major isomer) as colorless solids (740 mg, 52% yield). M.p.: 117.0-117.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (t, J = 7.4 Hz, 1H), 7.65-7.58 (m, 4H), 7.55-7.43 (m, 3H), 7.41-7.39 (m, 4H), 7.32-7.26 (m, 1H), 3.50-3.31 (m, 1H), 3.20-2.95 (m, 2H), 2.81-2.68 (m, 2H), 1.25 (d, J = 14.8 Hz, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 146.1 (d, J_{C-P} = 27.0 Hz), 140.9, 139.4, 139.3, 132.7, 130.2 (d, J_{C-P} = 91.8 Hz), 130.0 (d, J_{C-P} = 8.1 Hz), 129.5, 128.8, 127.4 (d, J_{C-P} = 9.2 Hz), 127.3, 127.2, 127.0, 126.7 (d, J_{C-P} = 10.3 Hz), 35.5 (d, J_{C-P} = 5.4 Hz), 34.7, 33.6 (d, J_{C-P} = 66.6 Hz), 33.2 (d, J_{C-P} = 61.5 Hz), 24.1; ³¹P NMR (162 MHz, CDCl₃) δ 72.9. HRMS (EI): m/z: [M]⁺ Calcd for C₂₅H₂₇OP: 374.1800, found 374.1797. [α]_D 20 = 74.0 (c = 0.5, CHCl₃).

3.17 (1R,2R)-2-([1,1'-biphenyl]-4-ylmethyl)-1-(tert-butyl)-2,3-dihydrophosphindole 1-oxide (4f')

Prepared according to general procedure B from **3f** (3.8 mmol), after a flash column chromatography (EA: CH₃OH = 40:1, Rf = 0.4) afforded the product **4f** (minor isomer) as colorless solids (246 mg, 18% yield). M.p.: 224.0-224.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.02-7.95 (m, 1H), 7.65-7.59 (m, 4H), 7.51-7.44 (m, 4H), 7.39 (dd, J = 8.3, 2.5 Hz, 3H), 7.26 (dd, J = 7.6, 4.4 Hz, 1H), 3.46-3.38 (m, 1H), 3.09-2.95 (m, 2H), 2.55-2.30 (m, 2H), 1.23 (d, J = 14.8 Hz, 9H); ¹³C NMR (101 MHz, CDCl₃) ¹³C NMR (101 MHz, CDCl₃) δ 144.2 (d, J_{C-P} = 13.1 Hz), 143.5 (d, J_{C-P} = 8.0 Hz), 140.6, 139.9, 132.5 (d, J_{C-P} = 6.0 Hz), 131.7 (d, J_{C-P} = 2.4 Hz), 129.1 (d, J_{C-P} = 9.9 Hz), 128.8, 127.5, 127.3,

126.9 (d, $J_{\text{C-P}} = 10.6 \text{ Hz}$), 126.9, 126.8 (d, $J_{\text{C-P}} = 9.9 \text{ Hz}$), 126.7, 39.9 (d, $J_{\text{C-P}} = 4.0 \text{ Hz}$), 37.8 (d, $J_{\text{C-P}} = 2.9 \text{ Hz}$), 33.4 (d, $J_{\text{C-P}} = 70.4 \text{ Hz}$), 32.2 (d, $J_{\text{C-P}} = 57.0 \text{ Hz}$), 24.0; ³¹**P NMR** (162 MHz, CDCl₃) δ 41.0-40.7 (m). **HRMS** (EI): m/z: [M]⁺ Calcd for C₂₅H₂₇OP: 374.1800, found 374.1795. [α]_D $^{20} = 80.8$ (c = 0.1, CHCl₃).

3.18 (1*R*,2*S*)-1-(tert-butyl)-2-(4-(trifluoromethyl)benzyl)-2,3-dihydrophosphindole 1-oxide (4g)

Prepared according to general procedure B from **3g** (3.4 mmol), after a flash column chromatography (EA: CH₃OH = 40:1, Rf = 0.5) afforded the product **4g** (major isomer) as a colorless solid (138 mg, 11% yield). M.p.: 180.0-180.9 °C. The minor isomer **4g'** (EA: CH₃OH = 40:1, Rf = 0.45) was failed to be isolated as a pure form (34 mg, 3% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.78 (t, J = 7.4 Hz, 1H), 7.59 (d, J = 8.0 Hz, 2H), 7.52-7.48 (m, 1H), 7.39 (dd, J = 8.0, 2.3 Hz, 3H), 7.27-7.24 (m, 1H), 3.48-3.34 (m, 1H), 3.11-3.03 (m, 1H), 2.97-2.89 (m, 1H), 2.77-2.64 (m, 2H), 1.21 (d, J = 14.8 Hz, 9H); ¹³**C NMR** (101 MHz, CDCl₃) δ 145.6 (d, J_{C-P} = 26.9 Hz), 144.3 (d, J_{C-P} = 11.7 Hz), 132.7 (d, J_{C-F} = 2.7 Hz), 130.0 (d, J_{C-F} = 91.1 Hz), 129.9 (d, J_{C-F} = 8.1 Hz), 129.4 (d, J_{C-F} = 90.5 Hz), 129.3, 128.7 (d, J_{C-F} = 32.4 Hz), 128.6 (d, J_{C-P} = 60.6 Hz), 127.5 (d, J_{C-F} = 9.3 Hz), 126.6 (d, J_{C-P} = 10.2 Hz), 125.4 (q, J_{C-F} = 3.7 Hz), 124.2 (q, J_{C-F} = 272.7 Hz), 35.4 (d, J_{C-P} = 5.7 Hz), 35.0 (d, J_{C-P} = 2.2 Hz), 33.5 (d, J_{C-P} = 67.4 Hz), 32.9 (d, J_{C-P} = 61.1 Hz), 24.0; ³¹**P NMR** (162 MHz, CDCl₃) δ 72.7; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.4. **HRMS** (EI): m/z: [M]⁺ Calcd for C₂₀H₂₂F₃OP: 366.1360, found 366.1356. [α]_D I_C = 80.8 (I_C = 0.5, CHCl₃).

3.19 (1R,2S)-1-(tert-butyl)-2-(4-propylbenzyl)-2,3-dihydrophosphindole 1-oxide (4i)

Prepared according to general procedure B from **3i** (3.6 mmol), after a flash column chromatography (EA: CH₃OH = 40:1, Rf = 0.6) afforded the product **4i** (minor isomer) as colorless solids (186 mg, 15% yield). M.p.: 169.0-169.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (t, J = 7.4 Hz, 1H), 7.51-7.46 (m, 1H), 7.39-7.35 (m, 1H), 7.32-7.23 (m, 1H), 7.21-7.11 (m, 4H), 3.38-3.32 (m, 1H), 3.14-2.88 (m, 2H), 2.83-2.44 (m, 4H), 1.70-1.61 (m, 2H), 1.23 (d, J = 14.7 Hz, 9H), 0.96 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 146.1 (d, J_{C-P} = 27.3 Hz), 140.7, 137.3 (d, J_{C-P} = 12.4 Hz), 132.4 (d, J_{C-P} = 2.6 Hz), 130.7, 129.8 (d, J_{C-P} = 8.2 Hz), 128.7 (d, J_{C-P} = 19.5 Hz), 128.1, 127.2 (d, J_{C-P} = 9.3 Hz), 126.5 (d, J_{C-P} = 10.3 Hz), 37.6, 35.3 (d, J_{C-P} = 5.6 Hz), 34.5 (d, J_{C-P} = 2.5 Hz), 33.4 (d, J_{C-P} = 66.9 Hz), 33.2 (d, J_{C-P} = 61.2 Hz), 24.5, 24.0, 13.8; ³¹P NMR (162 MHz, CDCl₃) δ 72.6. HRMS (EI): m/z: [M]⁺ Calcd for C₂₂H₂₉OP: 340.1956, found 340.1955. [α]_D ∂ = 67.8 (c = 0.5, CHCl₃).

3.20 (1R,2S)-1-(tert-butyl)-2-(4-propylbenzyl)-2,3-dihydrophosphindole 1-oxide (4i')

Prepared according to general procedure B from **3i** (3.6 mmol), after a flash column chromatography (EA: CH₃OH = 40:1, Rf = 0.5) afforded the product **4i'** (major isomer) as colorless solids (560 mg, 46% yield). M.p.: 165.0-165.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.05-7.87 (m, 1H), 7.56-7.37 (m, 2H), 7.24-7.18 (m, 5H), 3.43-3.23 (m, 1H), 3.06-2.85 (m, 2H), 2.62-2.58 (m, 2H), 2.49-2.21 (m, 2H), 1.69-1.64 (m, 2H), 1.20 (d, J = 14.8 Hz, 9H), 0.97 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.7 (d, J_{C-P} = 8.0 Hz), 142.4 (d, J_{C-P} = 13.1 Hz), 141.3, 132.5 (d, J_{C-P} = 6.1 Hz), 131.6 (d, J_{C-P} = 2.6

Hz), 129.1 (d, $J_{C-P} = 9.6$ Hz), 128.8, 127.4, 126.7 (d, $J_{C-P} = 10.4$ Hz), 126.2, 39.9 (d, $J_{C-P} = 4.3$ Hz), 37.6 (d, $J_{C-P} = 2.9$ Hz), 37.5, 33.3 (d, $J_{C-P} = 70.4$ Hz), 32.2 (d, $J_{C-P} = 57.1$ Hz), 24.5, 23.9, 13.8; ³¹P NMR (162 MHz, CDCl₃) δ 41.3-40.8 (m). HRMS (EI): m/z: [M]⁺ Calcd for C₂₂H₂₉OP: 340.1956, found 340.1950. [α]_D ²⁰ = 61.9 (c = 0.5, CHCl₃). 3.21 (1R,2S)-1-(tert-butyl)-2-(3,5-di-tert-butylbenzyl)-2,3-dihydrophosphindole 1-oxide (4j)

Prepared according to general procedure B from **3j** (5.1 mmol), after a flash column chromatography (EA: CH₃OH = 40:1, Rf = 0.5) afforded the product **4j** (minor isomer) as colorless solids (400 mg, 19% yield). M.p.: 145.0-145.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.82-7.78 (m, 1H), 7.51-7.48 (m, 1H), 7.42-7.25 (m, 3H), 7.16-7.05 (m, 2H), 3.48-3.31 (m, 1H), 3.11-3.00 (m, 2H), 2.74-2.61 (m, 2H), 1.36 (s, 18H), 1.24 (d, J = 14.7 Hz, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 150.8, 146.1 (d, J_{C-P} = 27.4 Hz), 139.2 (d, J_{C-P} = 11.8 Hz), 132.4 (d, J_{C-P} = 2.2 Hz), 130.8, 129.9 (d, J_{C-P} = 7.9 Hz), 127.2 (d, J_{C-P} = 9.3 Hz), 126.5 (d, J_{C-P} = 10.2 Hz), 123.1, 120.2, 35.5 (d, J_{C-P} = 5.8 Hz), 35.2 (d, J_{C-P} = 2.6 Hz), 34.7, 33.4 (d, J_{C-P} = 66.8 Hz), 33.3 (d, J_{C-P} = 61.1 Hz), 31.4, 24.1; ³¹P NMR (162 MHz, CD₂Cl₂) δ 72.5. HRMS (EI): m/z: [M]⁺ Calcd for C₂7H₃₉OP: 410.2739, found 410.2726. [α]_D ²⁰ = 76.1 (c = 0.5, CHCl₃).

3.22 (1*R*,2*R*)-1-(tert-butyl)-2-(3,5-di-tert-butylbenzyl)-2,3-dihydrophosphindole 1-oxide (4j')

Prepared according to general procedure B from 3j (5.1 mmol), after a flash column chromatography (EA: CH₃OH = 40:1, Rf = 0.4) afforded the product 4j' (major isomer)

as colorless solids (800 mg, 38% yield). M.p.: 142.0-142.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.03-7.95 (m, 1H), 7.51-7.35 (m, 3H), 7.27-7.24 (m, 1H), 7.15 (d, J = 1.8 Hz, 2H), 3.43-3.33 (m, 1H), 3.16-2.94 (m, 2H), 2.55-2.41 (m, 1H), 2.35-2.27 (m, 1H), 1.37 (s, 18H), 1.21 (d, J = 14.7 Hz, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 151.2, 144.4 (d, J_{C-P} = 13.0 Hz), 143.9 (d, J_{C-P} = 8.1 Hz), 132.6 (d, J_{C-P} = 6.4 Hz), 131.6 (d, J_{C-P} = 2.3 Hz), 129.1 (d, J_{C-P} = 9.5 Hz), 127.6, 126.7 (d, J_{C-P} = 10.3 Hz), 121.0, 120.5, 39.3 (d, J_{C-P} = 4.1 Hz), 38.5 (d, J_{C-P} = 3.0 Hz), 34.9, 33.3 (d, J_{C-P} = 70.1 Hz), 33.0 (d, J_{C-P} = 56.2 Hz), 31.5, 24.0; ³¹P NMR (162 MHz, CDCl₃) δ 41.2-40.9 (m). HRMS (EI): m/z: [M]⁺ Calcd for C₂₇H₃₉OP: 410.2739, found 410.2734. [α]_D ²⁰ = 76.1 (c = 0.5, CHCl₃).

3.23 (1*R*,2*S*)-1-(tert-butyl)-2-(naphthalen-2-ylmethyl)-2,3-dihydrophosphindole 1-oxide (4k)

Prepared according to general procedure B from **3k** (4.4 mmol), after a flash column chromatography (EA: CH₃OH = 40:1, Rf = 0.6) afforded the product **4k** (major isomer) as colorless solids (1.03 g, 67% yield). M.p.: 142.0-142.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.86-7.79 (m, 4H), 7.69 (s, 1H), 7.55-7.46 (m, 3H), 7.45-7.34 (m, 2H), 7.28-7.21 (m, 1H), 3.58-3.54 (m, 1H), 3.05-3.01 (m, 2H), 2.85-2.81 (m, 2H), 1.26 (d, J = 14.6 Hz, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 146.1 (d, J_{C-P} = 27.4 Hz), 137.7 (d, J_{C-P} = 12.3 Hz), 133.6, 132.6 (d, J_{C-P} = 2.3 Hz), 132.2, 130.8, 130.0 (d, J_{C-P} = 8.0 Hz), 128.4, 127.7, 127.5, 127.5, 127.4, 127.4 (d, J_{C-P} = 11.0 Hz), 126.7 (d, J_{C-P} = 10.3 Hz), 126.2, 125.5, 35.4 (d, J_{C-P} = 5.6 Hz), 35.2 (d, J_{C-P} = 2.3 Hz), 33.6 (d, J_{C-P} = 67.0 Hz), 33.1 (d, J_{C-P} = 61.5 Hz), 24.2; ³¹P NMR (162 MHz, CDCl₃) δ 72.4. HRMS (EI): m/z: [M]⁺ Calcd for C₂₃H₂₅OP: 348.1643, found 348.1639. [α]_D ²⁰ = 76.1 (c = 0.5, CHCl₃).

3.24 (1*R*,2*R*)-1-(tert-butyl)-2-(naphthalen-2-ylmethyl)-2,3-dihydrophosphindole 1-oxide (4k')

Prepared according to general procedure B from **3k** (4.4 mmol), after a flash column chromatography (EA: CH₃OH = 40:1, Rf = 0.5) afforded the product **4k'** (minor isomer) as colorless solids (260 mg, 17% yield). M.p.: 281.0-281.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (t, J = 8.7 Hz, 1H), 7.91-7.82 (m, 3H), 7.76-7.70 (m, 1H), 7.55-7.39 (m, 5H), 7.27 (dd, J = 8.6, 3.9 Hz, 1H), 3.57-3.51 (m, 1H), 3.09 (d, J = 9.0 Hz, 2H), 2.61-2.35 (m, 2H), 1.24 (d, J = 14.4 Hz, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 143.6 (d, J_{C-P} = 7.9 Hz), 142.6 (d, J_{C-P} = 12.9 Hz), 133.6, 132.6 (d, J_{C-P} = 5.8 Hz), 132.5, 131.8, 129.2 (d, J_{C-P} = 9.4 Hz), 128.7, 127.7, 127.6, 126.9 (d, J_{C-P} = 9.9 Hz), 126.4, 125.8, 125.7, 124.9 (d, J_{C-P} = 48.8 Hz), 124.9, 40.0 (d, J_{C-P} = 3.6 Hz), 38.3, 32.2 (d, J_{C-P} = 57.1 Hz), 25.0 (d, J_{C-P} = 85.7 Hz), 24.1; ³¹P NMR (162 MHz, CDCl₃) δ 40.8. HRMS (EI): m/z: [M]⁺ Calcd for C₂₃H₂₅OP: 348.1643, found 348.1641. [α]_D ²⁰ = 92.0 (c = 0.5, CHCl₃). 3.25 (1R,2R)-1-(tert-butyl)-2-(thiophen-2-ylmethyl)-2,3-dihydrophosphindole 1-oxide (4I)

Prepared according to general procedure B from **3l** (4.2 mmol), after a flash column chromatography (EA: CH₃OH = 40:1, Rf = 0.5) afforded the product **4l** (major isomer) as a colorless solid (632 mg, 49% yield). M.p.: 161.0-161.9 °C. The minor isomer **4l'** (EA: CH₃OH = 40:1, Rf = 0.45) was failed to be isolated as a pure form (79 mg, 6% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.77 (t, J = 7.5 Hz, 1H), 7.52-7.47 (m, 1H), 7.41-7.35 (m, 1H), 7.33-7.25 (m, 1H), 7.21-7.18 (m, 1H), 6.98-6.95 (m, 1H), 6.90 (d, J = 3.3 Hz, 1H), 3.64-3.46 (m, 1H), 3.29-3.01 (m, 2H), 2.97-2.89 (m, 1H), 2.80-2.58 (m, 1H), 1.22 (d, J = 14.8 Hz, 9H); ¹³C **NMR** (101 MHz, CDCl₃) δ 145.8 (d, J_{C-P} = 27.4 Hz), 142.9 (d, J_{C-P} = 13.8 Hz), 132.6 (d, J_{C-P} = 2.7 Hz), 130.0 (d, J_{C-P} = 91.2 Hz), 129.9 (d,

 $J_{\text{C-P}} = 8.1 \text{ Hz}$), 127.4 (d, $J_{\text{C-P}} = 9.2 \text{ Hz}$), 126.9, 126.62 (d, $J_{\text{C-P}} = 10.3 \text{ Hz}$), 125.7, 123.8, 35.6 (d, $J_{\text{C-P}} = 5.2 \text{ Hz}$), 33.7 (d, $J_{\text{C-P}} = 61.0 \text{ Hz}$), 33.4 (d, $J_{\text{C-P}} = 67.4 \text{ Hz}$), 29.6 (d, $J_{\text{C-P}} = 1.9 \text{ Hz}$), 24.0; ³¹**P NMR** (162 MHz, CDCl₃) δ 72.3. **HRMS** (EI): m/z: [M]⁺ Calcd for C₁₇H₂₁OPS: 304.1051, found 304.1049. [α]_D ²⁰ = 74.5 (c = 0.5, CHCl₃).

3.26 (1S,2S)-2-benzyl-1-(tert-butyl)-2,3-dihydrophosphindole 1-borane (5a)

Prepared according to general procedure C from **4a** (2.5 mmol), after a flash column chromatography (hexane : EA = 50:1) afforded the product **5a** as a colorless solid (577 mg, 78% yield). M.p.: 116.0-116.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.67-7.64 (m, 1H), 7.47-7.43 (m, 1H), 7.40-7.36 (m, 3H), 7.28-7.26 (m, 4H), 3.42-3.11 (m, 2H), 3.09-2.95 (m, 1H), 2.89-2.81 (m, 1H), 2.74-2.66 (m, 1H), 1.24 (d, J = 13.7 Hz, 9H), 1.24-0.47 (br., 3H); ¹³C NMR (101 MHz, CDCl₃) δ 147.2 (d, J_{C-P} = 12.8 Hz), 140.2 (d, J_{C-P} = 13.9 Hz), 131.4, 130.6 (d, J_{C-P} = 10.2 Hz), 130.0 (d, J_{C-P} = 53.0 Hz), 128.8, 128.6, 127.4 (d, J_{C-P} = 8.8 Hz), 126.4, 125.6 (d, J_{C-P} = 7.3 Hz), 38.4, 37.3 (d, J_{C-P} = 5.4 Hz), 32.5 (d, J_{C-P} = 31.5 Hz), 30.5 (d, J_{C-P} = 27.7 Hz), 25.4 (d, J_{C-P} = 2.5 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 64.3. **HRMS** (EI): m/z: [M-BH₃]⁺ Calcd for C₁₉H₂₃P: 282.1537, found 282.1529. [α]_D ²⁰ = 59.7 (c = 0.5, CHCl₃).

