Electronic Supplementary Information for

Chiral dihydroxytetraphenylene-catalyzed enantioselective conjugate

addition of boronic acids to β -enaminones

En-Ze Yao, Guo-Li Chai,* Ping Zhang, Bo Zhu, Junbiao Chang*

NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007,China

E-mail: guolichai@126.com; changjunbiao@zzu.edu.cn

Contents:

1. General information	S2
2. Preparation of starting materials	S2
3. General procedures for the preparation of racemic products	S10
4. General procedures for the enantioselective conjugate addition of boroni	c acids to
β -aminoenones	S10
5. Large-scale reaction and synthetic transformations of products	S28
6. References	S33
7. X-ray crystallography data	S33
8. Copies of ¹ H, ¹³ C, and ¹⁹ F NMR spectra	S35
9. HPLC traces of optically active compounds	S95

1. General information

All reactions were carried out under an atmosphere of nitrogen using standard Schlenk techniques. All solvents and reagents were obtained from commercial sources and purified according to established procedures before use. Flash chromatography (FC) was carried out using silica gel (300-400 mesh). HPLC analysis was performed on a Dionex UltiMate 3000, ThermoScientific. Chiral HPLC data for the products could be obtained using a Chiralcel OD-H, Chiralpak IG column. These chiral columns were purchased from Daicel Chemical Industries Ltd. Optical rotations were measured on an Insmark polarimeter (IP-digi 300). ¹H NMR spectra were measured on a 400 MHz (Bruker, AVANCE NEO) or a 600 MHz spectrometer (Bruker, AVANCE III HD). Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃, δ = 7.26). Data are presented as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, brs = broad singlet), coupling constants in hertz (Hz), integration. ¹³C NMR spectra were measured at 100 MHz (Bruker, AVANCE NEO) or 150 MHz (Bruker, AVANCE III HD). Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃, $\delta = 77.16$). High-resolution mass spectra (HRMS) were recorded with a Bruker (Compact) mass spectrometer. All melting points were determined using a digital melting point apparatus (Shanghai INESA Physico-Optical Instrument Co., Ltd. SGW® X-4B) and were uncorrected. TLC was performed on glass-backed silica gel plate. Chiral ligand (S)-2,15-dichlorotetraphenylene-1,16-diol L1 [(*S*)-2,15-Cl₂-DHTP], (S)-2,15-dibromotetraphenylene-1,16-diol L2 (*S*)-1,16-dihydroxytetraphenylene **L3** [(*S*)-DHTP], $[(S)-2,15-Br_2-DHTP],$ and (S,S)-1,8,9,16-tetrahydroxytetraphenylene L4 [(S,S)-THTP] were prepared according to the procedure previously reported.¹ (R)-BINOL L5, (R)-3,3'-Br₂-BINOL L7, (R)-3,3'-I₂-BINOL L8, (R)-3,3'-Me₂-BINOL L9, (R)-3,3'-Ph₂-BINOL L10, and L11 bearing two 3,5-bis(trifluoromethyl)phenyl groups were purchased from Daicel Chemical Industries Ltd. (R)-3,3'-Cl₂-BINOL L6 was prepared according to those reported in the literature.²

2. Preparation of starting materials

N-Phthaloyl- β -enaminone **1a-1t** were synthesized according to the literature procedures.³

Substrates **1a**, **1e**, **1f**, **1p**, and **1s** are known compounds.^{3b} The spectral data were consistent with the literature.^{3b} The ¹H NMR, ¹³C{¹H} NMR, ¹⁹F{¹H} NMR, HRMS spectra and the corresponding characterization data of starting materials **1b-1d**, **1g-1o**, **1q-1r**, and **1t** not reported previously are provided.

Compound **1u-1w** were prepared according to the literature procedures.³ Compound **1x** was prepared as described in the literature.^{4a} Substrates **1w**^{4b} and **1x**^{4a} are known compounds, and all spectral data match literature reports. The ¹H NMR, ¹³C{¹H} NMR, HRMS spectra and the corresponding characterization data of starting materials **1u** and **1v** not reported previously are provided.

Characterization Data for β-Aminoenones

(E)-2-(3-oxo-3-(p-tolyl)prop-1-en-1-yl)isoindoline-1,3-dione (1b)

Yellow solid; mp 132-133 °C;

¹H NMR (600 MHz, CDCl₃) δ 8.16-8.08 (m, 2H), 7.98-7.95 (m, 4H), 7.84-7.83 (m, 2H), 7.31-7.30 (m, 2H), 2.44 (s, 3H);

¹³C {¹H} NMR (100 MHz, CDCl₃) δ 189.9, 165.9, 144.0, 135.5, 135.4, 131.6, 131.0, 129.5, 128.8, 124.4, 111.9, 21.8;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{18}H_{13}NO_3Na$ 314.0788; Found 314.0784.

(E)-2-(3-oxo-3-(m-tolyl)prop-1-en-1-yl)isoindoline-1,3-dione (1c)

Yellow solid; mp 149-150 ℃;

¹H NMR (600 MHz, CDCl₃) δ 8.12-8.04 (m, 2H), 7.95-7.94 (m, 2H), 7.84-7.80 (m, 4H), 7.38-7.36 (m, 2H), 2.43 (s, 3H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 190.3, 165.8, 138.5, 138.0, 135.3, 133.9, 131.5, 131.1, 129.0, 128.6, 125.8, 124.3, 111.8, 21.5;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{18}H_{13}NO_3Na$ 314.0788; Found 314.0786.

(E)-2-(3-oxo-3-(o-tolyl)prop-1-en-1-yl)isoindoline-1,3-dione (1d)

Yellow solid; mp 131-132 $^{\circ}$ C;

¹H NMR (400 MHz, CDCl₃) δ 7.97-7.93 (m, 2H), 7.88-7.75 (m, 4H), 7.58-7.55 (m, 1H), 7.41-7.37 (m, 1H), 7.30-7.26 (m, 2H), 2.49 (s, 3H);

¹³C {¹H} NMR (100 MHz, CDCl₃) δ 195.5, 165.7, 138.8, 137.6, 135.4, 131.72, 131.66, 131.6, 131.1, 128.6, 125.8, 124.4, 116.3, 20.7;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{18}H_{13}NO_3Na$ 314.0788; Found 314.0788.