3.27 (1S,2R)-2-benzyl-1-(tert-butyl)-2,3-dihydrophosphindole 1-borane (5a')

Prepared according to general procedure C from **4a'** (1.2 mmol), after a flash column chromatography (hexane : EA = 50:1) afforded the product **5a'** as a colorless solid (277 mg, 75% yield). M.p.: 183.0-183.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.81-7.77 (m, 1H), 7.49-7.25 (m, 7H), 7.25-7.11 (m, 1H), 3.32-3.15 (m, 1H), 3.14-2.87 (m, 2H), 2.46-2.11 (m, 2H), 1.21 (d, J = 13.8 Hz, 9H), 1.24-0.47 (br., 3H); ¹³C NMR (101 MHz,

CDCl₃) δ 145.2 (d, $J_{\text{C-P}} = 10.5 \text{ Hz}$), 144.3, 133.9 (d, $J_{\text{C-P}} = 13.0 \text{ Hz}$), 130.6 (d, $J_{\text{C-P}} = 2.4 \text{ Hz}$), 129.5 (d, $J_{\text{C-P}} = 6.0 \text{ Hz}$), 128.8, 127.0, 126.8 (d, $J_{\text{C-P}} = 10.8 \text{ Hz}$), 126.5, 123.5 (d, $J_{\text{C-P}} = 47.3 \text{ Hz}$), 39.8 (d, $J_{\text{C-P}} = 3.4 \text{ Hz}$), 39.2 (d, $J_{\text{C-P}} = 3.8 \text{ Hz}$), 30.1 (d, $J_{\text{C-P}} = 30.7 \text{ Hz}$), 26.4 (d, $J_{\text{C-P}} = 32.1 \text{ Hz}$), 25.1 (d, $J_{\text{C-P}} = 2.3 \text{ Hz}$); ³¹**P NMR** (162 MHz, CDCl₃) δ 24.2. **HRMS** (EI): m/z: [M-BH₃]⁺ Calcd for C₁₉H₂₃P: 282.1537, found 282.1532. [α]_D ²⁰ = 29.8 (c = 0.5, CHCl₃).

3.28 (1*S*,2*R*)-2-(2-bromobenzyl)-1-(tert-butyl)-2,3-dihydrophosphindole 1-borane (5b)

Prepared according to general procedure C from **4b** (3.2 mmol), after a flash column chromatography (hexane : EA = 50:1) afforded the product **5b** as a colorless solid (880 mg, 74% yield). M.p.: 128.0-128.9 °C. ¹H NMR δ 7.70-7.54 (m, 2H), 7.46-7.42 (m, 1H), 7.37-7.31 (m, 1H), 7.29-2.25 (m, 3H), 7.18-7.14 (m, 1H), 3.44-3.39 (m, 1H), 3.25-2.95 (m, 3H), 2.92-2.68 (m, 1H), 1.24 (d, J = 13.8 Hz, 9H), 1.24-0.42 (br., 3H); ¹³C NMR (101 MHz, CDCl₃) δ 147.1 (d, J_{C-P} = 12.7 Hz), 139.4 (d, J_{C-P} = 13.8 Hz), 133.2, 131.9, 131.4, 130.6 (d, J_{C-P} = 10.2 Hz), 129.5 (d, J_{C-P} = 121.6 Hz), 128.4, 127.6, 127.5, 125.6 (d, J_{C-P} = 7.3 Hz), 124.6, 38.0, 37.8 (d, J_{C-P} = 6.1 Hz), 30.6 (d, J_{C-P} = 27.6 Hz), 30.6 (d, J_{C-P} = 30.5 Hz), 25.6 (d, J_{C-P} = 2.4 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 65.2. HRMS (EI): m/z: [M]⁺ Calcd for C₁₉H₂₅BBrP: 374.0970, found 374.0947. [α]_D ²⁰ = 1.3 (c = 0.5, CHCl₃).

3.29 (1*S*,2*S*)-1-(tert-butyl)-2-(2-fluorobenzyl)-2,3-dihydrophosphindole 1-borane (5c)

Prepared according to general procedure C from 4c (2.8 mmol), after a flash column

chromatography (hexane : EA = 50:1) afforded the product **5c** as a colorless solid (601 mg, 68% yield). M.p.: 123.0-123.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.69-7.60 (m, 1H), 7.46-7.42 (m, 1H), 7.38-7.33 (m, 1H), 7.29-7.24 (m, 3H), 7.19-7.03 (m, 2H), 3.36-3.31 (m, 1H), 3.25-3.17 (m, 1H), 3.11-2.86 (m, 2H), 2.79-2.72 (m, 1H), 1.23 (d, J = 13.7 Hz, 9H), 1.24-0.42 (br., 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.4 (d, $J_{\text{C-F}} = 245.2 \text{ Hz}$), 147.1 (d, $J_{\text{C-P}} = 13.0 \text{ Hz}$), 131.5 (d, $J_{\text{C-F}} = 5.1 \text{ Hz}$), 131.4 (d, $J_{\text{C-F}} = 2.4 \text{ Hz}$), 130.5 (d, $J_{\text{C-P}} = 10.1 \text{ Hz}$), 130.2 (d, $J_{\text{C-P}} = 53.1 \text{ Hz}$), 128.4 (d, $J_{\text{C-F}} = 8.0 \text{ Hz}$), 127.5 (d, $J_{\text{C-P}} = 8.8 \text{ Hz}$), 127.2 (d, $J_{\text{C-F}} = 15.0 \text{ Hz}$), 125.6 (d, $J_{\text{C-P}} = 7.4 \text{ Hz}$), 124.1 (d, $J_{\text{C-P}} = 3.6 \text{ Hz}$), 115.5 (d, $J_{\text{C-F}} = 21.9 \text{ Hz}$), 38.4, 31.6 (d, $J_{\text{C-P}} = 6.3 \text{ Hz}$), 31.2 (d, $J_{\text{C-P}} = 31.1 \text{ Hz}$), 30.5 (d, $J_{\text{C-P}} = 27.8 \text{ Hz}$), 25.4 (d, $J_{\text{C-P}} = 2.3 \text{ Hz}$); ³¹P NMR (162 MHz, C₆D₆) δ 62.8; ¹°F NMR (376 MHz, CDCl₃) δ -117.5. HRMS (EI): m/z: [M-BH₃]⁺ Calcd for C₁₉H₂₂FP: 300.1443, found 300.1440. [α]_D ²⁰ = 34.2 (c = 0.5, CHCl₃).

3.30 (1*S*,2*S*)-1-(tert-butyl)-2-(3-chlorobenzyl)-2,3-dihydrophosphindole 1-borane (5d)

Prepared according to general procedure C from **4d** (3.3 mmol), after a flash column chromatography (hexane : EA = 50:1) afforded the product **5d** as a colorless solid (703 mg, 64% yield). M.p.: 115.0-115.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.68-7.59 (m, 1H), 7.45 (tt, J = 7.5, 1.4 Hz, 1H), 7.39-7.34 (m, 1H), 7.29-7.24 (m, 4H), 7.15-7.13 (m, 1H), 3.29-3.21 (m, 2H), 2.98-2.91 (m, 1H), 2.87-2.74 (m, 1H), 2.70-2.63 (m, 1H), 1.22 (d, J = 13.7 Hz, 9H), 1.24-0.41 (br., 3H); ¹³C NMR (101 MHz, CDCl₃) δ 147.0 (d, J_{C-P} = 12.5 Hz), 142.4 (d, J_{C-P} = 14.5 Hz), 134.5, 131.5 (d, J_{C-P} = 2.3 Hz), 130.7 (d, J_{C-P} = 10.6 Hz), 130.0 (d, J_{C-P} = 53.0 Hz), 129.9, 128.9, 127.6, 127.3, 126.8, 125.7 (d, J_{C-P} = 7.3 Hz), 38.4, 37.1 (d, J_{C-P} = 5.7 Hz), 32.3 (d, J_{C-P} = 31.8 Hz), 30.7 (d, J_{C-P} = 27.7 Hz), 25.5 (d, J_{C-P} = 2.6 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 64.9. HRMS (EI): m/z: [M-BH₃]⁺ Calcd for [C₁₉H₂₂ClP] ⁺: 316.1148, found 316.1140. [α]_D ²⁰ = 67.8 (c = 0.5, CHCl₃).

3.31 (1*S*,2*S*)-1-(tert-butyl)-2-(3-methylbenzyl)-2,3-dihydrophosphindole 1-borane (5e)

Prepared according to general procedure C from **4e** (1.8 mmol), after a flash column chromatography (hexane : EA = 50:1) afforded the product **5e** as a colorless solid (368 mg, 66% yield). M.p.: 123.0-123.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.66-7.63 (m, 1H), 7.47-7.43 (m, 1H), 7.41-7.32 (m, 1H), 7.29-7.22 (m, 2H), 7.08 (q, J = 8.2 Hz, 3H), 3.37-3.17 (m, 2H), 3.02-2.96 (m, 1H), 2.88-2.79 (m, 1H), 2.75-2.55 (m, 1H), 2.40 (s, 3H), 1.23 (d, J = 13.7 Hz, 9H), 1.24-0.41 (br., 3H); ¹³C NMR (101 MHz, CDCl₃) δ 147.3 (d, J_{C-P} = 12.6 Hz), 140.2 (d, J_{C-P} = 14.1 Hz), 138.2, 131.4 (d, J_{C-P} = 2.2 Hz), 130.6 (d, J_{C-P} = 10.2 Hz), 130.0 (d, J_{C-P} = 53.1 Hz), 129.6, 128.4, 127.4 (d, J_{C-P} = 8.8 Hz), 127.2, 125.9, 125.6 (d, J_{C-P} = 7.3 Hz), 38.4, 37.2 (d, J_{C-P} = 5.2 Hz), 32.4 (d, J_{C-P} = 31.8 Hz), 30.6 (d, J_{C-P} = 28.0 Hz), 25.4 (d, J_{C-P} = 2.7 Hz), 21.4; ³¹P NMR (162 MHz, CDCl₃) δ 64.2. **HRMS** (EI): m/z: [M-BH₃]⁺ Calcd for C₂₀H₂₅P: 296.1694, found 296.1685. $[\alpha]_D$ ²⁰ = 46.1 (c = 0.5, CHCl₃).

3.32 (1S,2R)-1-(tert-butyl)-2-(3-methylbenzyl)-2,3-dihydrophosphindole 1-borane (5e')

Prepared according to general procedure C from **4e'** (0.9 mmol), after a flash column chromatography (hexane : EA = 50:1) afforded the product **5e'** as a colorless solid (190 mg, 68% yield). M.p.: 174.0-174.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.82-7.77 (m, 1H), 7.46-7.34 (m, 2H), 7.33-7.26 (m, 1H), 7.20 (d, J = 7.5 Hz, 1H), 7.13-7.11 (m, 3H), 3.22-3.17 (m, 1H), 3.14-2.90 (m, 2H), 2.41 (s, 3H), 2.37-2.18 (m, 2H), 1.21 (d, J = 13.8 Hz, 9H), 1.22-0.47 (br., 3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.2 (d, J_{C-P} = 10.2 Hz),

144.4, 138.5, 133.9 (d, $J_{C-P} = 13.1 \text{ Hz}$), 130.6 (d, $J_{C-P} = 2.7 \text{ Hz}$), 129.5 (d, $J_{C-P} = 5.9 \text{ Hz}$), 128.7, 127.7, 127.3, 126.7 (d, $J_{C-P} = 11.0 \text{ Hz}$), 123.5 (d, $J_{C-P} = 47.3 \text{ Hz}$), 123.4, 39.7, 39.1 (d, $J_{C-P} = 3.7 \text{ Hz}$), 30.1 (d, $J_{C-P} = 31.1 \text{ Hz}$), 26.5 (d, $J_{C-P} = 32.0 \text{ Hz}$), 25.1 (d, $J_{C-P} = 2.7 \text{ Hz}$), 21.4; ³¹**P NMR** (162 MHz, CDCl₃) δ 24.2. **HRMS** (EI): m/z: [M-BH₃]⁺ Calcd for C₂₀H₂₅P: 296.1694, found 296.1691. [α]_D ²⁰ = 35.7 (c = 0.5, CHCl₃).

3.33 (1*S*,2*S*)-2-([1,1'-biphenyl]-4-ylmethyl)-1-(tert-butyl)-2,3-dihydrophosphindole 1-borane (5f)

Prepared according to general procedure C from **4f** (2.6 mmol), after a flash column chromatography (hexane : EA = 50:1) afforded the product **5f** as a colorless solid (598 mg, 61% yield). M.p.: 110.0-110.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.75-7.60 (m, 5H), 7.56-7.44 (m, 3H), 7.44-7.34 (m, 4H), 7.32-7.27 (m, 1H), 3.53-3.22 (m, 2H), 3.06 (ddd, J= 17.1, 7.1, 4.5 Hz, 1H), 3.01-2.86 (m, 1H), 2.81-2.74 (m, 1H), 1.27 (d, J= 13.7 Hz, 9H), 1.22-0.47 (br., 3H); ¹³C NMR (101 MHz, CDCl₃) δ 147.3 (d, J_{C-P} = 12.4 Hz), 140.9, 139.5 (d, J_{C-P} = 2.2 Hz), 139.3, 131.5 (d, J_{C-P} = 2.2 Hz), 130.8 (d, J_{C-P} = 10.2 Hz), 130.2 (d, J_{C-P} = 53.0 Hz), 129.4, 128.9, 127.6 (d, J_{C-P} = 8.8 Hz), 127.4, 127.3, 127.1, 125.8 (d, J_{C-P} = 7.3 Hz), 38.6, 37.1 (d, J_{C-P} = 5.3 Hz), 32.6 (d, J_{C-P} = 31.6 Hz), 30.7 (d, J_{C-P} = 28.1 Hz), 25.6 (d, J_{C-P} = 2.2 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 64.5. HRMS (EI): m/z: [M-BH₃]⁺ Calcd for C₂₅H₂₇P: 358.1850, found 358.1848. [α]_D ²⁰ = 86.0 (c = 0.5, CHCl₃).

3.34 (1*S*,2*S*)-1-(tert-butyl)-2-(4-propylbenzyl)-2,3-dihydrophosphindole 1- borane (5i)

Prepared according to general procedure C from **4i** (0.5 mmol), after a flash column chromatography (hexane : EA = 50:1) afforded the product **5i** as a colorless solid (115 mg, 68% yield). M.p.: 122.0-122.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.67-7.63 (m, 1H), 7.46-7.43 (m, 1H), 7.39-7.34 (m, 1H), 7.28-7.26 (m, 1H), 7.19 (s, 4H), 3.32-3.22 (m, 2H), 3.05-2.97 (m, 1H), 2.86-2.81 (m, 1H), 2.71-2.61 (m, 3H), 1.70 (q, J = 7.5 Hz, 2H), 1.24 (d, J = 13.6 Hz, 9H), 1.00 (t, J = 7.3 Hz, 3H), 1.01-0.37 (br., 3H); ¹³C NMR (101 MHz, CDCl₃) δ 147.4 (d, J_{C-P} = 12.6 Hz), 140.9, 137.5 (d, J_{C-P} = 14.4 Hz), 131.4, 130.7 (d, J_{C-P} = 10.2 Hz), 130.5, 129.9, 128.8 (d, J_{C-P} = 5.1 Hz), 127.5 (d, J_{C-P} = 8.8 Hz), 125.7 (d, J_{C-P} = 7.3 Hz), 38.1 (d, J_{C-P} = 82.4 Hz), 37.0 (d, J_{C-P} = 5.3 Hz), 32.6 (d, J_{C-P} = 31.5 Hz), 30.6 (d, J_{C-P} = 27.8 Hz), 25.5 (d, J_{C-P} = 2.2 Hz), 24.6, 13.9, 1.1; ³¹P NMR (162 MHz, CDCl₃) δ 64.1. **HRMS** (EI): m/z: [M-BH₃]⁺ Calcd for C₂₂H₂₉P: 324.2007, found 324.2002. [α]_D ²⁰ = 54.3 (c = 0.5, CHCl₃).

3.35 (1*S*,2*R*)-1-(tert-butyl)-2-(4-propylbenzyl)-2,3-dihydrophosphindole 1- borane (5i')

Prepared according to general procedure C from **4i**' (1.6 mmol), after a flash column chromatography (hexane : EA = 50:1) afforded the product **5i**' as a colorless liquid (368 mg, 67% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.86-7.72 (m, 1H), 7.44-7.35 (m, 2H), 7.27-7.21 (m, 5H), 3.25-3.17 (m, 1H), 3.15-2.95 (m, 2H), 2.64 (t, J = 7.7 Hz, 2H), 2.46-2.11 (m, 2H), 1.70 (q, J = 7.5 Hz, 2H), 1.22 (d, J = 13.7 Hz, 9H), 1.01 (t, J = 7.3 Hz, 3H), 1.07-0.41 (br., 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 144.4, 142.4 (d, J_{C-P} = 10.3 Hz), 141.4, 133.9 (d, J_{C-P} = 13.0 Hz), 130.6 (d, J_{C-P} = 2.4 Hz), 129.4 (d, J_{C-P} = 5.9 Hz), 128.8, 126.6 (d, J_{C-P} = 11.0 Hz), 126.3, 123.5 (d, J_{C-P} = 47.3 Hz), 39.3 (dd, J_{C-P} = 104.0, 3.7 Hz), 37.5, 30.0 (d, J_{C-P} = 31.1 Hz), 26.5 (d, J_{C-P} = 31.9 Hz), 25.0 (d, J_{C-P} = 2.5 Hz), 24.5, 13.8, 0.9; ³¹**P NMR** (162 MHz, CDCl₃) δ 24.1. **HRMS** (EI): m/z: [M-BH₃]⁺ Calcd for C₂₂H₂₉P: 324.2007, found 324.2004. $[\alpha]_D$ ²⁰ = 13.0 (c = 0.5, CHCl₃).

3.36 (1*S*,2*S*)-1-(tert-butyl)-2-(3,5-di-tert-butylbenzyl)-2,3-dihydrophosphindole 1-borane (5j)

Prepared according to general procedure C from **4j** (1.0 mmol), after a flash column chromatography (hexane : EA = 50:1) afforded the product **5j** as a colorless liquid (322 mg, 79% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.66 (t, J = 6.9 Hz, 1H), 7.45 (t, J = 7.5 Hz, 1H), 7.41-7.33 (m, 2H), 7.31-7.25 (m, 1H), 7.10 (s, 2H), 3.35-3.27 (m, 2H), 3.15-2.98 (m, 1H), 2.87-2.81 (m, 1H), 2.77-2.69 (m, 1H), 1.47-1.31 (m, 18H), 1.22 (d, J = 13.7 Hz, 9H), 1.17-0.43 (br., 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 150.9, 147.4 (d, J_{C-P} = 13.0 Hz), 139.2 (d, J_{C-P} = 13.2 Hz), 131.3, 130.7 (d, J_{C-P} = 10.2 Hz), 130.1, 127.4 (d, J_{C-P} = 8.8 Hz), 125.6 (d, J_{C-P} = 7.3 Hz), 123.1, 120.3, 38.8, 37.7 (d, J_{C-P} = 5.1 Hz), 34.8, 32.8 (d, J_{C-P} = 31.1 Hz), 31.5, 30.5 (d, J_{C-P} = 27.7 Hz), 25.5 (d, J_{C-P} = 2.5 Hz); ³¹**P NMR** (162 MHz, CDCl₃) δ 64.5. **HRMS** (EI): m/z: [M-BH₃]⁺ Calcd for C₂₇H₃₉P: 394.2789, found 394.2784. [α]_D ²⁰ = 16.0 (c = 0.5, CHCl₃).