(E)-2-(3-(4-chlorophenyl)-3-oxoprop-1-en-1-yl)isoindoline-1,3-dione (1g)

Yellow solid; mp 167-168 ℃;

¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 2H), 8.00-7.97 (m, 4H), 7.86-7.84 (m, 2H), 7.49-7.47 (m, 2H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 189.0, 165.8, 139.6, 136.4, 135.5, 131.7, 131.6, 130.0, 129.1, 124.5, 111.2;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{17}H_{10}NO_3ClNa$ 334.0241; Found 334.0241.

(E)-2-(3-(4-bromophenyl)-3-oxoprop-1-en-1-yl)isoindoline-1,3-dione (1h)

Yellow solid; mp 176-177 ℃;

¹H NMR (600 MHz, CDCl₃) δ 8.13-8.08 (m, 2H), 7.99-7.97 (m, 2H), 7.91-7.90 (m, 2H), 7.85-7.84 (m, 2H), 7.65-7.64 (m, 2H);

¹³C {¹H} NMR (100 MHz, CDCl₃) δ 189.2, 165.8, 136.8, 135.5, 132.1, 131.8, 131.6, 130.1, 128.3, 124.5, 111.1;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{17}H_{10}NO_3BrNa$ 377.9736; Found 377.9737.

(E)-2-(3-(3-bromophenyl)-3-oxoprop-1-en-1-yl)isoindoline-1,3-dione (1i)

Colorless solid; mp 160-161 ℃;

¹H NMR (600 MHz, CDCl₃) δ 8.15 (s, 1H), 8.12-8.06 (m, 2H), 7.99-7.94 (m, 3H), 7.85-7.84 (m, 2H), 7.71 (d, *J* = 7.8 Hz, 1H), 7.39 (t, *J* = 7.8 Hz, 1H);

¹³C {¹H} NMR (100 MHz, CDCl₃) δ 188.9, 165.7, 139.8, 136.0, 135.5, 132.0, 131.6, 130.4, 127.1, 124.5, 123.2, 111.1;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{17}H_{10}NO_3BrNa$ 377.9736; Found 377.9738.

(E)-2-(3-(2-bromophenyl)-3-oxoprop-1-en-1-yl)isoindoline-1,3-dione (1j)

Colorless solid; mp 152-153 ℃;

¹H NMR (600 MHz, CDCl₃) δ 7.97-7.95 (m, 2H), 7.84-7.79 (m, 3H), 7.73-7.70 (m, 1H), 7.66-7.64 (m, 1H), 7.47-7.40 (m, 2H), 7.36-7.33 (m, 1H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 194.3, 165.5, 140.9, 135.5, 133.8, 132.5, 131.8, 131.6, 129.4, 127.6, 124.5, 119.7, 116.0;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{17}H_{10}NO_3BrNa$ 377.9736; Found 377.9736.

(*E*)-2-(3-oxo-3-(4-(trifluoromethyl)phenyl)prop-1-en-1-yl)isoindoline-1,3-dione (1k)

Yellow solid; mp 194-195 °C;

¹H NMR (600 MHz, CDCl₃) δ 8.16-8.11 (m, 4H), 8.00-7.99 (m, 2H), 7.86-7.85 (m, 2H), 7.78-7.77 (m, 2H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 189.4, 165.7, 140.8, 135.6, 134.4 (q, J = 33.0 Hz), 132.2, 131.6, 128.9, 125.8 (q, J = 3.0 Hz), 124.6, 123.8 (q, J = 270.0 Hz), 111.1;

¹⁹F {¹H} NMR (564 MHz, CDCl₃) δ –63.0;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{18}H_{10}NO_3F_3Na$ 368.0505; Found 368.0505.

(E)-2-(3-(4-nitrophenyl)-3-oxoprop-1-en-1-yl)isoindoline-1,3-dione (11)

Yellow solid; mp >250 $^{\circ}$ C;

¹H NMR (600 MHz, CDCl₃) δ 8.36 (d, J = 8.4 Hz, 2H), 8.19-8.15 (m, 4H), 8.01-8.00 (m, 2H), 7.88-7.86 (m, 2H);

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{17}H_{10}N_2O_5Na$ 345.0482; Found

345.0479.

(E)-2-(3-(3,4-dichlorophenyl)-3-oxoprop-1-en-1-yl)isoindoline-1,3-dione (1m)

Yellow solid; mp 212-213 ℃;

¹H NMR (600 MHz, CDCl₃) δ 8.15-8.06 (m, 3H), 8.00-7.99 (m, 2H), 7.87-7.85 (m, 3H), 7.60-7.59 (d, *J* = 8.4 Hz, 1H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 188.0, 165.7, 137.73, 137.66, 135.6, 133.5, 132.3, 131.6, 130.9, 130.6, 127.6, 124.6, 110.7;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{17}H_9NO_3Cl_2Na$ 367.9852; Found 367.9854.

(E)-2-(3-(naphthalen-2-yl)-3-oxoprop-1-en-1-yl)isoindoline-1,3-dione (1n)

Colorless solid; mp 198-199 ℃;

¹H NMR (600 MHz, CDCl₃) δ 8.56 (s, 1H), 8.32 (d, *J* = 14.4 Hz, 1H) 8.17 (d, *J* = 14.4 Hz, 1H), 8.13-8.12 (m, 1H), 8.03-7.98 (m, 3H), 7.94 (d, *J* = 8.4 Hz, 1H), 7.89 (d, *J* = 7.8 Hz, 1H), 7.85-7.84 (m, 2H), 7.63-7.56 (m, 2H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 190.1, 165.9, 135.8, 135.4, 132.7, 131.7, 131.3, 130.3, 129.8, 128.7, 128.6, 128.0, 126.9, 124.5, 111.9;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₁H₁₃NO₃Na 350.0788; Found 350.0784.

(E)-2-(3-(naphthalen-1-yl)-3-oxoprop-1-en-1-yl)isoindoline-1,3-dione (10)

Colorless solid; mp 181-182 ℃;

¹H NMR (600 MHz, CDCl₃) δ 8.46 (d, J = 8.4 Hz, 1H), 8.01-7.89 (m, 6H), 7.85-7.81 (m, 3H), 7.58-7.53 (m, 3H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 194.9, 165.7, 136.7, 135.4, 134.0, 132.3, 131.9, 131.6, 130.6, 128.6, 127.8, 127.7, 126.6, 125.8, 124.6, 124.4, 116.7;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₁H₁₃NO₃Na 350.0788; Found 350.0788.

(E)-2-(3-oxo-3-(thiophen-2-yl)prop-1-en-1-yl)isoindoline-1,3-dione (1q)

Green solid; mp 176-177 ℃;

¹H NMR (600 MHz, CDCl₃) δ 8.12-8.10 (m, 1H), 8.03-8.01 (m, 1H), 7.98-7.97 (m, 2H), 7.87-7.83 (m, 3H), 7.69 (d, *J* = 4.8 Hz, 1H), 7.20-7.18 (m, 1H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 182.5, 165.8, 145.7, 135.4, 134.3, 132.2, 131.7, 130.7, 128.4, 124.5, 111.9;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{15}H_9NO_3SNa$ 306.0195; Found 306.0194.

(E)-2-(3-oxo-3-(thiophen-3-yl)prop-1-en-1-yl)isoindoline-1,3-dione (1r)

Yellow solid; mp 154-155 °C;

¹H NMR (600 MHz, CDCl₃) δ 8.18 (dd, J = 1.2, 3.0 Hz, 1H), 8.09-8.07 (m, 1H), 8.00-7.96 (m, 3H), 7.84-7.82 (m, 2H), 7.67 (dd, J = 1.2, 5.4 Hz, 1H), 7.36 (dd, J = 3.0, 4.8 Hz, 1H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 184.0, 165.8, 143.2, 135.4, 132.5, 131.6, 130.8, 127.5, 126.7, 124.4, 112.7;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₁₅H₉NO₃SNa 306.0195; Found 306.0194.

(E)-2-(3-cyclohexyl-3-oxoprop-1-en-1-yl)isoindoline-1,3-dione (1t)

Colorless solid; mp 120-121 ℃;

¹H NMR (600 MHz, CDCl₃) δ 7.96-7.93 (m, 2H), 7.88 (d, J = 14.4 Hz, 1H), 7.84-7.81 (m, 2H), 7.39 (d, J = 14.4 Hz, 1H), 2.57-2.53 (m, 1H), 1.92-1.90 (m, 2H), 1.84-1.81 (m, 2H), 1.72-1.69 (m, 1H), 1.45-1.20 (m, 5H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 203.3, 165.8, 135.3, 131.6, 129.3, 124.4, 114.4, 50.5, 28.6, 26.0, 25.8;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{17}H_{17}NO_3Na$ 306.1101; Found 306.1101.

(*E*)-1-(3-oxo-3-phenylprop-1-en-1-yl)pyrrolidine-2,5-dione (1u)

Yellow solid; mp 112-113 °C;

¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 14.4 Hz, 1H), 8.02-7.99 (m, 2H), 7.90 (d, *J* = 14.4 Hz, 1H), 7.61-7.57 (m, 1H), 7.52-7.48 (m, 2H), 2.87 (s, 4H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 190.3, 174.8, 137.7, 133.3, 131.0, 128.8, 128.6, 113.5, 27.9;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{13}H_{11}NO_3Na$ 252.0631; Found 252.0632.

(E)-3-(1H-benzo[d]imidazol-1-yl)-1-phenylprop-2-en-1-one (1v)

Colorless solid; mp 196-197 ℃;

¹H NMR (600 MHz, CDCl₃) δ 8.35-8.32 (m, 2H), 8.06-8.04 (m, 2H), 7.87 (d, J = 7.8 Hz, 1H), 7.73 (d, J = 7.8 Hz, 1H), 7.65-7.62 (m, 1H), 7.56-7.54 (m, 2H), 7.48-7.41 (m, 3H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 189.1, 144.8, 141.8, 137.9, 135.8, 133.4, 132.5, 129.0, 128.5, 125.2, 124.7, 121.4, 111.4, 109.1;

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₆H₁₃ON₂ 249.1022; Found 249.1023.

Boronic acids 2a-2c, 2e, and 2h-2o were purchased from commercial suppliers and used without further purification. Boronic acids 2d, 2f, and 2g were prepared according to those reported in the literature.⁵

3. General procedures for the preparation of racemic products

To a 10 mL Schlenk tube equipped with a stirring bar was added 4 Å MS (100 mg), and the tube was flamed-dried under high vacuum. After cooling to r.t., the tube was then backed-filled with nitrogen. Then boronic acid **2a**–**2m** (0.2 mmol, 2.0 equiv), Mg(O'Bu)₂ (0.02 mmol, 20 mol%), (\pm)-BINOL (0.02 mmol, 20 mol %), β -aminoenones **1a**–**1u** (0.1 mmol, 1.0 equiv), and dry toluene (1.0 mL) were successively added to the test tube under N₂. The tube was capped, sealed and allowed to stir at 80 °C in an oil bath for 24 h. After the removal of solvents via rotary evaporation, the residue was purified through flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 8:1–5:1) to give pure racemic adducts **3**.

4. General procedures for the enantioselective conjugate addition of boronic acids to β-aminoenones

To a 10 mL Schlenk tube equipped with a stirring bar was added 4 Å MS (100 mg), and the tube was flamed-dried under high vacuum. After cooling to r.t., the tube was then backed-filled with nitrogen. Then boronic acid **2a–2m** (0.2 mmol, 2 equiv), **Cat 1** (0.01 mmol, 10 mol %), β -aminoenones **1a–1u** (0.1 mmol, 1.0 equiv), and dry toluene (1.0 mL) were successively added to the test tube under N₂. The tube was capped, sealed and allowed to stir at 25 °C for 24–48 h. After the removal of solvents via rotary evaporation, the residue was purified through flash column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate = 8:1–5:1) to give pure adducts **3**.

(R,E)-2-(5-oxo-1,5-diphenylpent-1-en-3-yl)isoindoline-1,3-dione (3aa)⁶

Colorless oil (38.0 mg, 99% yield); HPLC (Daicel Chiralpak IF, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) t_R (minor) = 22.4 min, t_R (major) = 23.6 min, 1.0:99.0 *e.r.*, 98% *ee*; $[\alpha]_D^{26} = -19.0$ (*c* 1.0, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ 7.97-7.95 (m, 2H), 7.84-7.81 (m, 2H), 7.70-7.68 (m, 2H), 7.55-7.53 (m, 1H), 7.46-7.42 (m, 2H), 7.38-7.36 (m, 2H), 7.31-7.27 (m, 2H), 7.25-7.21 (m, 1H), 6.71 (d, J = 16.0 Hz, 1H), 6.59 (dd, J = 8.0, 15.6 Hz, 1H), 5.69-5.63 (m, 1H), 4.14 (dd, J = 8.8, 17.6 Hz, 1H), 3.65 (dd, J = 5.6, 17.6 Hz, 1H);

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₅H₁₉NO₃Na 404.1257; Found 404.1256.