3.37 (1*S*,2*R*)-1-(tert-butyl)-2-(3,5-di-tert-butylbenzyl)-2,3-dihydrophosphindole 1-borane (5j')

Prepared according to general procedure C from **4j**' (2.0 mmol), after a flash column chromatography (hexane : EA = 50:1) afforded the product **5j**' as a colorless solid (645 mg, 79% yield). M.p.: 103.0-103.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.76 (m, 1H), 7.49-7.34 (m, 3H), 7.26-7.20 (m, 1H), 7.17-7.12 (m, 2H), 3.27-3.21 (m, 1H), 3.18-2.96 (m, 2H), 2.43-2.33 (m, 1H), 2.29-2.22 (m, 1H), 1.39 (d, J= 1.4 Hz, 18H), 1.23 (dd, J= 13.7, 1.3 Hz, 9H), 1.19-0.41 (br., 3H); ¹³C NMR (101 MHz, CDCl₃) δ 151.3, 144.6,

144.4 (d, $J_{C-P} = 10.2 \text{ Hz}$), 134.0 (d, $J_{C-P} = 13.0 \text{ Hz}$), 130.6 (d, $J_{C-P} = 2.3 \text{ Hz}$), 129.5 (d, $J_{C-P} = 6.3 \text{ Hz}$), 126.7 (d, $J_{C-P} = 11.2 \text{ Hz}$), 123.6 (d, $J_{C-P} = 47.7 \text{ Hz}$), 121.1, 120.5, 39.8 (d, $J_{C-P} = 3.7 \text{ Hz}$), 34.9, 31.5, 30.1 (d, $J_{C-P} = 31.0 \text{ Hz}$), 27.0 (d, $J_{C-P} = 2.7 \text{ Hz}$), 26.8 (d, $J_{C-P} = 31.4 \text{ Hz}$), 25.2 (d, $J_{C-P} = 2.3 \text{ Hz}$); ³¹P NMR (162 MHz, CDCl₃) δ 24.2. HRMS (EI): m/z: [M-BH₃]⁺ Calcd for C₂₇H₃₉P: 394.2789, found 394.2789. [α]_D ²⁰ = 33.3 (c = 0.5, CHCl₃).

3.38 (1*S*,2*S*)-1-(tert-butyl)-2-(naphthalen-2-ylmethyl)-2,3-dihydrophosphindole 1-borane (5k)

Prepared according to general procedure C from **4k** (3.0 mmol), after a flash column chromatography (hexane : EA = 50:1) afforded the product **5k** as a colorless solid (737 mg, 71% yield). M.p.: 118.0-118.9 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.89-7.84 (m, 3H), 7.77-7.63 (m, 2H), 7.59-7.34 (m, 5H), 7.26-7.24 (m, 1H), 3.51-3.44 (m, 1H), 3.35-3.17 (m, 1H), 3.08-3.03 (m, 1H), 3.00-2.82 (m, 2H), 1.26 (dd, J = 13.8, 2.9 Hz, 9H), 1.12-0.47 (br., 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 147.3 (d, J_{C-P} = 12.3 Hz), 137.7 (d, J_{C-P} = 14.1 Hz), 133.6, 132.3, 131.5, 130.8, 130.7, 130.1 (d, J_{C-P} = 53.1 Hz), 128.4, 127.7, 127.6, 127.5, 127.3 (d, J_{C-P} = 22.6 Hz), 126.3, 125.7 (d, J_{C-P} = 7.6 Hz), 125.6. 38.5, 37.6 (d, J_{C-P} = 5.5 Hz), 32.4 (d, J_{C-P} = 31.6 Hz), 30.7 (d, J_{C-P} = 27.7 Hz), 25.5; ³¹**P NMR** (162 MHz, C₆D₆) δ 64.3. **HRMS** (EI): m/z: [M-BH₃]⁺ Calcd for C₂₃H₂₅P: 332.1694, found 332.1689. [α]_D ²⁰ = 70.9 (c = 0.5, CHCl₃).

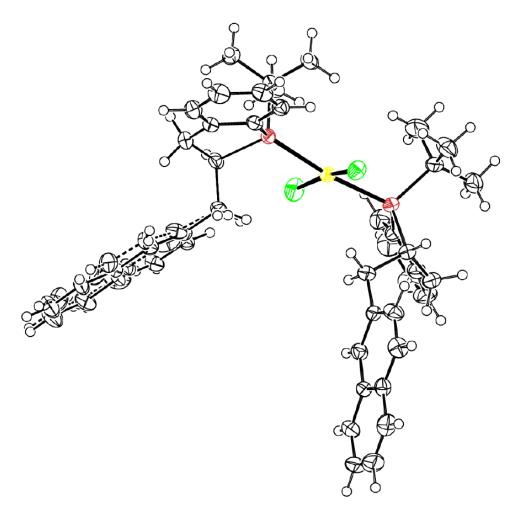
3.39 (1*S*,2*R*)-1-(tert-butyl)-2-(thiophen-2-ylmethyl)-2,3-dihydrophosphindole 1-borane (5l)

Prepared according to general procedure C from 41 (2.1 mmol), after a flash column

chromatography (hexane : EA = 50:1) afforded the product **51** as a colorless solid (470 mg, 75% yield). M.p.: 208.0-208.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.69-7.62 (m, 1H), 7.48-7.43 (m, 1H), 7.38-7.34 (m, 1H), 7.32-7.28 (m, 1H), 7.22 (dd, J = 5.1, 1.2 Hz, 1H), 7.07-6.98 (m, 1H), 6.91-6.89 (m, 1H), 3.60-3.33 (m, 2H), 3.19-2.93 (m, 2H), 2.84-2.81 (m, 1H), 1.22 (d, J = 13.7 Hz, 9H), 1.12-0.37 (br., 3H); ¹³C NMR (101 MHz, CDCl₃) δ 147.1 (d, J = 12.5 Hz), 143.1 (d, J_{C-P} = 16.0 Hz), 131.5 (d, J_{C-P} = 2.2 Hz), 130.7 (d, J_{C-P} = 10.3 Hz), 129.8 (d, J_{C-P} = 53.1 Hz), 127.5 (d, J_{C-P} = 8.9 Hz), 126.9, 125.7 (d, J_{C-P} = 7.4 Hz), 125.6, 123.9, 38.8, 33.1 (d, J_{C-P} = 31.3 Hz), 31.9 (d, J_{C-P} = 6.6 Hz), 30.6 (d, J_{C-P} = 27.8 Hz), 25.3 (d, J_{C-P} = 2.2 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 64.7. HRMS (EI): m/z: [M-BH₃]⁺ Calcd for C₁₇H₂₁PS: 288.1102, found 288.1094. [α]_D δ 74.4 (ϵ = 0.5, CHCl₃).

4. Gram-scale synthesis of 5c

A sealed tube with a magnetic stir bar was charged with Pd₂(dba)₃ (0.4 mmol), (*S*, *R*_S)-X1 (1.2 mmol), racemic SPO (38.0 mmol), alkyne 2c (20.0 mmol) and water (20.0 mmol). Anhydrous DCE (200.0 ml) was then added as solvent. The reaction tube was sealed, frozen by liquid nitrogen and evacuated under vacuum and backfilled with argon three times through a three-way stopcock. The reaction tube was sealed and allowed to stir at 35°C for 24-36 h. On completion, the reaction mixture was cooled to room temperature, solvent was removed in vacuo and the crude reaction mixture was purified on silica gel using hexanes/ethyl acetate as eluent to afford the desired product 3c (50% yield, 96% ee). Enantiomerically pure level of 3c could be easily achieved via the operable recrystallization process in good yield (2.84 g, 45% yield, >99% ee).


A sealed tube equipped with a stir bar under argon atmosphere was charged with 3c (>99% ee, 9.0 mmol) and 'BuOK (1.2 equiv). THF (60.0 mL) was added as solvent and then the vial was capped. The reaction mixture was stirred at 80 °C for 20-36 h. On completion, solvent was removed in vacuo and the crude reaction mixture was purified on silica gel using CH₃OH/ethyl acetate as eluent to afford the major isomer 4c (1.56 g, 55% yield) and minor isomer 4c' as a colorless solid (195 mg, 7% yield).

To a solution of **4c** (5.0 mmol, 1 equiv), triethylamine (50.0 mmol, 10 equiv) in toluene (50 mL) at rt was added trichlorosilane (25.0 mmol, 5 equiv). The mixture was heated to 80 °C and stirred under nitrogen for 12 h. To the mixture at 0 °C was added BH₃·THF complex (1.0 M, 65.0 mmol), and the resulting mixture was stirred at rt for about 2 h.

Water (60.0 mL) was then added and the aqueous layer was extracted three times with ethyl acetate. The combined organic extracts were dried over Na₂SO₄ and removed in vacuo and the residue was purified by flash column chromatography on silica gel using hexanes/ethyl acetate as eluent to provide the title phosphine borane adducts **5c** (1.02 g, 65% yield).

General experimental procedure for synthesis of M1:

A sealed tube equipped with a stir bar under argon atmosphere was charged with 5k (>99% ee, 0.4 mmol) and DCM (2.0 mL) was added as solvent and then the vial was capped. The tube was cooled to 0 °C, then HBF₄•Et₂O^[3] (15.0 equiv) was added with a syringe. The reaction mixture was stirred at 0 °C for 0.5 h. On completion, Water (10.0 mL) was then added and the aqueous layer was extracted two times with DCM (2*2 mL). The combined organic extracts were switched to another tube and Pd(CH₃CN)₂Cl₂ (0.3 equiv) was added. The reaction mixture was stirred at rt for 12 h. On completion, Water (10.0 mL) was then added and the aqueous layer was extracted three times with DCM. The combined organic extracts were dried over Na₂SO₄ and removed in vacuo and the residue was purified by flash column chromatography on silica gel using hexanes/ethyl acetate as eluent to provide the title Pd (II) complex M1 (73 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.59-8.34 (m, 1H), 7.83 (ddd, J = 14.5, 8.8, 5.4 Hz, 3H), 7.69 (s, 1H), 7.54 (d, J = 8.4 Hz, 1H), 7.50-7.39 (m, 3H), 7.34 (t, J = 7.6 Hz, 1H), 7.26 (s, 1H), 4.79-4.33 (m, 1H), 3.23 (d, J = 12.3 Hz, 1H), 3.04 (t, J = 4.9 Hz, 2H), 2.87 (t, J = 12.9 Hz, 1H), 1.39 (t, J = 7.4 Hz, 9H); ³¹P NMR (162 MHz, CDCl₃) δ 57.4.

Figure S1. ORTEP drawing of **M1** (thermal ellipsoids set at 50% probability). Recrystallization from pentane/CH₂Cl₂ afforded single crystals suitable for X-ray diffraction analysis, which allowed determination of the absolute configurations of the stereocenters.^[4]

Table S4. Crystal data and structure refinement for ga_210702f_a.

Identification code ga_210702f_a

Empirical formula C46 H50 Cl2 P2 Pd

Formula weight 842.10

Temperature 173(2) K

Wavelength 1.34138 Å

Crystal system Monoclinic

Space group C2

Unit cell dimensions a = 24.3145(6) Å $\alpha = 90 ^{\circ}$.

b = 8.8177(2) Å $\beta = 106.7980(10) ^{\circ}.$

c = 19.6690(5) Å $\gamma = 90 \degree$.

Volume 4037.05(17) Å³

Z 4

Density (calculated) 1.386 Mg/m³
Absorption coefficient 3.970 mm⁻¹

F(000) 1744

Crystal size $0.180 \times 0.090 \times 0.090 \text{ mm}^3$

Theta range for data collection 3.344 to 61.499 °.

Index ranges -31 <= h <= 31, -11 <= k <= 11, -25 <= l <= 24

Reflections collected 28300

Independent reflections 9324 [R(int) = 0.0485]

Completeness to theta = 53.594° 99.8 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.752 and 0.536

Refinement method Full-matrix least-squares on F²

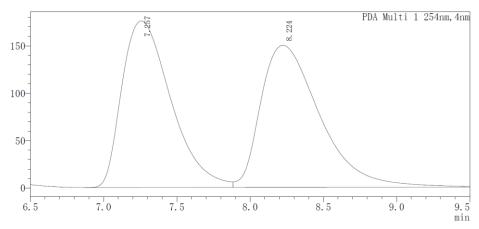
Data / restraints / parameters 9324 / 141 / 557

Goodness-of-fit on F^2 1.030

Final R indices [I>2sigma(I)] R1 = 0.0305, wR2 = 0.0625 R indices (all data) R1 = 0.0351, wR2 = 0.0649

Absolute structure parameter 0.012(5)

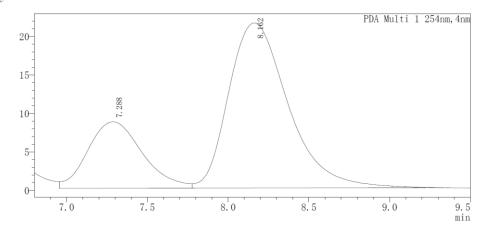
Extinction coefficient n/a


Largest diff. peak and hole 0.369 and -1.029 e.Å⁻³

General experimental procedure for synthesis of 7, 9, 12:

Synthesis and date of substrate 6, [5] 8, [6] and 10 [7] were matched of the reported literature.

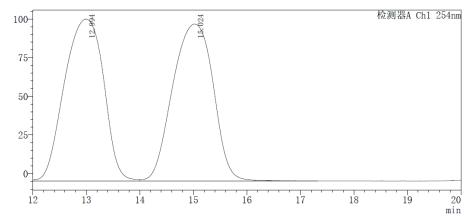
To a sealed tube was added **M1** (3 mol%), LiO'Bu (1.5 equiv), **6** (0.2 equiv). The flask was evacuated and refilled with argon and DME (3.0 mL) was added to the tube. The reaction mixture was kept stirring at 70 °C for 30 h. After completion of the reaction (monitored by TLC), the mixture was concentrated in vacuum and the residue was purified by flash column chromatography (hexanes: EA = 10:1) afforded the desired product **7** as a yellow oil (25 mg, 52% yield, 46% ee). ¹**H NMR** (400 MHz, CDCl₃) δ 7.44-7.26 (m, 6H), 7.23-7.21 (m, 1H), 7.12 (t, J = 7.5 Hz, 1H), 6.95 (d, J = 7.8 Hz, 1H), 3.27 (s, 3H), 1.82 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 179.5, 143.3, 140.8, 134.9, 128.5, 128.1, 127.2, 126.7, 124.2, 122.8, 108.3, 52.2, 26.5, 23.9; **HRMS** (EI): m/z: [M]⁺ Calcd for C₁₆H₁₅NO: 237.1154, found 237.1149. HPLC (OD-H, 2-propanol /n-hexane = 1/99, flow rate = 1.0 mL/min, 1 = 254 nm) tR = 7.2 min (major), 8.2 min (minor). [α]_D α = 96.1 (α = 0.5, CHCl₃).


<Chromatogram>

<Peak Table>

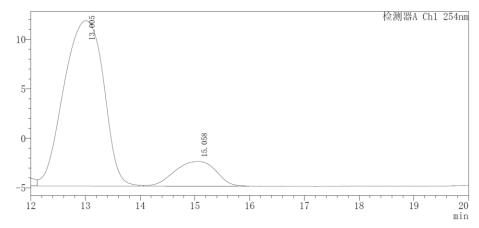
<u>PDA Ch1 25</u>	4nm				
No.	Ret.Time(min)	Height(mAU)	Height%	Area(mAU*min)	Area%
1	7. 257	175796	53. 947	4098425	49. 199
2	8. 224	150070	46.053	4231832	50.801
Total		325865	100.000	8330257	100.000

<Chromatogram> mAU


<Peak Table>
PDA Ch1 254nm

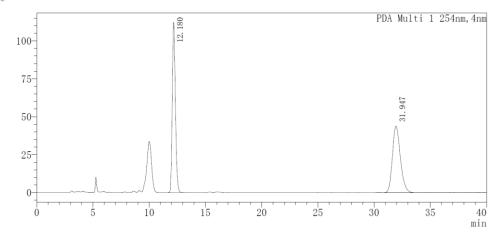
I DA CHI ZOTHII					
No.	Ret.Time(min)	Height (mAU)	Height%	Area(mAU*min)	Area%
1	7. 288	8627	28.696	202519	26. 920
2	8. 162	21438	71. 304	549789	73. 080
Total		30065	100.000	752308	100.000

To a sealed tube was added M1 (3 mol%), LiO'Bu (1.5 equiv), 8 (0.2 equiv). The flask was evacuated and refilled with argon and DME (3.0 mL) was added to the tube. The


reaction mixture was kept stirring at 60 °C for 30 h. After completion of the reaction (monitored by TLC), the mixture was concentrated in vacuum and the residue was purified by flash column chromatography (hexanes: EA = 10:1) afforded the desired product **9** as a yellow oil (38 mg, 60% yield, 73% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.24 (m, 1H), 7.20 (d, J= 7.3 Hz, 1H), 7.11-7.01 (m, 1H), 6.84 (d, J= 7.8 Hz, 1H), 3.38 (t, J= 6.5 Hz, 2H), 3.21 (s, 3H), 2.37-2.18 (m, 1H), 2.02-1.96 (m, 1H), 1.38 (s, 3H), 0.79 (s, 9H), 0.11 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 180.5, 143.3, 133.7, 127.6, 122.7, 122.2, 107.9, 59.6, 46.6, 40.4, 26.2, 25.8, 24.8, 18.2. HRMS (ESI): m/z: [M]⁺ Calcd for C₁₈H₂₉NO₂Si: 319.1968, found 320.2102. HPLC (OZ-H, 2-propanol /n-hexane = 1/99, flow rate = 0.6 mL/min, 1 = 254 nm) tR = 13.0 min (major), 15.0 min (minor). [α]_D ²⁰ = -126.1 (c = 0.5, CHCl₃).

检测器A Ch	检测器A Ch2 254nm								
No.	Ret.Time(min)	Height(mAU) Height% Area(m		Area(mAU*min)	Area%				
1	12. 995	104745	50. 783	5352005	49. 978				
2	15. 027	101513 49. 217		5356795	50. 022				
总计		206259	100.000	10708800	100.000				

<Chromatogram>
mV



检测器A Ch2 254nm								
No.	Ret.Time(min)	Height(mAU)	Height%	Area(mAU*min)	Area%			
1	13.010	16713	86. 981	846123	86. 579			
2	15.066	2501	13.019	131162	13. 421			
总计		19215	100.000	977285	100.000			

To a sealed tube was added M1 (3 mol%), Cs₂CO₃ (2.5 equiv), 11 (1.5 equiv), *N*-allyl carboxamide 10 (0.2 mmol). The flask was evacuated and refilled with argon and toluene (2.0 mL) was added to the tube. The reaction mixture was kept stirring at 60 °C for 20 h. After completion of the reaction (monitored by TLC), the mixture was concentrated in vacuum and the residue was purified by flash column chromatography (hexanes: EA = 10:1) afforded the desired product 12 as a yellow oil (52 mg, 74% yield, 19% ee). ¹H NMR (400 MHz, CDCl₃) δ 8.28 (dd, J = 5.6, 3.3 Hz, 1H), 7.46-7.26 (m, 7H), 7.13-7.01 (m, 2H), 6.98-6.90 (m, 1H), 6.57-6.55 (m, 2H), 5.02 (d, J = 14.4 Hz, 1H), 4.72 (d, J = 14.4 Hz, 1H), 3.41 (d, J = 12.6 Hz, 1H), 3.14 (d, J = 12.6 Hz, 1H), 2.85 (d, J = 13.2 Hz, 1H), 2.62 (d, J = 13.2 Hz, 1H), 2.26 (s, 3H), 1.24 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.4, 145.0, 137.2, 136.9, 136.7, 131.5, 131.4, 128.7, 128.6, 128.6, 128.1, 127.6, 127.5, 127.5, 127.1, 126.9, 124.9, 55.6, 50.9, 45.8, 37.9, 22.0, 21.3. HRMS (EI): m/z: [M]⁺ Calcd for C₂₅H₂₅NO: 355.1936, found 355.1935. HPLC

(AD-H, 2-propanol /n-hexane = 10/90, flow rate = 1.0 mL/min, 1 = 254 nm) tR = 12.1 min (major), 32.1 min (minor). [α]_D ²⁰ = -86.1 (c = 0.5, CHCl₃).