(*R*,*E*)-2-(5-oxo-1-phenyl-5-(*p*-tolyl)pent-1-en-3-yl)isoindoline-1,3-dione (3ba)

Colorless oil (39.3 mg, 99% yield);

HPLC (Daicel Chiralpak IF, hexane/*i*-PrOH = 70:30, flow rate 1.0 mL/min, λ = 254 nm) t_R (minor) = 20.5 min, t_R (major) = 22.1 min, 1.7:98.3 *e.r.*, 97% *ee*; $[\alpha]_D^{29}$ = -14.2 (*c* 2.0, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 7.86-7.81 (m, 4H), 7.69-7.68 (m, 2H), 7.36 (d, *J* = 7.8 Hz, 2H), 7.29-7.21 (m, 5H), 6.70 (d, *J* = 15.6 Hz, 1H), 6.59 (dd, *J* = 7.8, 15.6 Hz, 1H), 5.67-5.64 (m, 1H), 4.10 (dd, *J* = 9.0, 17.4 Hz, 1H), 3.62 (dd, *J* = 5.4, 17.4 Hz, 1H), 2.38 (s, 3H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 196.4, 168.1, 144.3, 136.2, 134.2, 134.1, 133.3, 132.1, 129.5, 128.7, 128.4, 128.1, 126.8, 126.0, 123.4, 49.2, 40.7, 21.8;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₆H₂₁NO₃Na 418.1414; Found 418.1410.

(R,E)-2-(5-oxo-1-phenyl-5-(m-tolyl)pent-1-en-3-yl)isoindoline-1,3-dione (3ca)

Colorless oil (38.4 mg, 97% yield);

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 70:30, flow rate 1.0 mL/min, $\lambda = 254$ nm) t_R (minor) = 7.1 min, t_R (major) = 7.7 min, 1.5:98.5 *e.r.*, 97% *ee*; $[\alpha]_D^{29} = -15.8$ (*c* 1.0, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ 7.83-7.81 (m, 2H), 7.76-7.75 (m, 2H), 7.70-7.68 (m, 2H), 7.38-7.20 (m, 7H), 6.71 (d, *J* = 16.0Hz, 1H), 6.59 (dd, *J* = 8.0, 15.6 Hz, 1H),

5.68-5.63 (m, 1H), 4.12 (dd, J = 8.4, 17.6 Hz, 1H), 3.64 (dd, J = 5.6, 17.6 Hz, 1H), 2.38 (s, 3H);

¹³C {¹H} NMR (100 MHz, CDCl₃) δ 197.0, 168.1, 138.6, 136.7, 136.3, 134.3, 134.1, 133.3, 132.1, 128.8, 128.7, 128.2, 126.8, 126.0, 125.5, 123.4, 49.2, 40.9, 21.5;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₆H₂₁NO₃Na 418.1414; Found 418.1411.

(R,E)-2-(5-oxo-1-phenyl-5-(o-tolyl)pent-1-en-3-yl)isoindoline-1,3-dione (3da)

Colorless oil (39.4 mg, 99% yield);

HPLC (Daicel Chiralpak IC, hexane/*i*-PrOH = 70:30, flow rate 1.0 mL/min, λ = 254 nm) t_R (minor) = 9.1 min, t_R (major) = 10.4 min, 1.0:99.0 *e.r.*, 98% *ee*; $[\alpha]_D^{29}$ = -0.5 (*c* 1.0, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 7.83-7.81 (m, 2H), 7.71-7.68 (m, 3H), 7.37-7.33 (m, 3H), 7.30-7.27 (m, 2H), 7.25-7.19 (m, 3H), 6.69 (d, *J* = 15.6 Hz, 1H), 6.56 (dd, *J* = 7.8, 15.6 Hz, 1H), 5.62-5.59 (m, 1H), 4.05 (dd, *J* = 8.4, 16.8 Hz, 1H), 3.56 (dd, *J* = 6.0, 17.4 Hz, 1H), 2.41 (s, 3H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 200.6, 168.1, 138.6, 137.5, 136.2, 134.1, 133.4, 132.2, 132.1, 131.7, 128.9, 128.7, 128.2, 126.8, 125.90, 125.85, 123.4, 49.5, 43.6, 21.4;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₆H₂₁NO₃Na 418.1414; Found 418.1411.

(R,E)-2-(5-(4-methoxyphenyl)-5-oxo-1-phenylpent-1-en-3-yl)isoindoline-1,3-dione (3ea)⁶

Colorless solid (38.2 mg, 93% yield); mp 102-103 °C;

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 70:30, flow rate 1.0 mL/min, λ = 254 nm) t_R (minor) = 10.2 min, t_R (major) = 15.5 min, 1.3:98.7 *e.r.*, 97% *ee*; $[\alpha]_D^{29} = -23.1$ (*c* 2.0, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 7.95-7.93 (m, 2H), 7.83-7.81 (m, 2H), 7.70-7.67 (m, 2H), 7.38-7.36 (m, 2H), 7.30-7.27 (m, 2H), 7.24-7.21 (m, 1H), 6.92-6.90 (m, 2H),

6.70 (d, *J* = 16.2 Hz, 1H), 6.59 (dd, *J* = 7.8, 15.6 Hz, 1H), 5.67-5.63 (m, 1H), 4.08 (dd, *J* = 8.4, 17.4 Hz, 1H), 3.85 (s, 3H), 3.59 (dd, *J* = 6.0, 17.4 Hz, 1H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 195.2, 168.1, 163.8, 136.2, 134.0, 133.2, 132.1, 130.5, 129.8, 128.6, 128.1, 126.8, 126.1, 123.4, 113.9, 55.6, 49.3, 40.4;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₆H₂₁NO₄Na 434.1363; Found 434.1360.