<Peak Table>

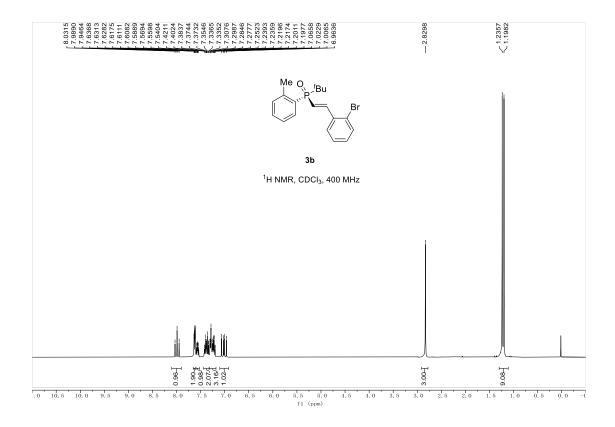
PDA Ch1 254nm								
No. Ret. Time (min)		Height(mAU) Height%		Area(mAU*min)	Area%			
1	12. 180	112087	71.869	2156377	50.042			
2	31. 947	43873	28. 131	2152736	49. 958			
Total		155959	100.000	4309112	100.000			

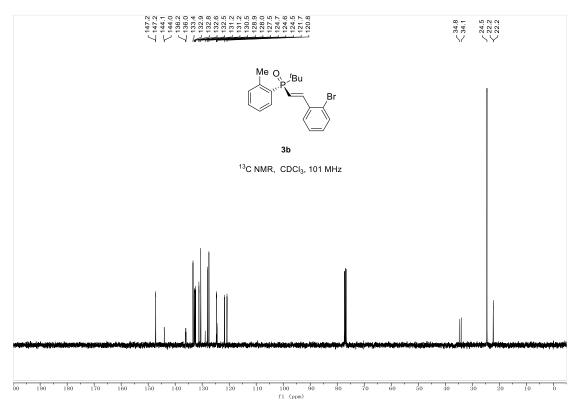
 $\, mV \,$ 检测器A Ch2 254nm 13.135 25 0--25-10 25

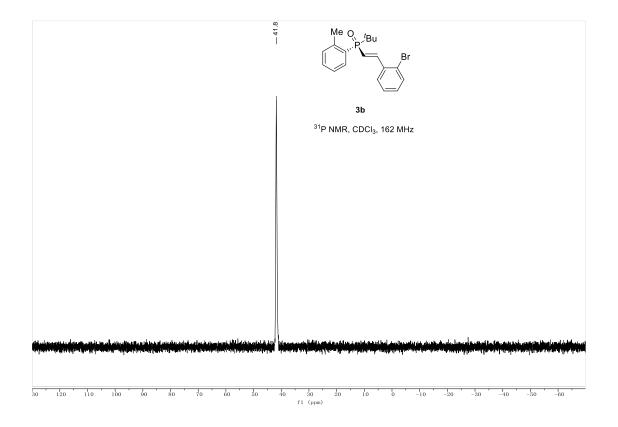
20

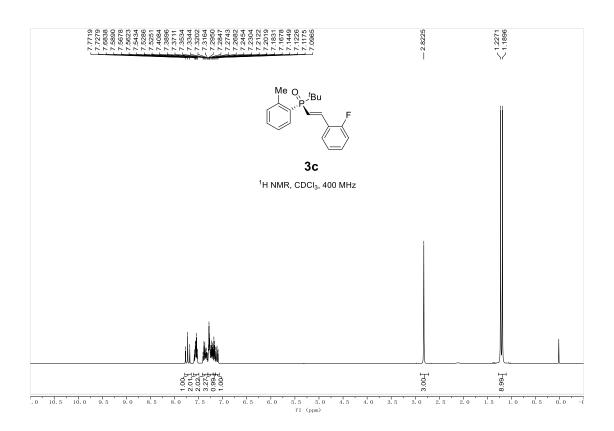
30

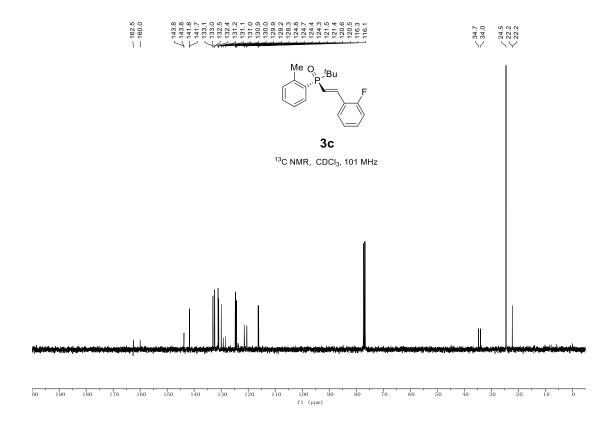
35

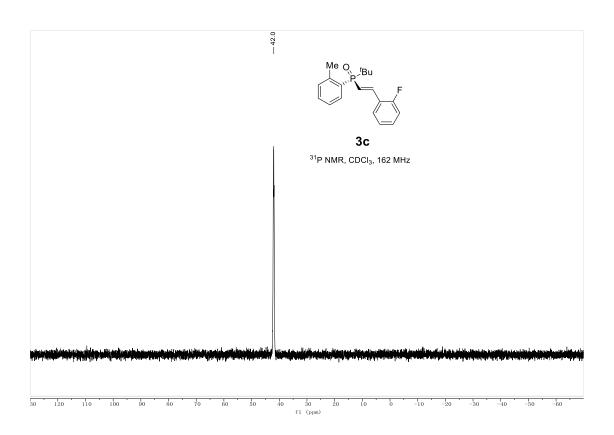

检测器	A Ch2 254n	m					
峰号	保留时间	面积	高度	浓度	浓度单位	标记	化合物名
1	13. 135	1554009	80374	59.631		V	
2	34. 703	1052032	19934	40. 369		S	
总计		2606041	100307				

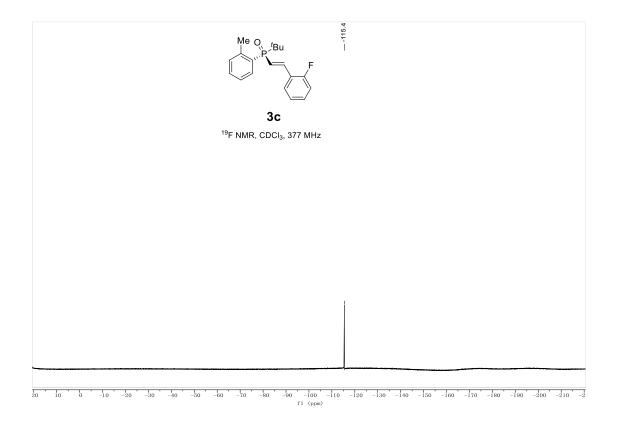

15

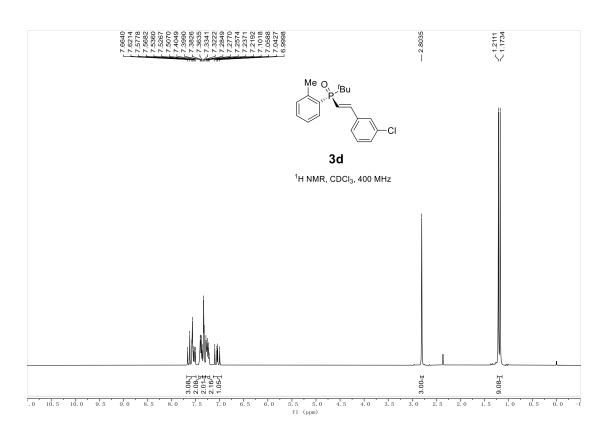

Reference:

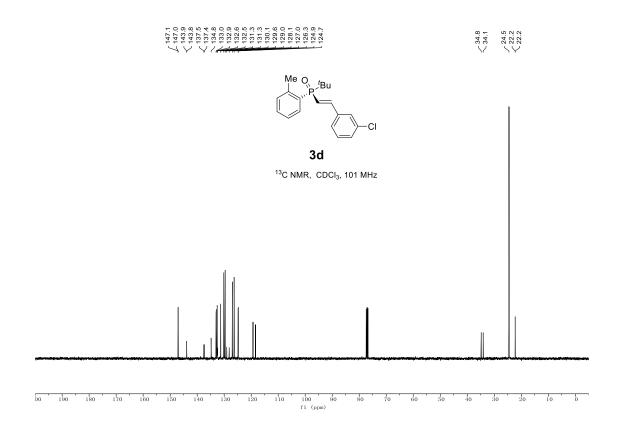

- [1] Q. Dai, L. Liu, Y. Qian, W. Li, J. Zhang, Angew. Chem. Int. Ed. 2020, 59, 2.
- [2] W. Tang, B. Qu, A. G. Capacci, S. Rodriguez, X. Wei, N. Haddad, B. Narayanan, S. Ma, N. Grinberg, N. K. Yee, D. Krishnamurthy, C. H. Senanayake, *Org. Lett.* 2010, 12, 176.
- [3] R. Huber, A. Passera, E. Gubler, A. Mezzetti, Adv. Synth. Catal. 2018, 360, 2900.
- [4] CCDC 2123418 (M1) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
- [5] (a) S. Lee, J. F. Hartwig, J. Org. Chem. 2001, 66, 3402; (b) E. P. Kündig, T. M. Seidel, Y. Jia, G. Bernardinelli, Angew. Chem. 2007, 119, 8636.
- [6] T. Y. Zhang, H. Zhang, Tetrahedron Letters 2002, 43, 1363.
- [7] Q. Chen, S. Li, X. Xie, H. Guo, J. Yang, J. Zhang, Org. Lett. 2021, 23, 4099.