(R,E)-2-(5-(4-fluorophenyl)-5-oxo-1-phenylpent-1-en-3-yl)isoindoline-1,3-dione (3fa)⁶

Colorless solid (39.7 mg, 99% yield); mp 106-107 °C;

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 70:30, flow rate 1.0 mL/min, λ = 254 nm) t_R (minor) = 7.9 min, t_R (major) = 11.3 min, 1.3:98.7 *e.r.*, 97% *ee*; $[\alpha]_D^{26} = -8.6$ (*c* 2.0, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 8.00-7.98 (m, 2H), 7.83-7.82 (m, 2H), 7.71-7.69 (m, 2H), 7.37 (d, *J* = 7.8 Hz, 2H), 7.30-7.22 (m, 3H), 7.11 (t, *J* = 8.4 Hz, 2H), 6.71 (d, *J* = 16.2 Hz, 1H), 6.58 (dd, *J* = 8.4, 16.2 Hz, 1H), 5.66-5.63 (m, 1H), 4.11 (dd, *J* = 9.0, 18.0 Hz, 1H), 3.61 (dd, *J* = 5.4, 18.0 Hz, 1H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 168.1, 166.0(d, J = 253.5 Hz,), 136.2, 134.2, 135.5, 133.1 (d, J = 3.0 Hz), 132.0, 130.9 (d, J = 10.5 Hz), 128.7, 128.2, 126.8, 125.7, 123.5, 115.9 (d, J = 22.5 Hz), 49.2, 40.8;

¹⁹F {¹H} NMR (564 MHz, CDCl₃) δ –104.6;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{25}H_{18}FNO_3Na$ 422.1163; Found 422.1161.

(*R*,*E*)-2-(5-(4-chlorophenyl)-5-oxo-1-phenylpent-1-en-3-yl)isoindoline-1,3-dione (3ga)

Colorless oil (41.1 mg, 99% yield);

HPLC (Daicel Chiralpak IF, hexane/*i*-PrOH = 70:30, flow rate 1.0 mL/min, λ = 254 nm) t_R (minor) = 18.2 min, t_R (major) = 20.5 min, 1.3:98.7 *e.r.*, 97% *ee*; $[\alpha]_D^{29} = -16.8$ (*c* 2.0, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 7.90 (d, J = 8.4 Hz, 1H), 7.83-7.82 (m, 2H), 7.70-7.69 (m, 2H), 7.42-7.36 (m, 4H), 7.30-7.28 (m, 2H), 7.24-7.22 (m, 1H), 6.70 (d, J = 16.2 Hz, 1H), 6.57 (dd, J = 7.8, 15.6 Hz, 1H), 5.66-5.62 (m, 1H), 4.11 (dd, J = 9.0, 18.0 Hz, 1H), 3.61 (dd, J = 5.4, 17.4 Hz, 1H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 195.6, 168.1, 140.0, 136.1, 135.0, 134.2, 133.5, 132.0, 129.7, 129.2, 128.7, 128.3, 126.8, 125.7, 123.5, 49.1, 40.8;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{25}H_{18}CINO_3Na$ 438.0867; Found 438.0865.

(*R*,*E*)-2-(5-(4-bromophenyl)-5-oxo-1-phenylpent-1-en-3-yl)isoindoline-1,3-dione (3ha)

Colorless solid (45.1 mg, 98% yield); mp 65-66 °C;

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 70:30, flow rate 1.0 mL/min, λ = 254 nm) t_R (minor) = 9.5 min, t_R (major) = 17.2 min, 1.6:98.4 *e.r.*, 97% *ee*; $[\alpha]_D^{28} = -13.7$ (*c* 2.0, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ 7.84-7.80 (m, 4H), 7.71-7.69 (m, 2H), 7.60-7.57 (m, 2H), 7.38-7.35 (m, 2H), 7.31-7.27 (m, 2H), 7.25-7.23 (m, 1H), 6.71 (d, *J* = 16.0 Hz, 1H), 6.57 (dd, *J* = 8.0, 15.6 Hz, 1H), 5.66-5.62 (m, 1H), 4.10 (dd, *J* = 8.8, 17.6 Hz, 1H), 3.60 (dd, *J* = 5.6, 17.6 Hz, 1H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 195.8, 168.1, 136.1, 135.4, 134.2, 133.6, 132.1, 132.0, 129.8, 128.8, 128.7, 128.3, 126.8, 125.7, 123.5, 49.1, 40.8;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₅H₁₈NO₃BrNa 482.0362; Found 482.0361.

(*R*,*E*)-2-(5-(3-bromophenyl)-5-oxo-1-phenylpent-1-en-3-yl)isoindoline-1,3-dione (3ia)

Colorless oil (45.3 mg, 98% yield);

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 70:30, flow rate 1.0 mL/min, λ = 254 nm) t_R (minor) = 9.0 min, t_R (major) = 10.8 min, 2.0:98.0 *e.r.*, 96% *ee*; $[\alpha]_D^{29} = -13.3$ (*c* 2.0, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ 8.08-8.07 (m, 1H), 7.89-7.82 (m, 3H), 7.71-7.66 (m, 3H), 7.38-7.27 (m, 5H), 7.25-7.23 (m, 1H), 6.71 (d, *J* = 16.0 Hz, 1H), 6.57 (dd, *J* = 8.0 16.0 Hz, 1H), 5.65-5.62 (m, 1H), 4.11 (dd, *J* = 8.8, 18.0 Hz, 1H), 3.62 (dd, *J* = 5.6, 18.0 Hz, 1H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 195.5, 168.1, 138.3, 136.4, 136.1, 134.2, 133.6, 132.0, 131.4, 130.4, 128.7, 128.3, 126.82, 126.79, 125.6, 123.5, 123.2, 49.0, 41.0;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₅H₁₈NO₃BrNa 482.0362; Found 428.0363.

(*R*,*E*)-2-(5-(2-bromophenyl)-5-oxo-1-phenylpent-1-en-3-yl)isoindoline-1,3-dione (3ja)

Colorless oil (44.4 mg, 97% yield);

HPLC (Daicel Chiralpak IF, hexane/*i*-PrOH = 70:30, flow rate 1.0 mL/min, λ = 254 nm) t_R (minor) = 15.3 min, t_R (major) = 17.5 min, 1.2:98.8 *e.r.*, 98% *ee*; $[\alpha]_D^{26} = +$ 5.8 (*c* 2.0, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 7.84-7.82 (m, 2H), 7.72-7.69 (m, 2H), 7.58 (d, *J* = 7.8 Hz, 1H), 7.40-7.22 (m, 8H), 6.69 (d, *J* = 16.2 Hz, 1H), 6.54 (dd, *J* = 7.8, 15.6 Hz, 1H), 5.61-5.57 (m, 1H), 4.03 (dd, *J* = 9.0, 18.0 Hz, 1H), 3.65 (dd, *J* = 6.0, 17.4 Hz, 1H);

¹³C {¹H} NMR (100 MHz, CDCl₃) δ 200.5, 168.0, 141.0, 136.1, 134.1, 133.9, 133.6, 132.02, 132.01, 128.9, 128.7, 128.2, 127.6, 126.8, 125.5, 123.4, 119.0, 49.2, 44.7;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₅H₁₈NO₃BrNa 482.0362; Found 428.0360.

(*R*,*E*)-2-(5-oxo-1-phenyl-5-(4-(trifluoromethyl)phenyl)pent-1-en-3-yl)isoindoline-1,3-dione (3ka)

Colorless oil (44.8 mg, 99% yield);

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 70:30, flow rate 1.0 mL/min, λ =

254 nm) t_R (minor) = 9.4 min, t_R (major) = 19.3 min, 0.8:99.2 *e.r.*, 98% *ee*; $[\alpha]_D^{26} = -11.6$ (*c* 2.0, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 7.8 Hz, 2H), 7.84-7.82 (m, 2H), 7.72-7.69 (m, 4H), 7.38-7.36 (m, 2H), 7.31-7.22 (m, 3H), 6.72 (d, J = 16.2 Hz, 1H), 6.58 (dd, J = 7.8, 15.6 Hz, 1H), 5.68-5.62 (m, 1H), 4.18 (dd, J = 9.0, 18.0 Hz, 1H), 3.66 (dd, J = 5.4, 17.4 Hz, 1H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 196.0, 168.1, 139.2, 136.1, 134.8 (q, *J* = 33.0 Hz), 134.2, 133.7, 132.0, 128.7, 128.6, 128.3, 126.8, 125.9 (q, *J* = 3.0 Hz), 125.5, 123.6 (q, *J* = 270.0 Hz), 123.5, 49.1, 41.2;

¹⁹F {¹H} NMR (564 MHz, CDCl₃) δ –63.2;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{26}H_{18}NO_3F_3Na$ 472.1131; Found 472.1131.

(*R*,*E*)-2-(5-(4-nitrophenyl)-5-oxo-1-phenylpent-1-en-3-yl)isoindoline-1,3-dione (3la)

Yellow solid (41.3 mg, 97% yield); mp 116-118 °C;

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 60:40, flow rate 1.0 mL/min, $\lambda = 254$ nm) t_R (minor) = 19.5 min, t_R (major) = 43.0 min, 2.1:97.9 *e.r.*, 96% *ee*; $[\alpha]_D^{26} = -18.2$ (*c* 2.0, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 8.31-8.29 (m, 2H), 8.12-8.10 (m, 2H), 7.85-7.82 (m, 2H), 7.73-7.70 (m, 2H), 7.38-7.37 (m, 2H), 7.31-7.29 (m, 2H), 7.26-7.23 (m, 1H), 6.73 (d, *J* = 16.2 Hz, 1H), 6.57 (dd, *J* = 8.4, 15.6 Hz, 1H), 5.67-5.63 (m, 1H), 4.20 (dd, *J* = 8.4, 18.0 Hz, 1H), 3.69 (dd, *J* = 5.4, 18.0 Hz, 1H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 195.4, 168.1, 150.6, 140.9, 136.0, 134.3, 133.9, 131.9, 129.3, 128.8, 128.4, 126.8, 125.3, 124.1, 123.5, 49.0, 41.5;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₅H₁₈N₂O₅Na 449.1108; Found 449.1109.

(*R*,*E*)-2-(5-(3,4-dichlorophenyl)-5-oxo-1-phenylpent-1-en-3-yl)isoindoline-1,3-dio ne (3ma)

Colorless solid (42.8 mg, 95% yield); mp 165-167 °C;

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 70:30, flow rate 1.0 mL/min, λ = 254 nm) t_R (minor) = 9.4 min, t_R (major) = 17.1 min, 1.7:98.3 *e.r.*, 97% *ee*; $[\alpha]_D^{28} = -18.0$ (*c* 2.0, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 8.02 (d, J = 1.8 Hz, 1H), 7.84-7.77 (m, 3H), 7.71-7.69 (m, 2H), 7.53-7.52 (m, 1H), 7.37-7.36 (m, 2H), 7.30-7.27 (m, 2H), 7.26-7.22 (m, 1H), 6.71 (d, J = 15.6 Hz, 1H), 6.56 (dd, J = 7.8, 15.6 Hz, 1H), 5.64-5.61 (m, 1H), 4.10 (dd, J = 9.0, 18.0 Hz, 1H), 3.60 (dd, J = 5.4, 17.4 Hz, 1H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 194.7, 168.1, 138.2, 136.11, 136.05, 134.2, 133.7, 133.6, 132.0, 131.0, 130.3, 128.7, 128.3, 127.3, 126.8, 125.4, 123.5, 49.0, 40.9;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₅H₁₇NO₃Cl₂Na 472.0478; Found 472.0477.

(*R*,*E*)-2-(5-(naphthalen-2-yl)-5-oxo-1-phenylpent-1-en-3-yl)isoindoline-1,3-dione (3na)

Colorless oil (43.0 mg, 99% yield);

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 60:40, flow rate 1.0 mL/min, λ = 254 nm) t_R (minor) = 8.6 min, t_R (major) = 11.6 min, 1.8:98.2 *e.r.*, 96% *ee*; $[\alpha]_D^{28}$ = -29.5 (*c* 2.0, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 8.50 (s, 1H), 8.01-7.99 (m, 1H), 7.95 (d, J = 7.8 Hz, 1H), 7.86-7.80 (m, 4H), 7.68-7.65 (m, 2H), 7.59-7.52 (m, 2H), 7.39-7.37 (m, 2H), 7.30-7.27 (m, 2H), 7.23-7.21 (m, 1H), 6.74 (d, J = 15.6 Hz, 1H), 6.64 (dd, J = 7.8, 15.6 Hz, 1H), 5.75-5.71 (m, 1H), 4.27 (dd, J = 9.0, 18.0 Hz, 1H), 3.78 (dd, J = 5.4, 17.4 Hz, 1H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 196.7, 168.2, 136.2, 135.9, 134.1, 134.0, 133.4, 132.6, 132.1, 130.1, 129.8, 128.8, 128.7, 128.2, 127.9, 127.0, 126.8, 126.0, 123.8 123.5, 49.3, 40.9;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₉H₂₁NO₃Na 454.1414; Found 454.1414.