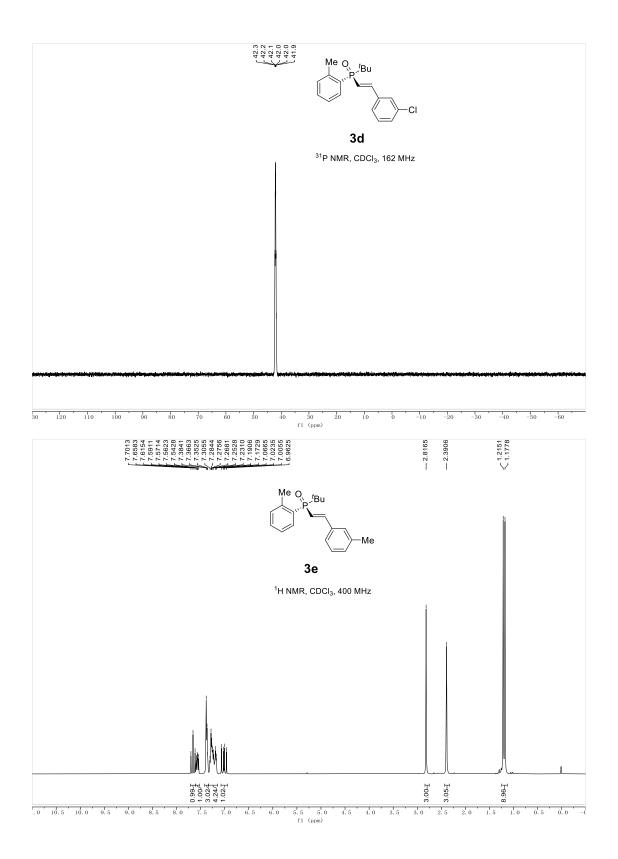

6. NMR spectra of products:

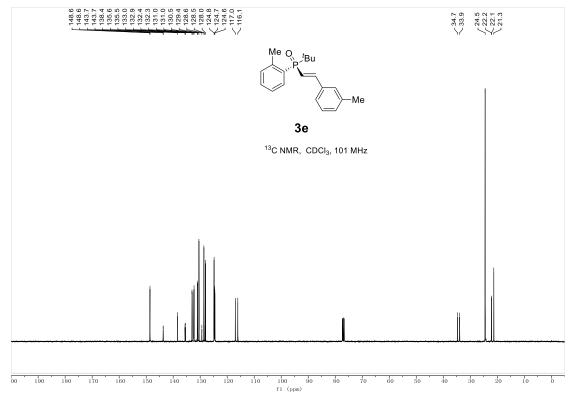


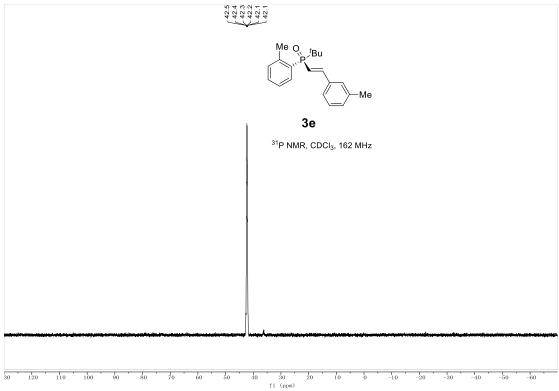


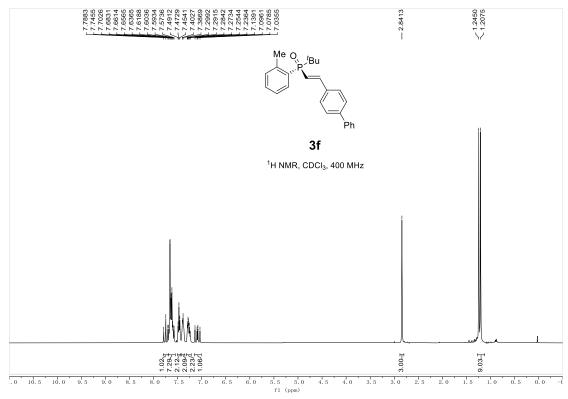


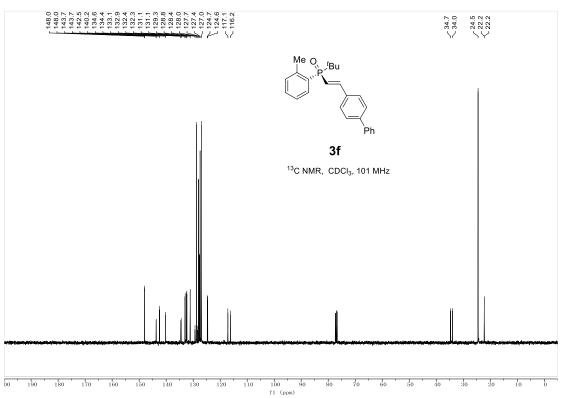


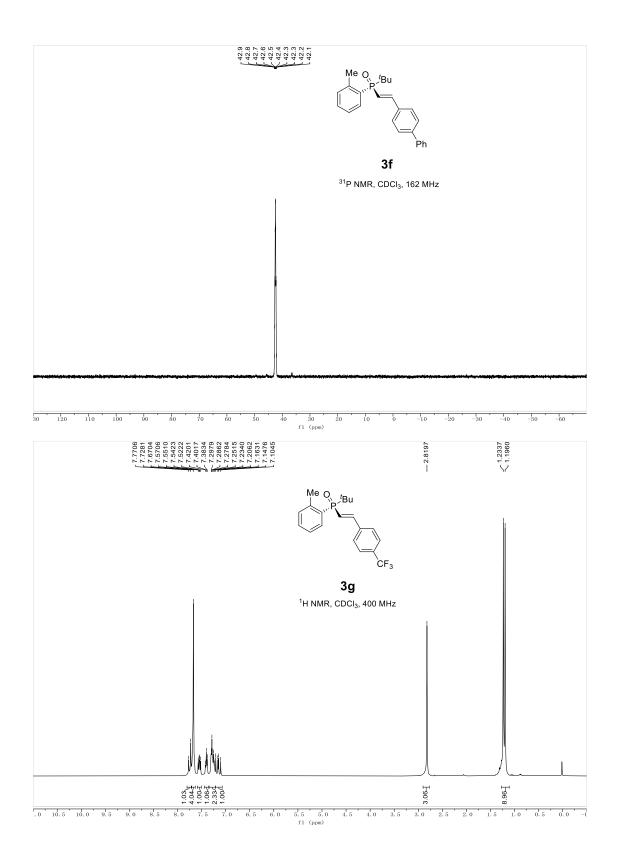


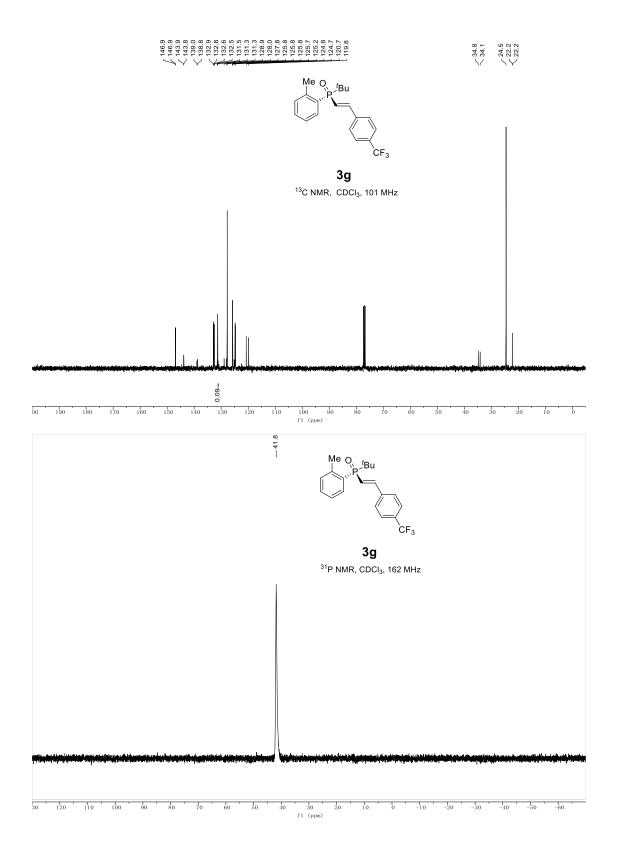


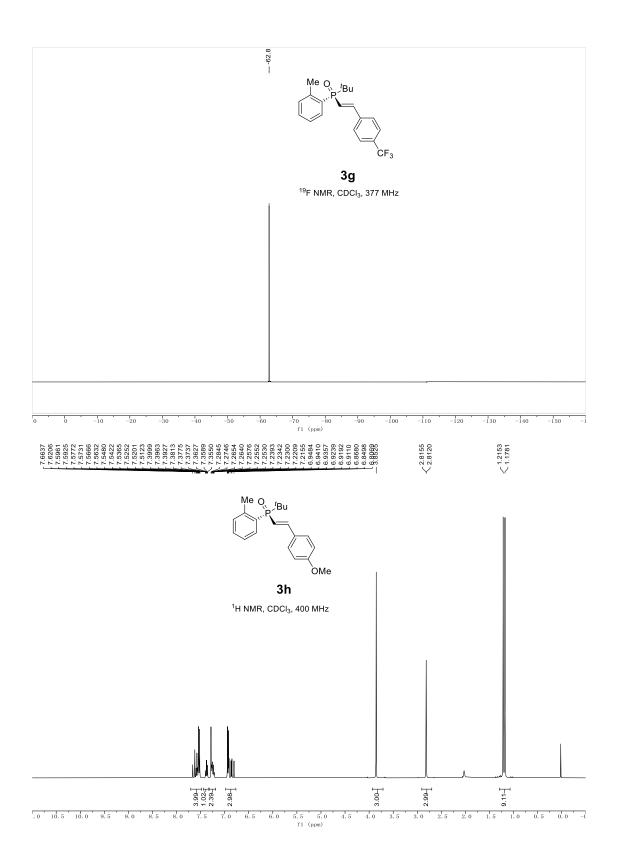


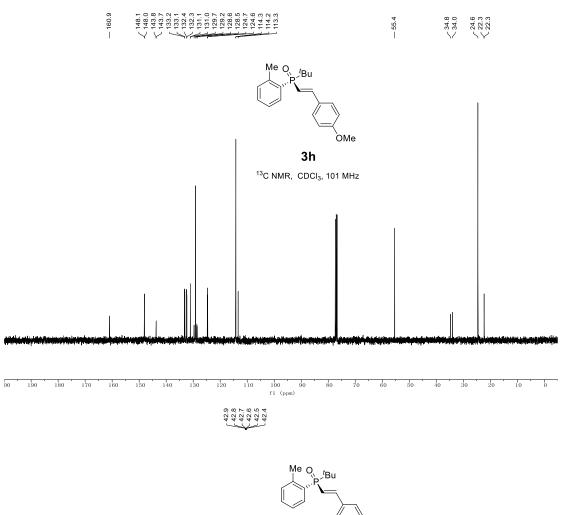


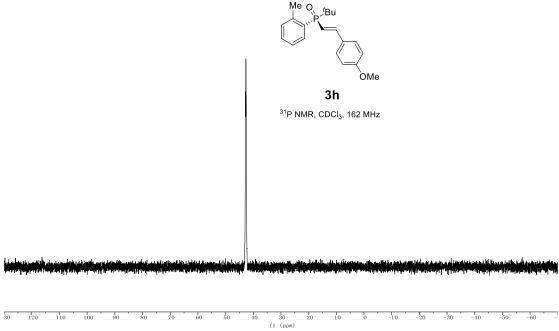


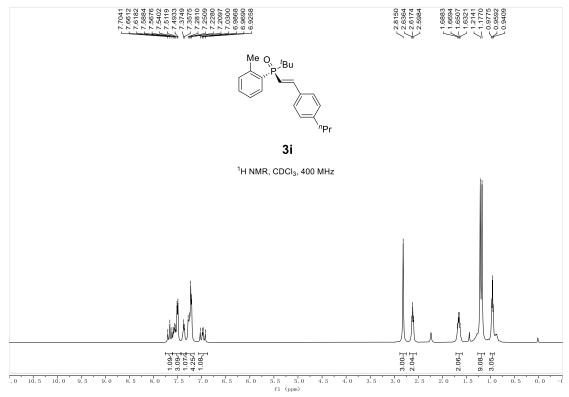


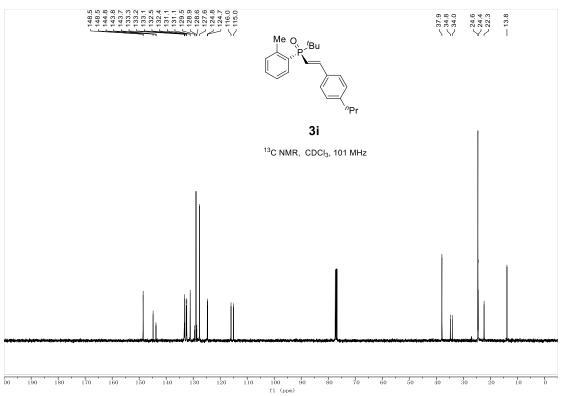


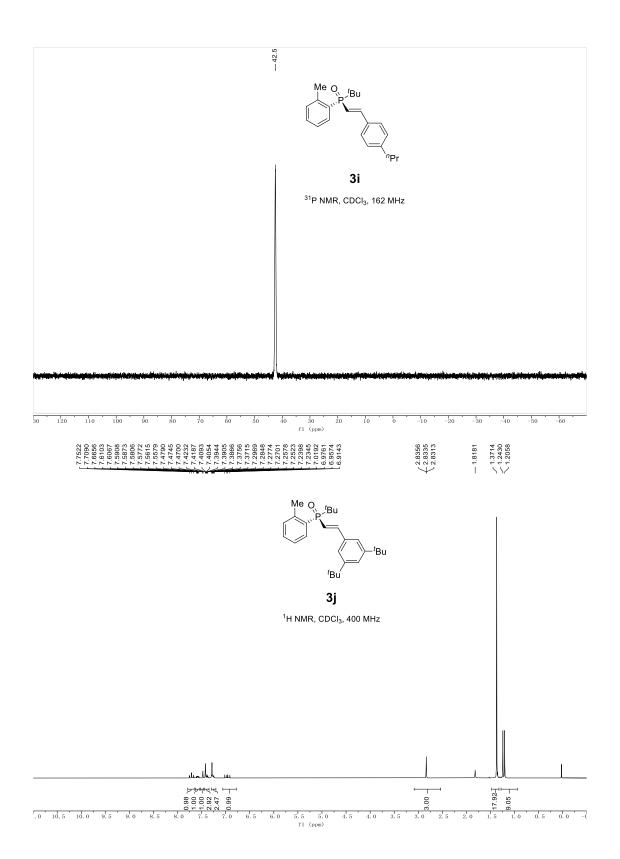


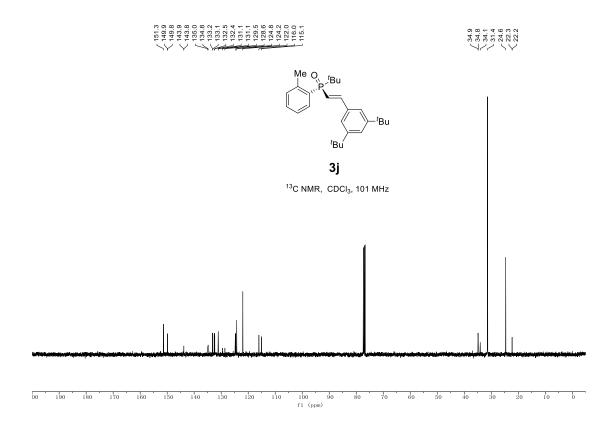


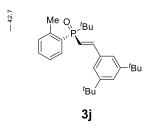




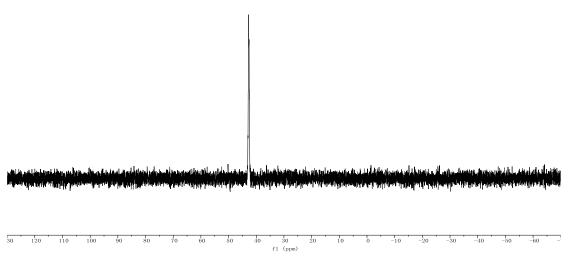


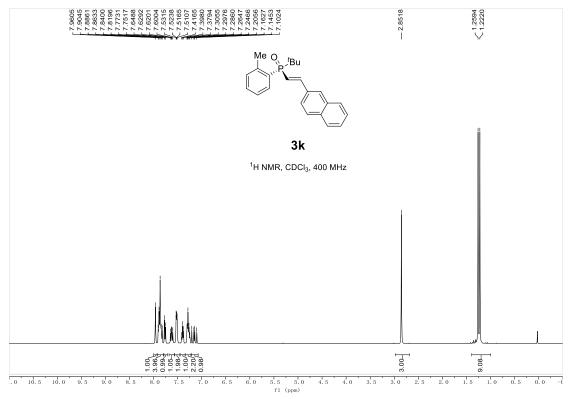


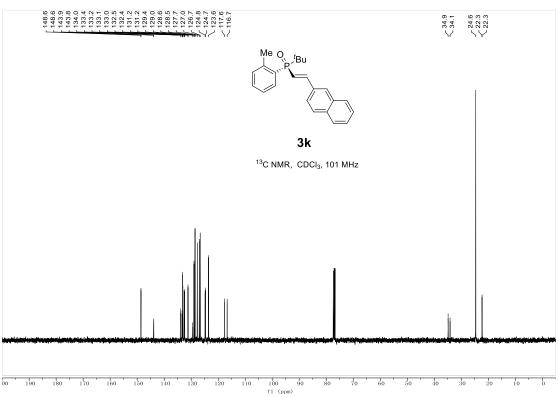


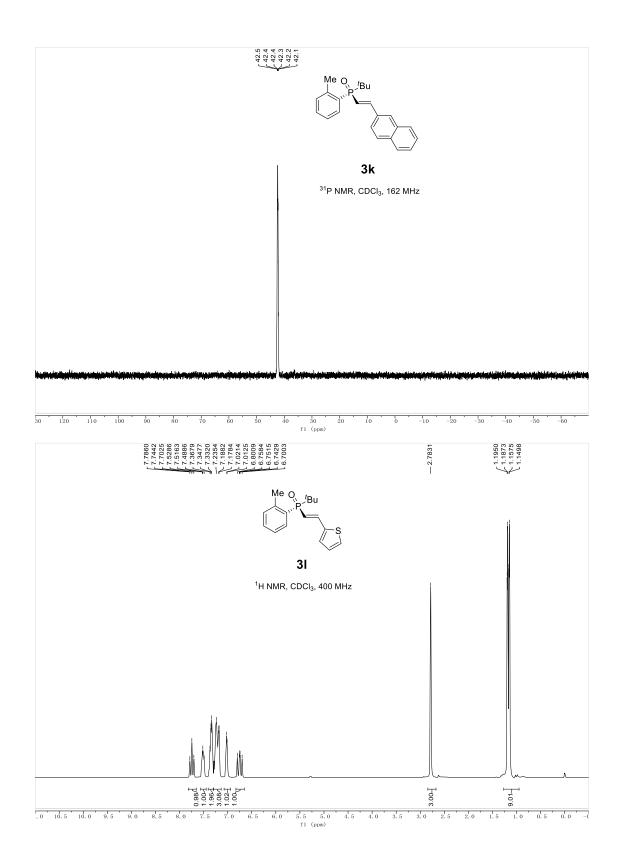


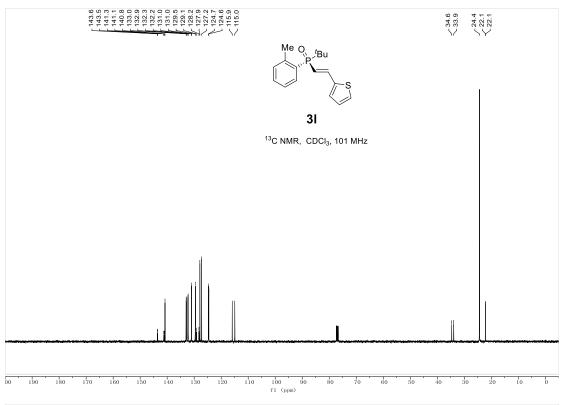


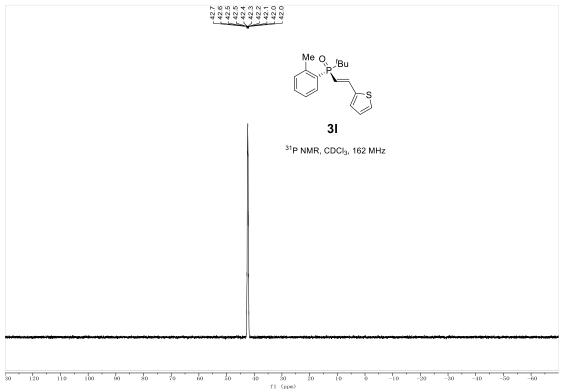


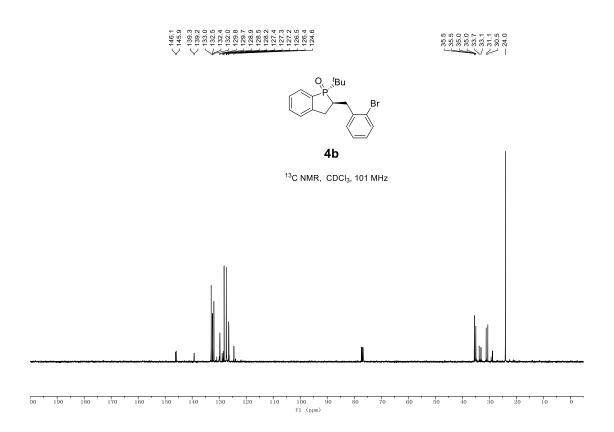


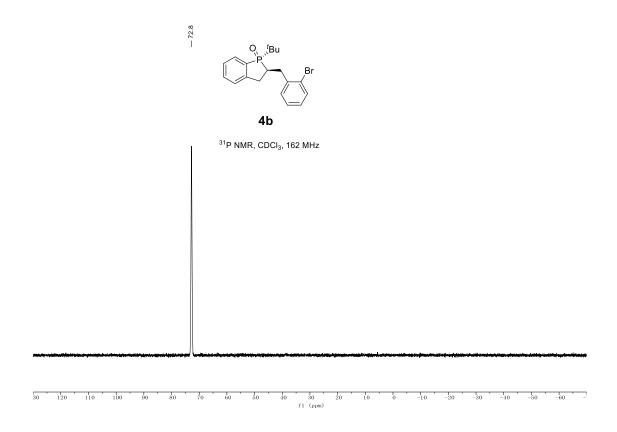


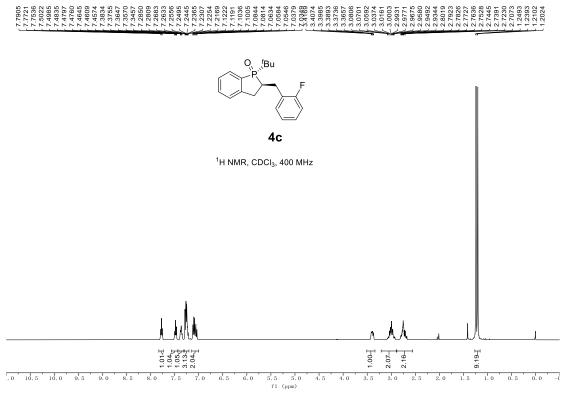


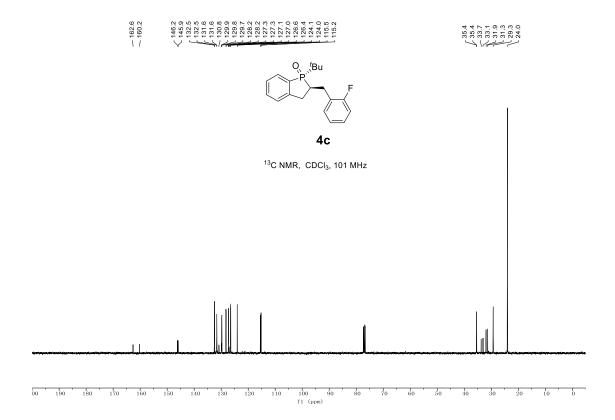


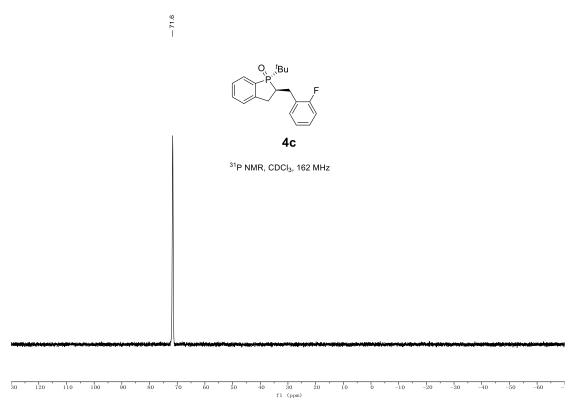


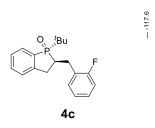


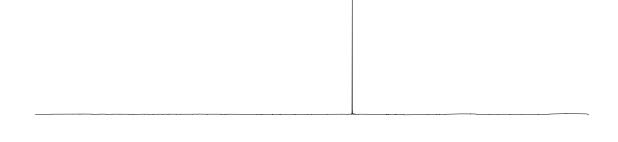


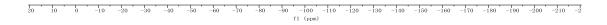


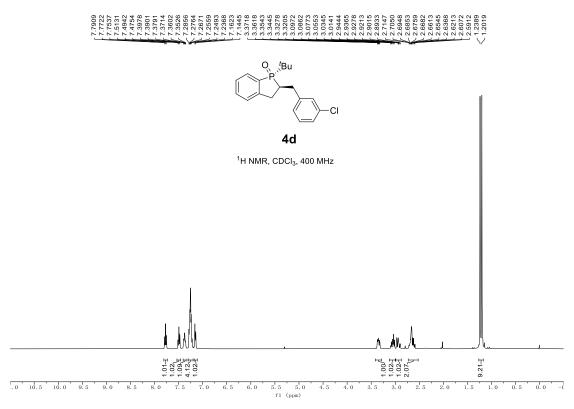

. 0 10.5 10.0 9.5

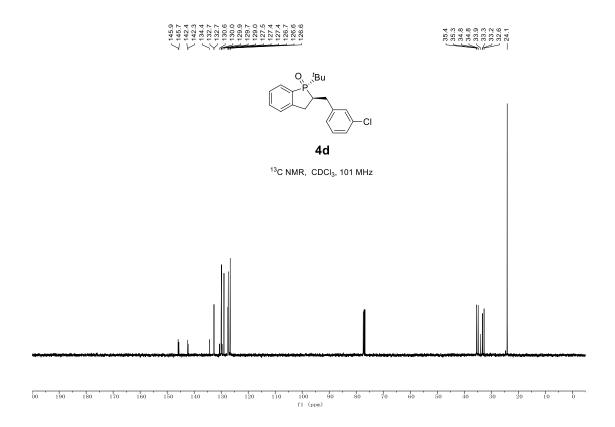

9. 0

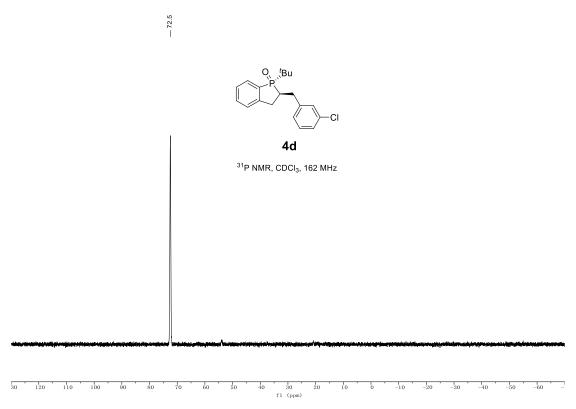


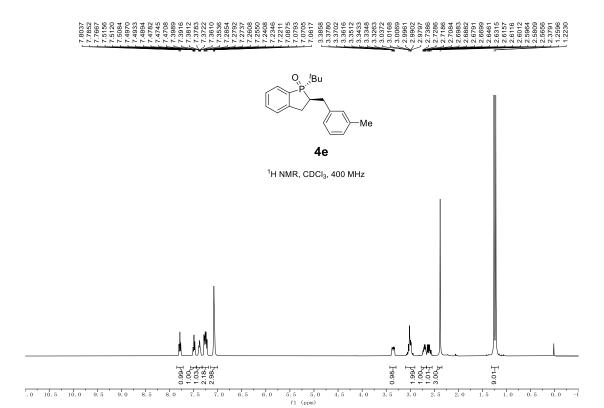


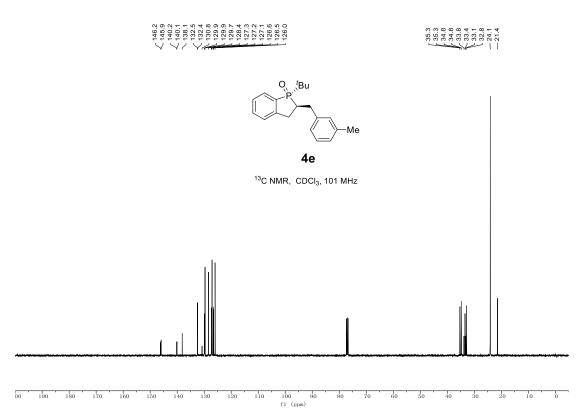


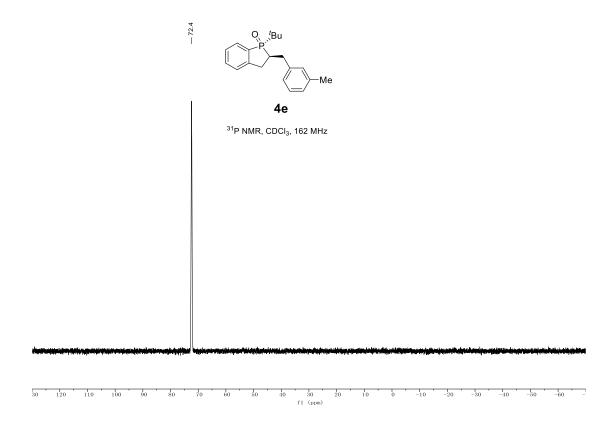