(*R*,*E*)-2-(5-(naphthalen-1-yl)-5-oxo-1-phenylpent-1-en-3-yl)isoindoline-1,3-dione (30a)

Colorless solid (42.9 mg, 99% yield); mp 165-166 ℃;

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 60:40, flow rate 1.0 mL/min, λ = 254 nm) t_R (major) = 9.4 min, t_R (minor) = 14.0 min, 99.0:1.0 *e.r.*, 98% *ee*; $[\alpha]_D^{27} = +$ 5.7 (*c* 2.0, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ 8.55-8.53 (m, 1H), 7.96 (d, J = 7.6 Hz, 1H), 7.84-7.78 (m, 3H), 7.70-7.67 (m, 2H), 7.52-7.46 (m, 3H), 7.37-7.35 (m, 2H), 7.30-7.27 (m, 2H), 7.24-7.21 (m, 1H), 6.72 (d, J = 16.0 Hz, 1H), 6.60 (dd, J = 8.0, 16.0 Hz, 1H), 5.74-5.68 (m, 1H), 4.27 (dd, J = 8.8, 17.2 Hz, 1H), 3.68 (dd, J = 6.0, 17.2 Hz, 1H);

¹³C {¹H} NMR (100 MHz, CDCl₃) δ 200.7, 168.1, 136.2, 135.2, 134.1, 134.0, 133.5, 133.2, 132.0, 130.2, 128.7, 128.5, 128.3, 128.17, 128.15, 126.8, 126.6, 125.9, 125.8, 124.5, 123.4, 49.6, 44.0;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₉H₂₁NO₃Na 454.1414; Found 454.1411.

(R,E)-2-(5-(furan-2-yl)-5-oxo-1-phenylpent-1-en-3-yl)isoindoline-1,3-dione (3pa)

Colorless oil (35.3 mg, 95% yield);

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 60:40, flow rate 1.0 mL/min, λ = 254 nm) t_R (minor) = 7.8 min, t_R (major) = 10.0 min, 2.5:97.5 *e.r.*, 95% *ee*; $[\alpha]_D^{26}$ = + 0.3 (*c* 2.0, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ 7.86-7.80 (m, 2H), 7.71-7.61 (m, 2H), 7.56 (d, J = 1.2 Hz, 1H), 7.38-7.35 (m, 2H), 7.30-7.27 (m, 2H), 7.24-7.21 (m, 2H), 6.70 (d, J = 16.0 Hz, 1H), 6.58 (dd, J = 8.0, 15.6 Hz, 1H), 6.51 (dd, J = 1.6, 3.6 Hz, 1H), 5.64-5.58 (m, 1H), 3.90 (dd, J = 8.8, 16.8 Hz, 1H), 3.55 (dd, J = 6.0, 16.8 Hz, 1H);

¹³C {¹H} NMR (100 MHz, CDCl₃) δ 185.7, 168.0, 152.5, 146.8, 136.2, 134.1, 133.5, 132.1, 128.7, 128.2, 126.8, 125.7, 123.4, 117.8, 112.5, 49.1, 40.8;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₃H₁₇NO₄Na 394.1050; Found 394.1050.

(R,E)-2-(5-oxo-1-phenyl-5-(thiophen-2-yl)pent-1-en-3-yl)isoindoline-1,3-dione

(3qa)

Colorless solid (38.6 mg, 99% yield); mp 101-103 °C;

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 60:40, flow rate 1.0 mL/min, λ = 254 nm) t_R (minor) = 8.1 min, t_R (major) = 9.5 min, 1.6:98.4 *e.r.*, 97% *ee*; $[\alpha]_D^{27}$ = -11.7 (*c* 2.0, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ 7.83-7.61 (m, 6H), 7.37-7.21 (m, 5H), 7.13-7.10 (m, 1H), 6.70 (d, *J* = 16.0 Hz, 1H), 6.58 (dd, *J* = 8.0, 16.0 Hz, 1H), 5.66-5.61 (m, 1H), 4.04 (dd, *J* = 8.8, 16.8 Hz, 1H), 3.59 (dd, *J* = 5.6, 16.8 Hz, 1H);

¹³C {¹H} NMR (100 MHz, CDCl₃) δ 189.6, 168.0, 143.9, 136.1, 134.3, 134.1, 133.5, 132.5, 132.0, 128.7, 128.3, 128.2, 126.8, 125.6, 123.5, 49.3, 41.5;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₃H₁₇NO₃SNa 410.0821; Found 410.0820.

(*R*,*E*)-2-(5-oxo-1-phenyl-5-(thiophen-3-yl)pent-1-en-3-yl)isoindoline-1,3-dione (3ra)

Colorless solid (37.4 mg, 97% yield); mp 52-54 °C;

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 60:40, flow rate 1.0 mL/min, λ = 254 nm) t_R (minor) = 8.1 min, t_R (major) = 10.1 min, 1.7:98.3 *e.r.*, 97% *ee*; $[\alpha]_D^{26}$ = -13.7 (*c* 2.0, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ 8.11-8.09 (m, 1H), 7.84-7.80 (m, 2H), 7.71-7.67 (m, 2H), 7.53-7.52 (m, 1H), 7.38-7.36 (m, 2H), 7.30-7.21 (m, 4H), 6.70 (d, *J* = 16.0 Hz, 1H), 6.57 (dd, *J* = 8.0, 15.6 Hz, 1H), 5.66-5.61 (m, 1H), 4.03 (dd, *J* = 8.8, 17.2 Hz, 1H), 3.54 (dd, *J* = 6.0, 17.2 Hz, 1H);

¹³C {¹H} NMR (100 MHz, CDCl₃) δ 191.0, 168.1, 142.0, 136.2, 134.1, 133.4, 132.6, 132.1, 128.7, 128.2, 127.0, 126.8, 126.7, 125.8, 123.5, 49.2, 42.0;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₃H₁₇NO₃SNa 410.0821; Found 410.0816.