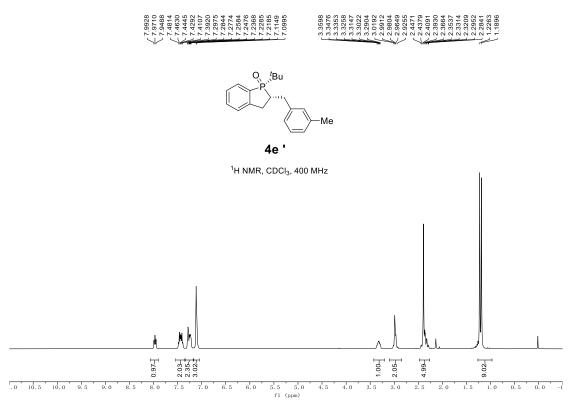


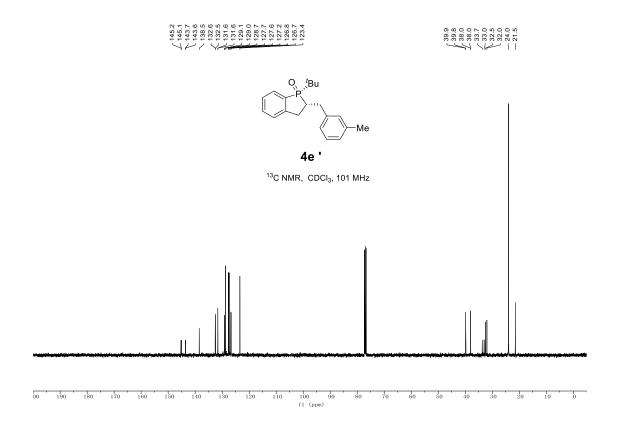

 $^{19}\mathrm{F}\ \mathrm{NMR},\ \mathrm{CDCl}_3,\ 377\ \mathrm{MHz}$

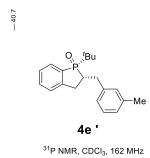


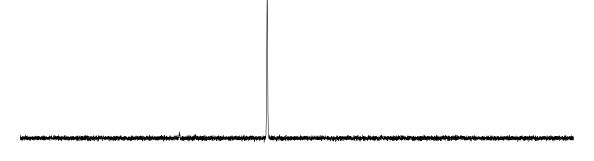


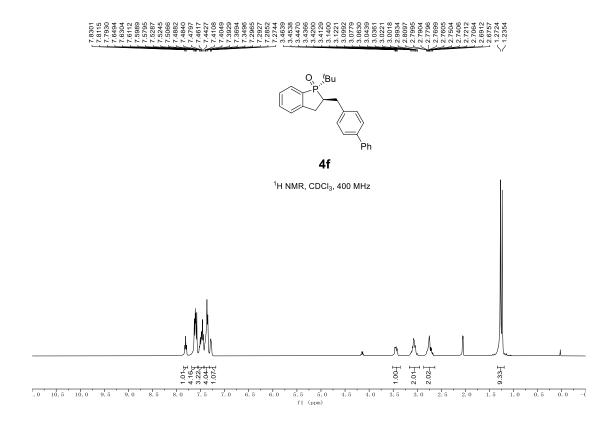


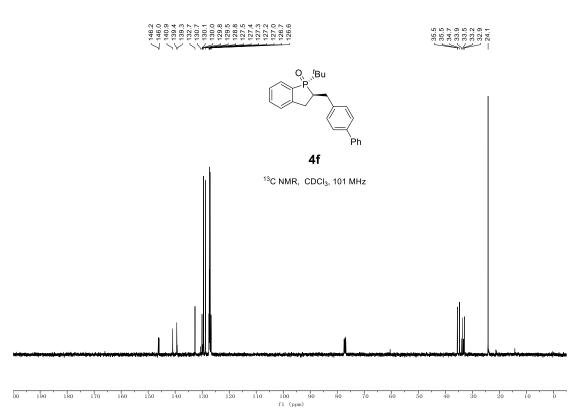


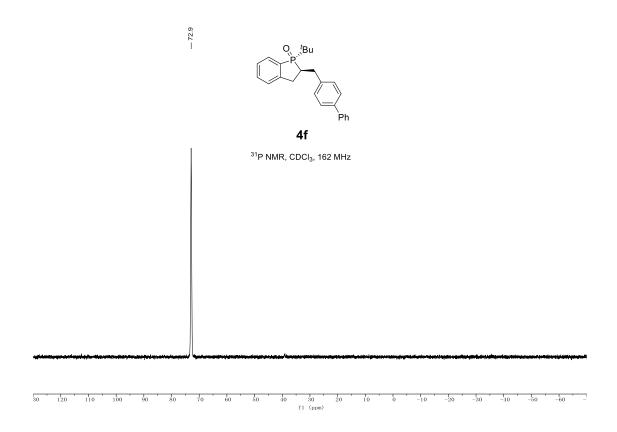


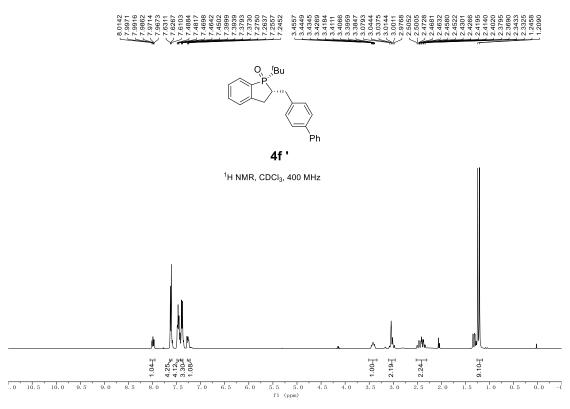


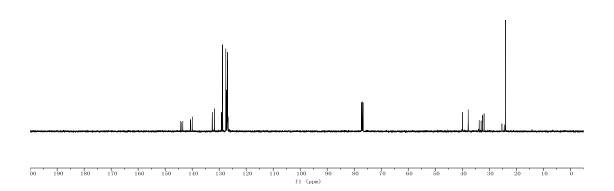






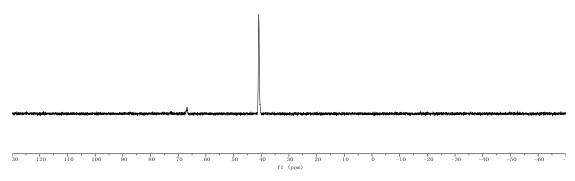


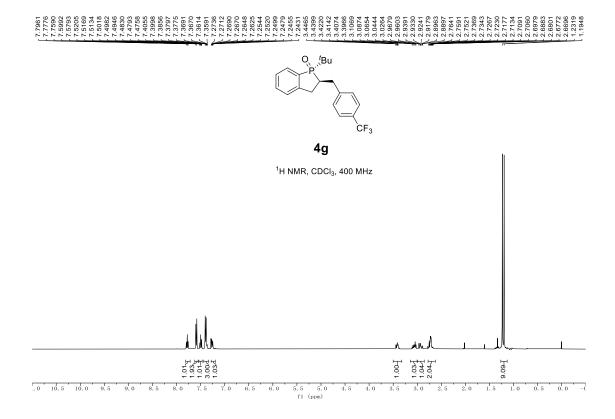


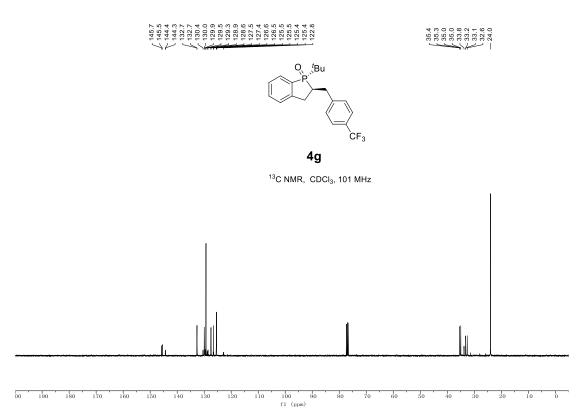


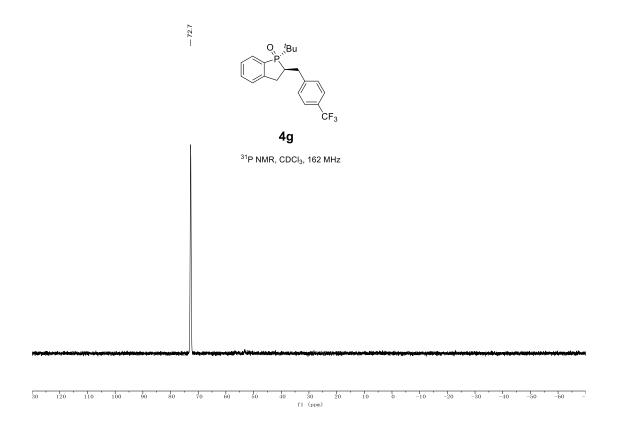
144.1 144.1 143.5 130.6 132.6 132.6 132.6 132.6 126.7 127.0 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9 126.9

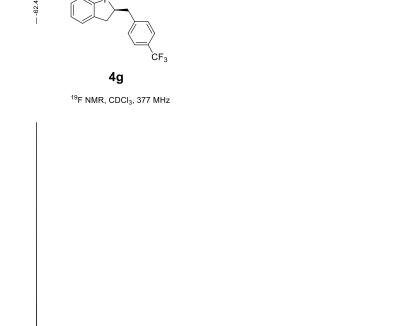
39.9 37.8 37.8 33.7 33.0 33.0 25.3 25.3 24.4

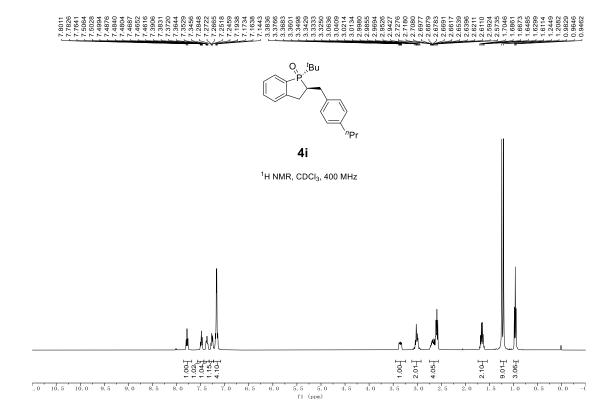

4f '

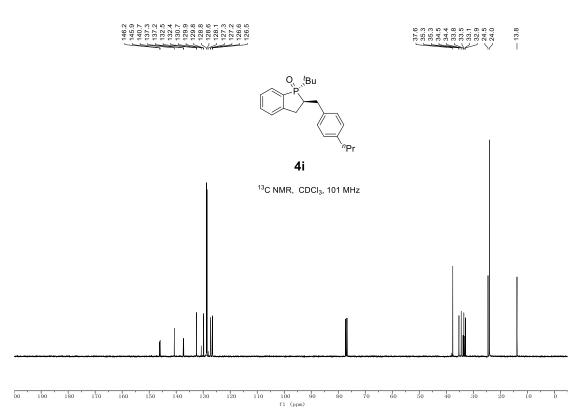

 $^{13}\mathrm{C}\ \mathrm{NMR},\ \mathrm{CDCI_{3}},\ 101\ \mathrm{MHz}$

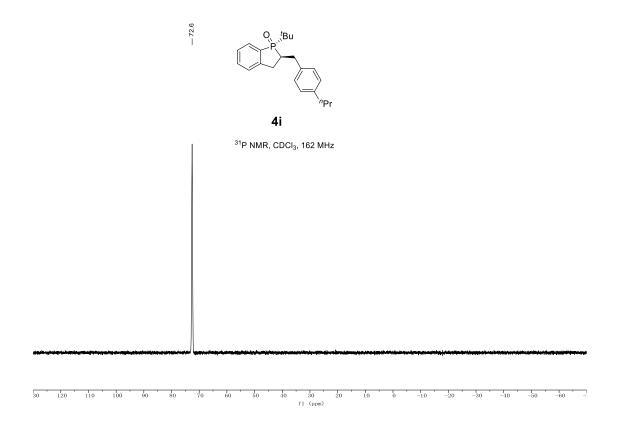


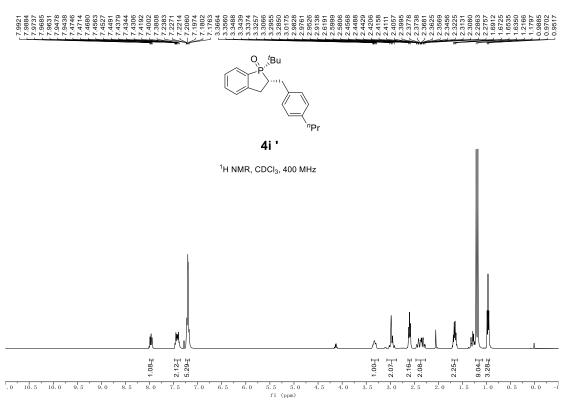

41.0 40.9 40.8 40.8

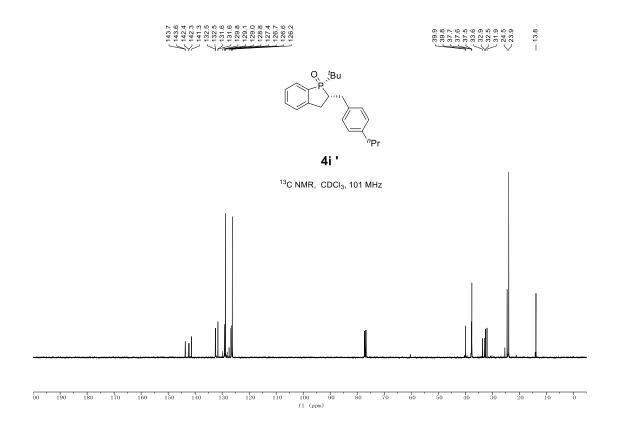

 $\mbox{\bf 4f}$ $\mbox{\bf '}$ $\mbox{\footnotemark{31}P}$ NMR, CDCl3, 162 MHz

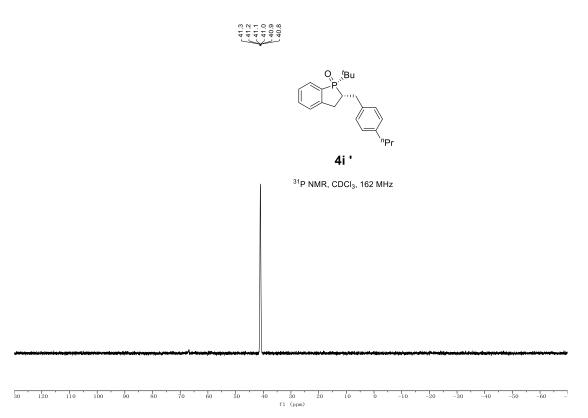


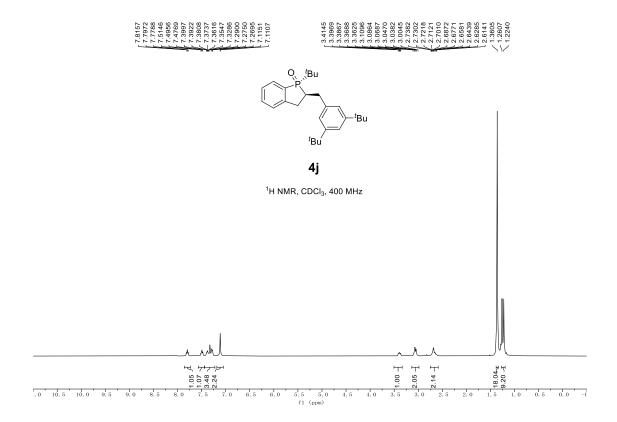


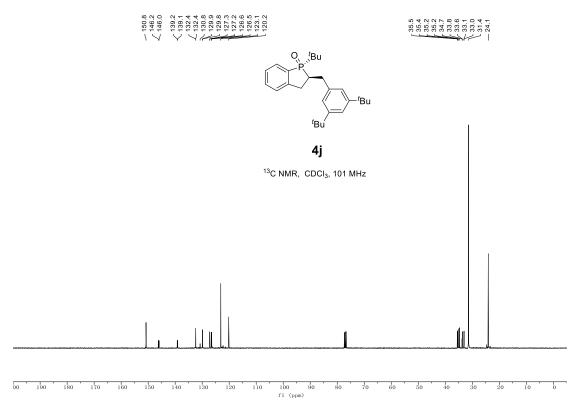


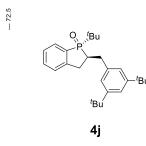


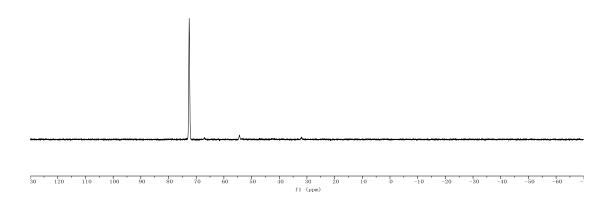

-100 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 r1 (ppm)

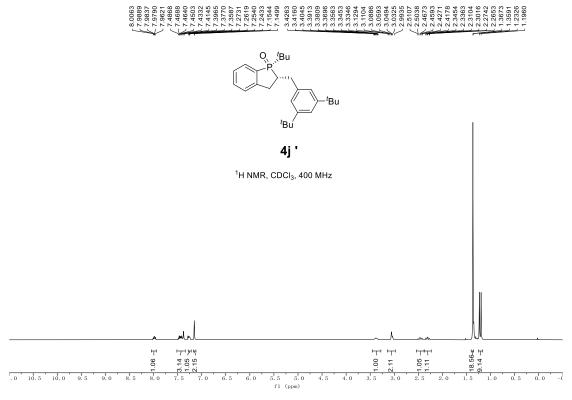


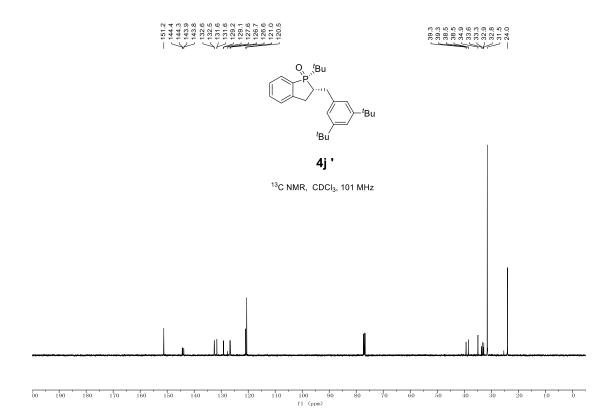


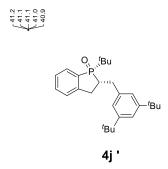


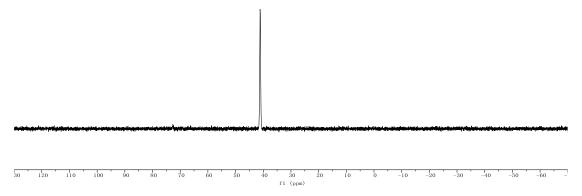


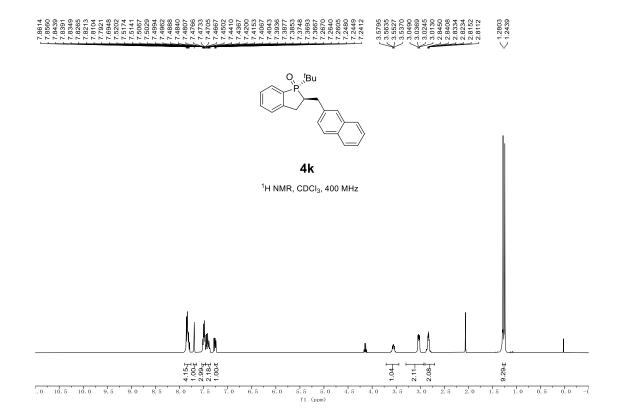


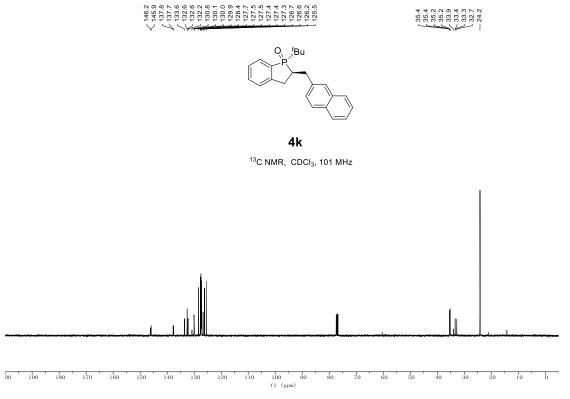


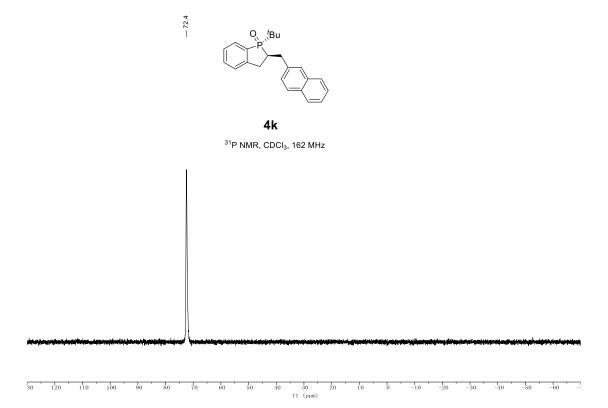


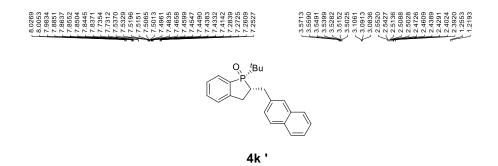


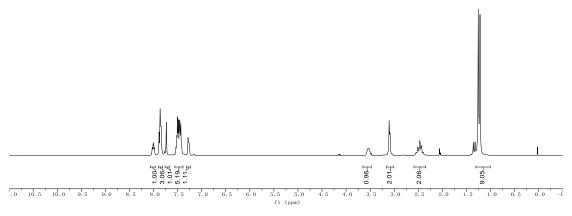




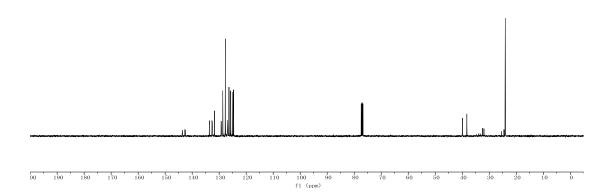




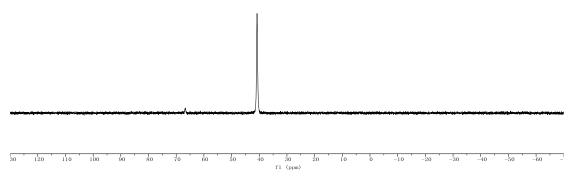


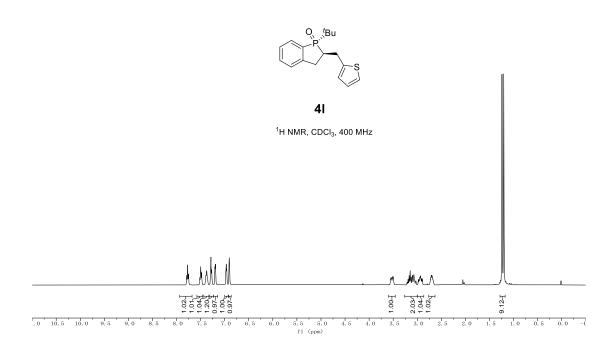


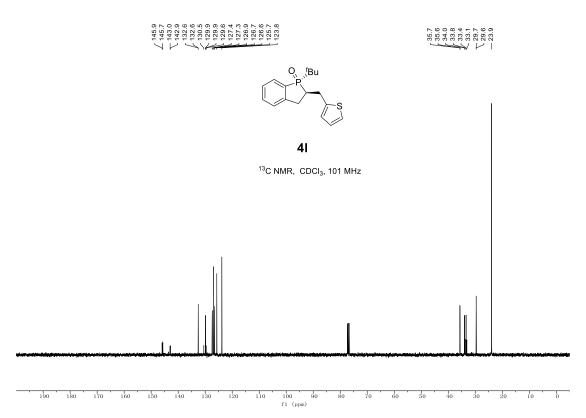
 $^{1}\mathrm{H}\ \mathrm{NMR},\ \mathrm{CDCI_{3}},\ 400\ \mathrm{MHz}$

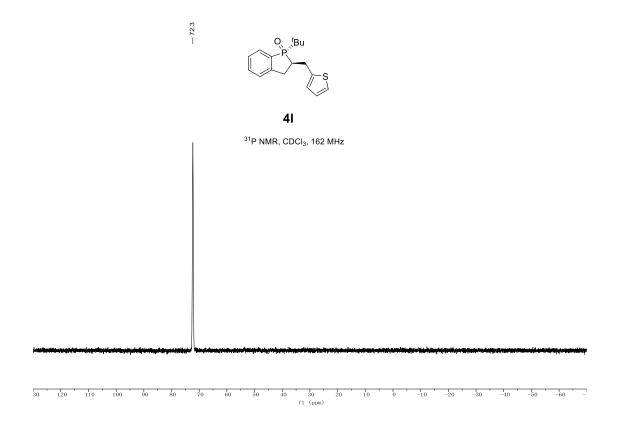


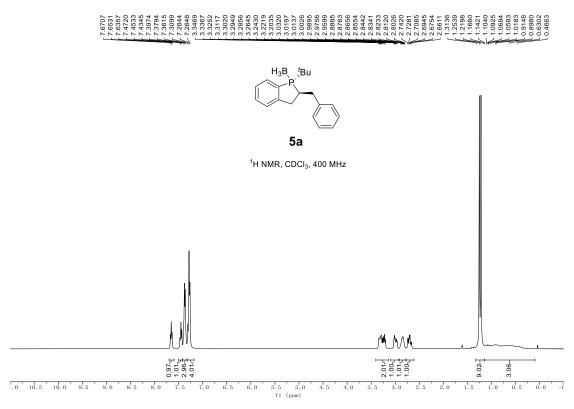
40.0 39.9 33.8 33.8 33.2 32.5 25.4 25.4 24.5

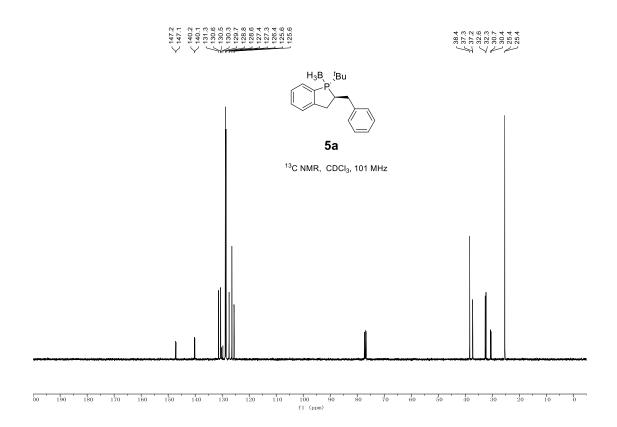

4k '

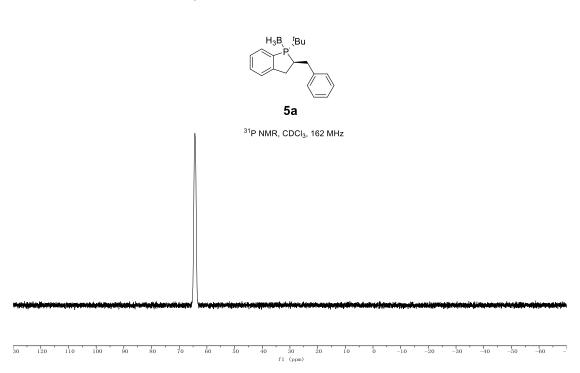

 $^{13}\mathrm{C}\ \mathrm{NMR},\ \mathrm{CDCI_{3}},\ 101\ \mathrm{MHz}$

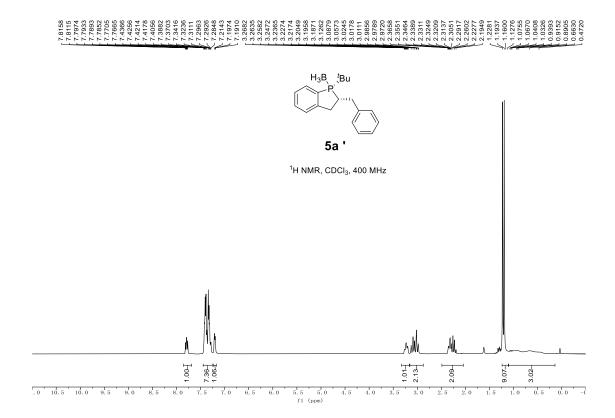


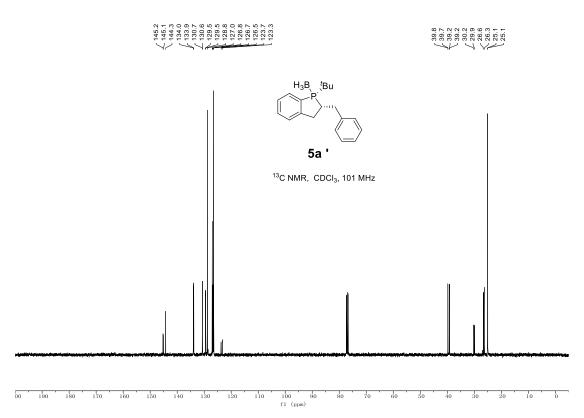

O (Bn

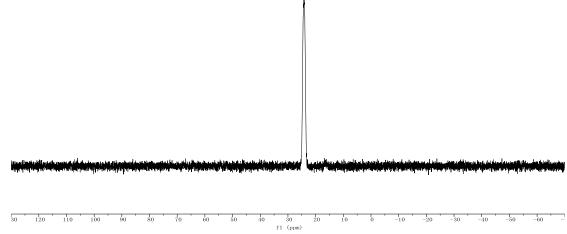

4k '