(*R*,*E*)-2-(5-oxo-1-phenylhex-1-en-3-yl)isoindoline-1,3-dione (3sa)

Colorless oil (31.7 mg, 99% yield);

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 60:40, flow rate 1.0 mL/min, λ = 254 nm) t_R (minor) = 6.5 min, t_R (major) = 7.0 min, 1.1:98.9 *e.r.*, 98% *ee*; $[\alpha]_D^{28} = +$ 2.8 (*c* 2.0, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 7.84-7.81 (m, 2H), 7.71-7.69 (m, 2H), 7.36-7.34 (m, 2H), 7.29-7.26 (m, 2H), 7.24-7.21 (m, 1H), 6.65 (d, *J* = 15.6 Hz, 1H), 6.47 (dd, *J* = 8.4, 15.6 Hz, 1H), 5.46-5.43 (m, 1H), 3.52 (dd, *J* = 8.4, 17.4 Hz, 1H), 3.16 (dd, *J* = 6.0, 17.4 Hz, 1H), 2.17 (s, 3H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 205.2, 168.0, 136.1, 134.1, 133.3, 132.0, 128.7, 128.2, 126.8, 125.6, 123.4, 48.8, 45.6, 30.4;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₀H₁₇NO₃Na 342.1101; Found 342.1094.

(*R*,*E*)-2-(5-cyclohexyl-5-oxo-1-phenylpent-1-en-3-yl)isoindoline-1,3-dione (3ta)

Colorless solid (38.5 mg, 99% yield); mp 101-103 °C;

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 60:40, flow rate 1.0 mL/min, λ = 254 nm) t_R (minor) = 5.5 min, t_R (major) = 6.3 min, 0.8:99.2 *e.r.*, 98% *ee*; $[\alpha]_D^{28} = -2.6$ (*c* 2.0, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 7.84-7.81 (m, 2H), 7.71-7.68 (m, 2H), 7.35-7.34 (m, 2H), 7.29-7.27 (m, 2H), 7.23-7.21 (m, 2H), 6.63 (d, *J* = 15.6 Hz, 1H), 6.47 (dd, *J* = 8.4, 16.2 Hz, 1H), 5.47-5.43 (m, 1H), 3.54 (dd, *J* = 8.4, 17.4 Hz, 1H), 3.15 (dd, *J* = 6.0, 18.0 Hz, 1H), 2.36-2.32 (m, 1H), 1.84-1.63 (m, 5H), 1.35-1.12 (m, 5H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 210.5, 168.1, 136.2, 134.1, 133.2, 132.1, 128.7, 128.1, 126.7, 125.9, 123.4, 51.2, 48.8, 42.6, 28.4, 28.3, 25.9, 25.69, 25.66;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₅H₂₅NO₃Na 410.1727; Found 410.1724.

(*R*,*E*)-1-(5-oxo-1,5-diphenylpent-1-en-3-yl)pyrrolidine-2,5-dione (3ua)

Colorless solid (29.2 mg, 88% yield); mp 117-118 °C;

HPLC (Daicel Chiralpak IF, hexane/*i*-PrOH = 70:30, flow rate 1.0 mL/min, λ = 254 nm) t_R (minor) = 13.8 min, t_R (major) = 16.0 min, 1.3:98.7 *e.r.*, 97% *ee*; $[\alpha]_D^{29} = -10.4$ (*c* 2.0, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, J = 7.8 Hz, 1H), 7.58-7.56 (m, 1H), 7.47-7.45 (m, 2H), 7.37 (d, J = 7.2 Hz, 2H), 7.31-7.29 (m, 2H), 7.26-7.23 (m, 1H), 6.68 (d, J = 15.6 Hz, 1H), 6.53 (dd, J = 8.4, 16.2 Hz, 1H), 5.49-5.45 (m, 1H), 4.07 (dd, J = 9.0, 17.4 Hz, 1H), 3.51 (dd, J = 5.4, 17.4 Hz, 1H), 2.66 (s, 4H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 197.0, 177.1, 136.6, 136.1, 133.9, 133.6, 128.8, 128.7, 128.3, 128.2, 126.8, 125.1, 50.1, 39.9, 28.2;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₁H₁₉NO₃Na 356.1257; Found 356.1256.

(2E, 4E)-1,5-diphenylpenta-2,4-dien-1-one $(4)^7$

Yellow solid; mp 97-98 ℃;

¹H NMR (400 MHz, CDCl₃) δ 7.99-7.97 (m, 2H), 7.64-7.47 (m, 6H), 7.40-7.33 (m, 3H), 7.10 (d, *J* = 14.8 Hz, 1H), 7.04-7.02 (m, 2H).

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₁₇H₁₄ONa 257.0937; Found 257.0926.

(*E*)-1,5-diphenyl-3-((*E*)-styryl)pent-4-en-1-one (5)⁸

Colorless solid (21.9 mg, 65% yield); mp 66-68 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.99-7.96 (m, 2H), 7.58-7.54 (m, 1H), 7.48-7.44 (m, 2H), 7.36-7.26 (m, 8H), 7.22-7.18 (m, 2H), 6.49 (d, *J* = 16.0 Hz, 2H), 6.29 (dd, *J* = 7.2, 16.0 Hz, 2H), 3.90-3.83 (m, 1H), 3.29 (d, *J* = 6.8 Hz, 2H).

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₅H₂₂ONa 361.1563; Found 361.1547.

(*R*,*E*)-2-(5-oxo-5-phenyl-1-(*p*-tolyl)pent-1-en-3-yl)isoindoline-1,3-dione (3ab)⁶

Colorless solid (39.1 mg, 99% yield); mp 110-111 °C;

HPLC (Daicel Chiralpak IC, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, λ = 254 nm) t_R (minor) = 27.4 min, t_R (major) = 29.4 min, 2.5:97.5 *e.r.*, 95% *ee*; $[\alpha]_D^{28} = -3.7$ (*c* 2.0, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 7.96-7.95 (m, 2H), 7.83-7.80 (m, 2H), 7.70-7.67 (m, 2H), 7.56-7.53 (m, 1H), 7.45-7.43 (m, 2H), 7.27-7.25 (m, 2H), 7.09 (d, *J* = 8.4 Hz, 2H), 6.67 (d, *J* = 15.6 Hz, 1H), 6.54 (dd, *J* = 7.8, 15.6 Hz, 1H), 5.66-5.62 (m, 1H), 4.14 (dd, *J* = 8.4, 17.4 Hz, 1H), 3.63 (dd, *J* = 6.0, 18.0 Hz, 1H), 2.31 (s, 3H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 196.9, 168.1, 138.1, 136.7, 134.1, 133.5, 133.4, 133.3, 132.1, 129.4, 128.8, 128.3, 126.7, 124.8, 123.4, 49.3, 40.9, 21.3;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{26}H_{21}NO_3Na$