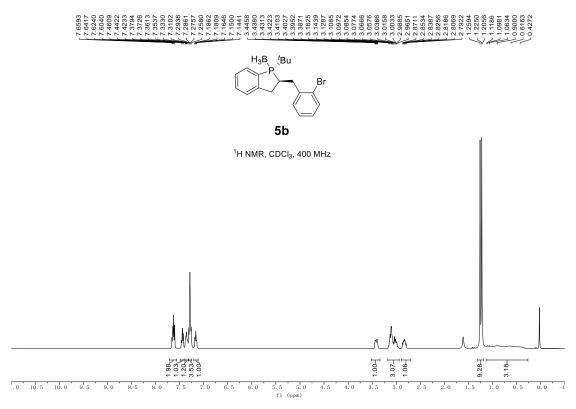


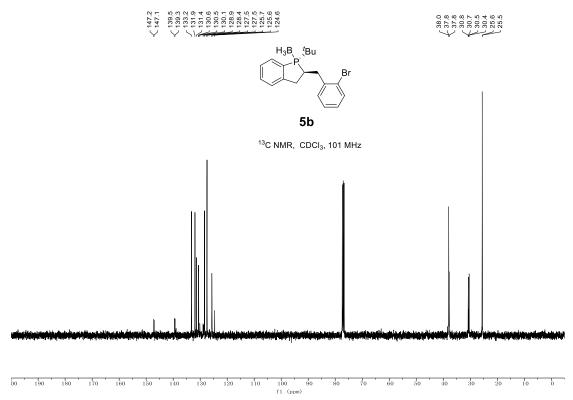


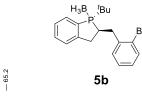


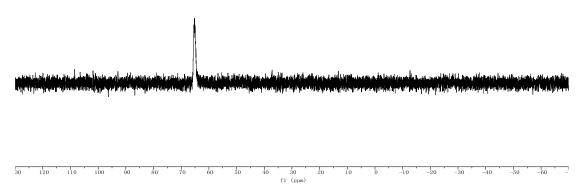


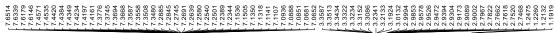


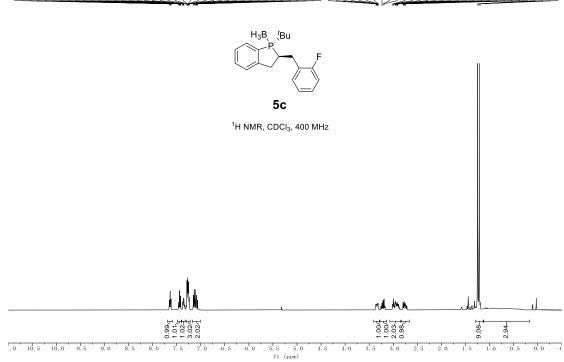


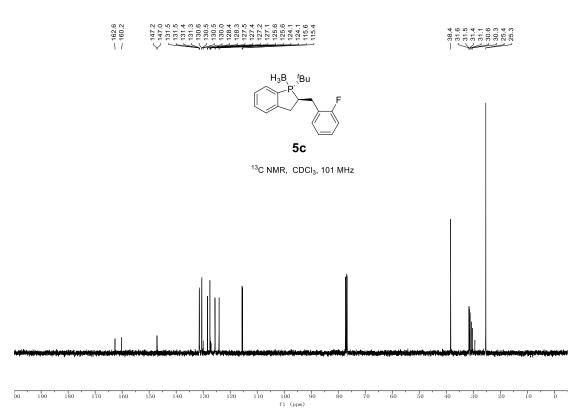


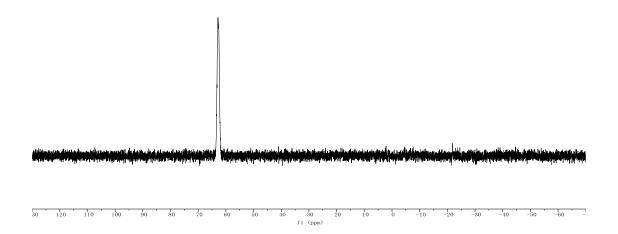


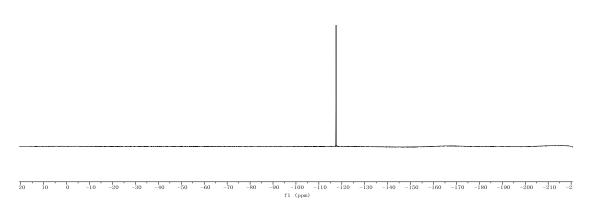


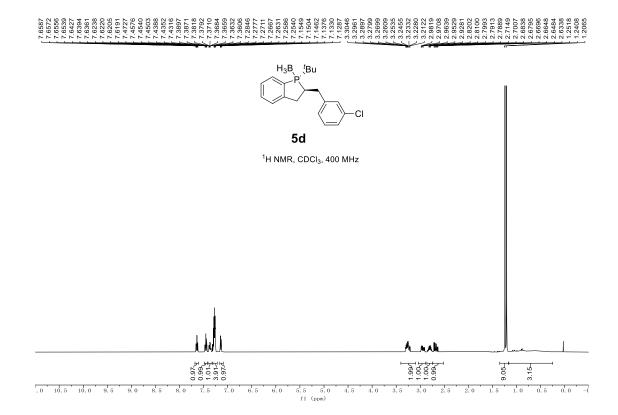


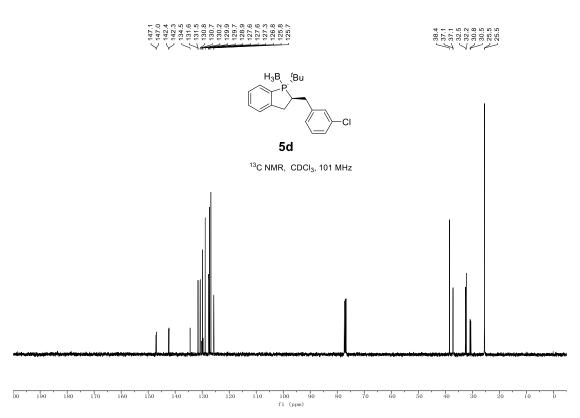


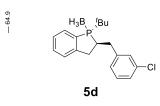


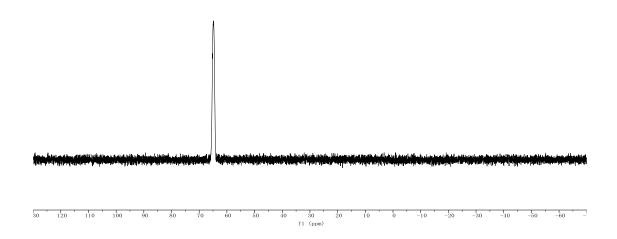


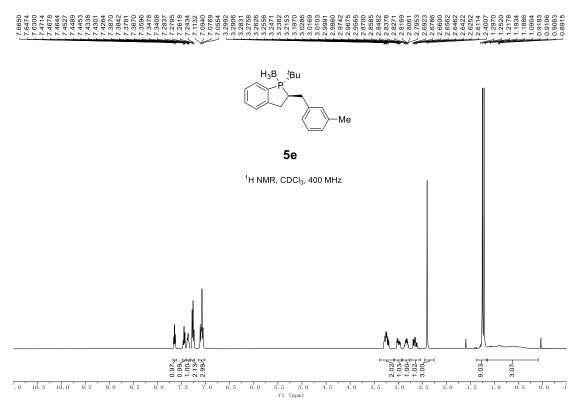


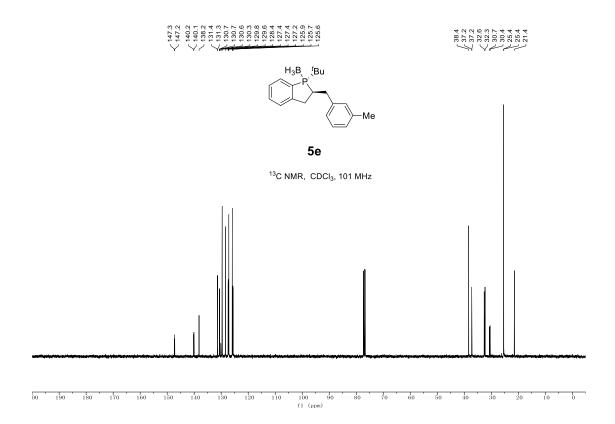


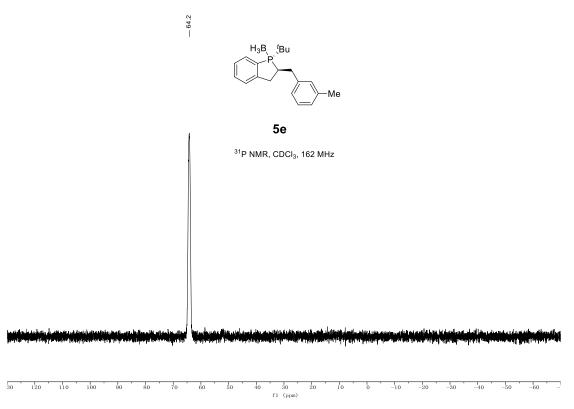


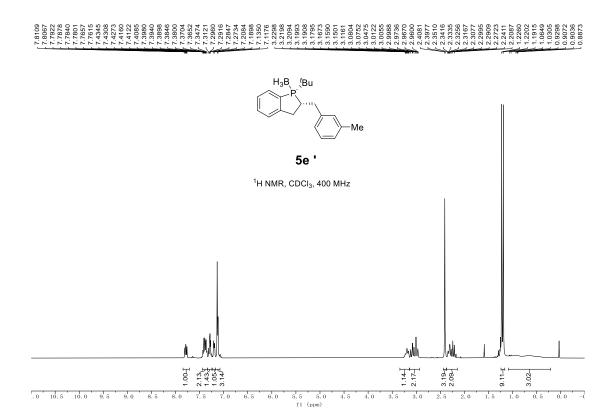

H₃B, (Bu

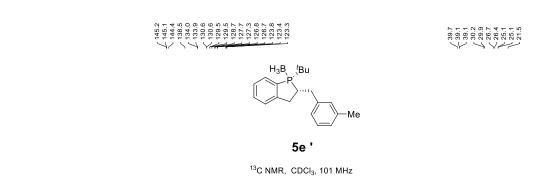

 $^{19}\mathrm{F}\ \mathrm{NMR},\ \mathrm{CDCI}_{3},\ 377\ \mathrm{MHz}$

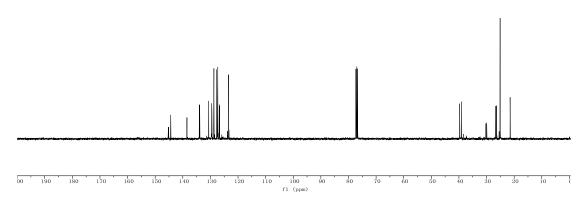


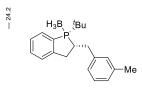


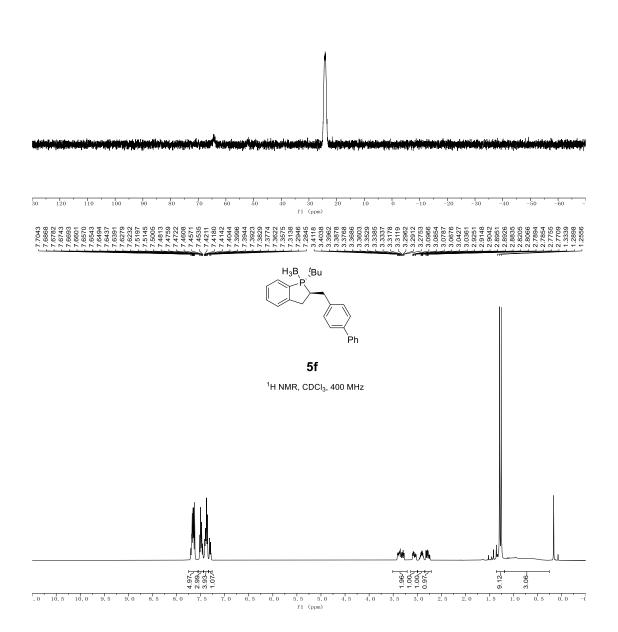


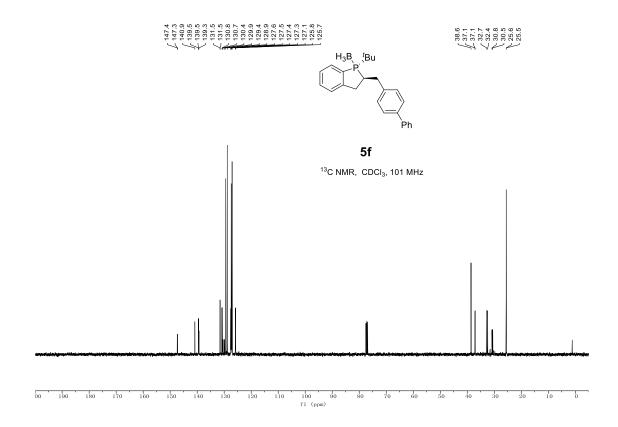


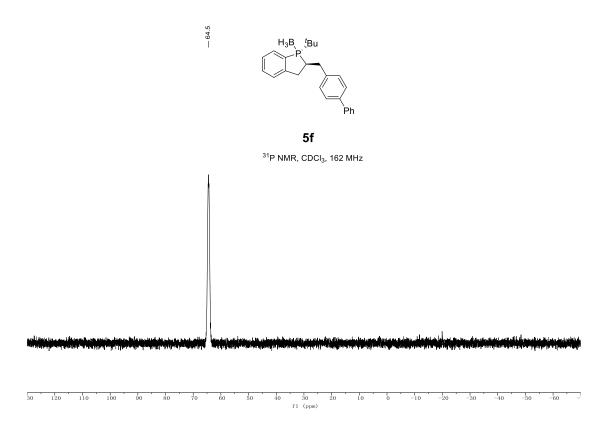


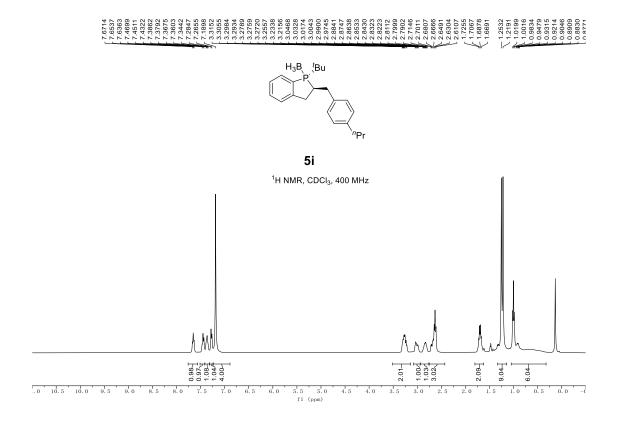


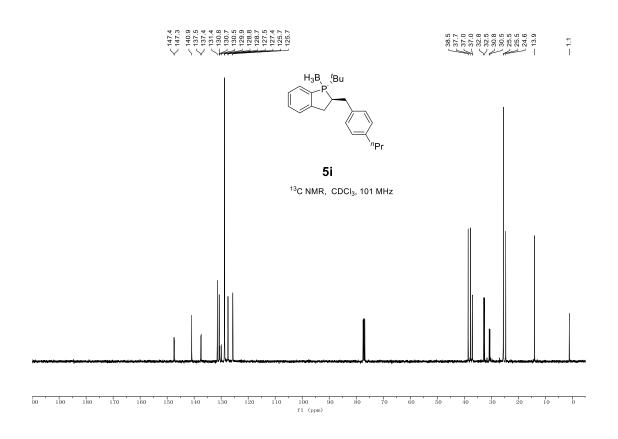


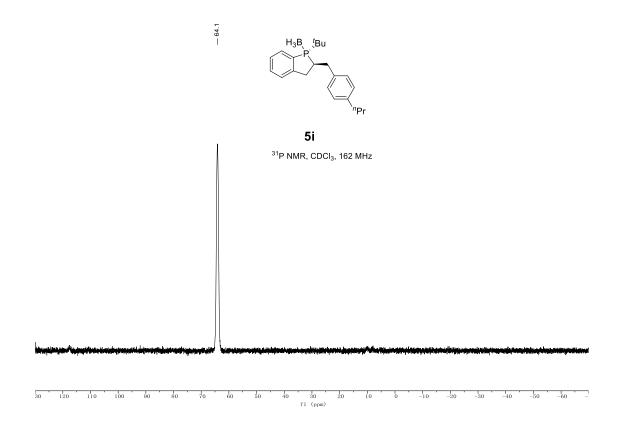


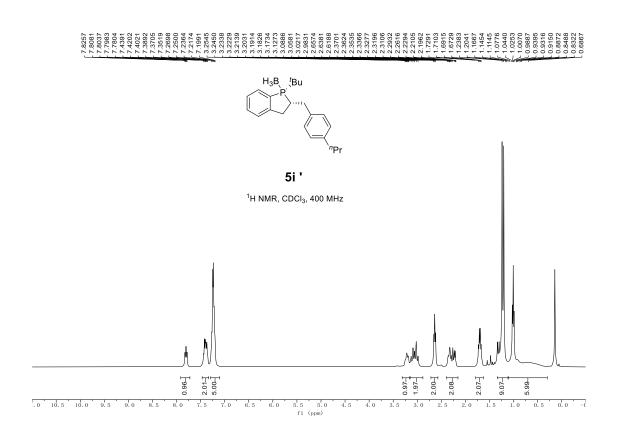


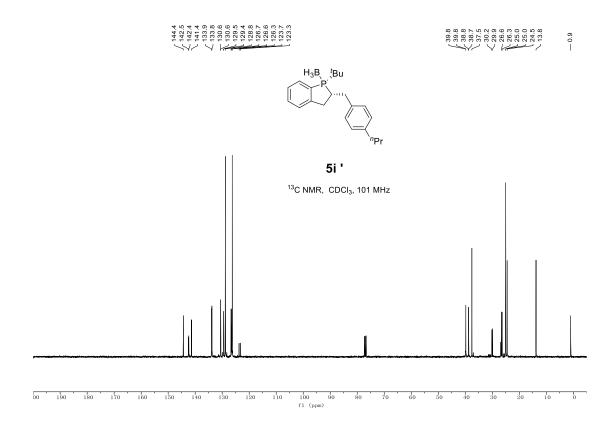


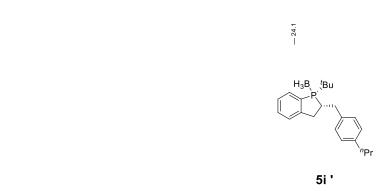


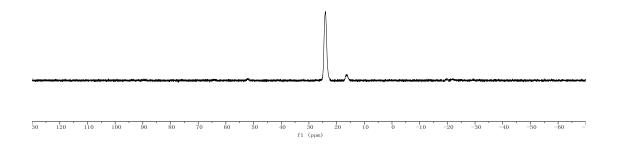

5e '

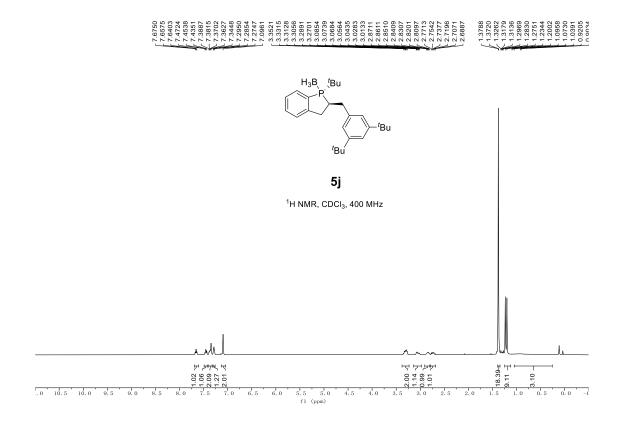


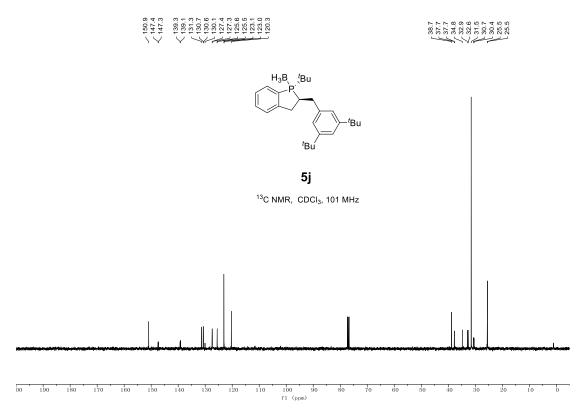


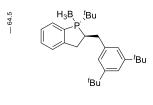


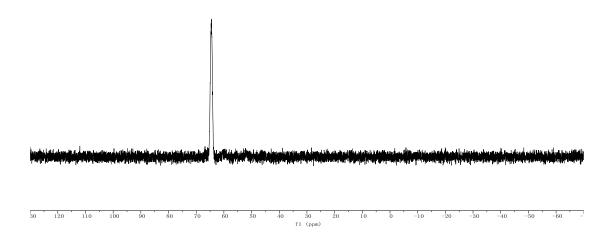


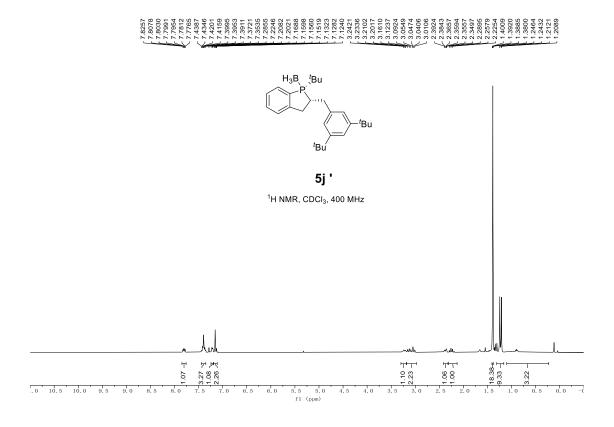


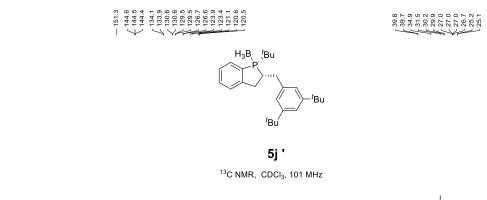


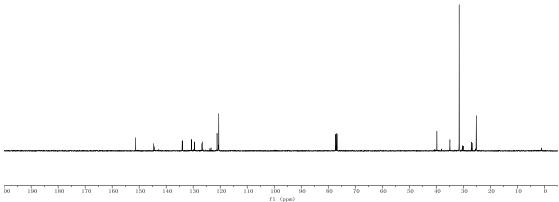


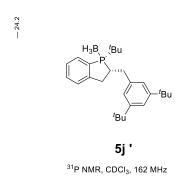


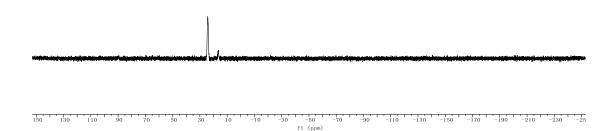


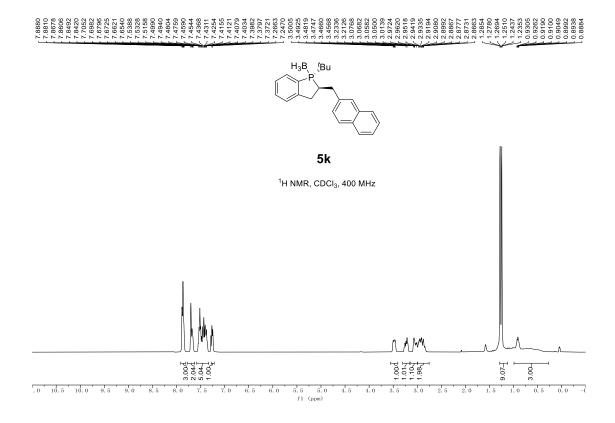


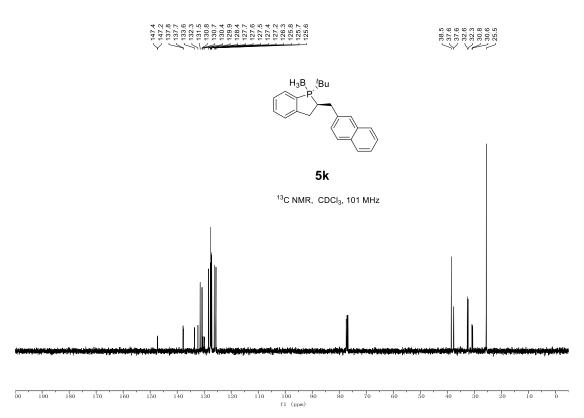


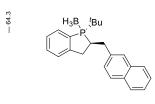


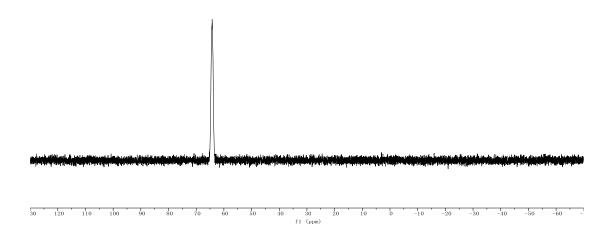

5j

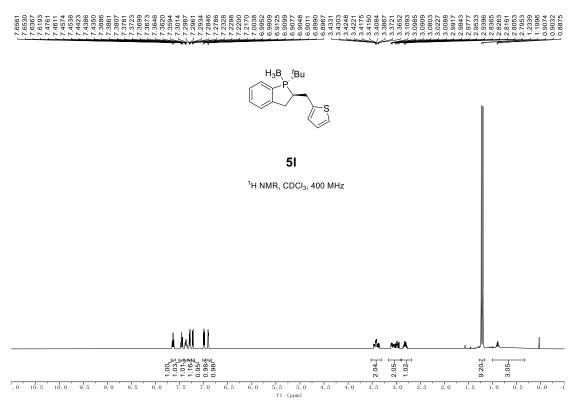


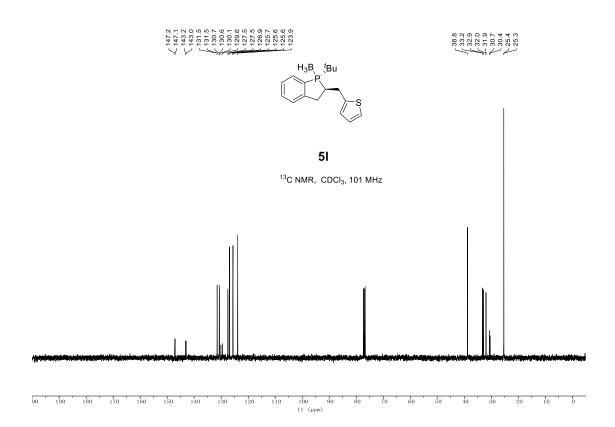


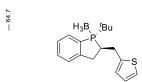




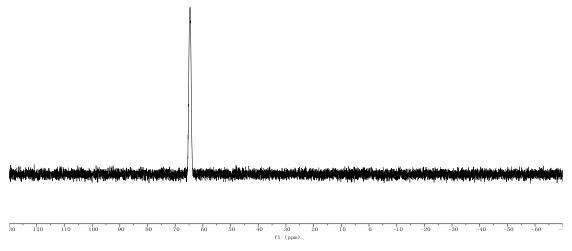


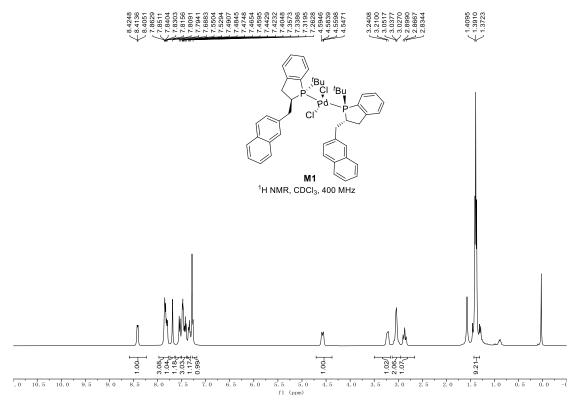


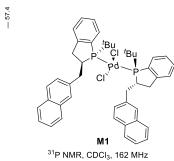


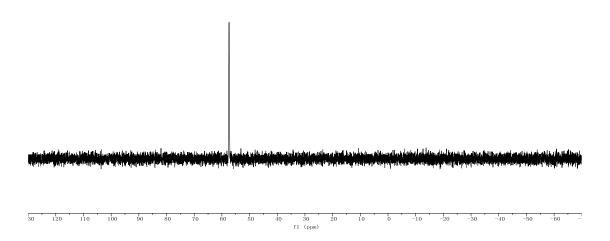


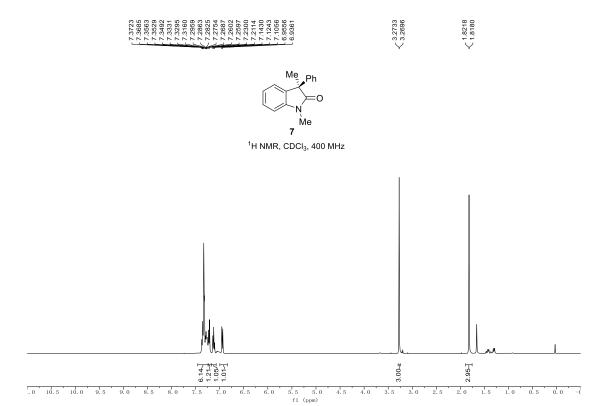
5k










51

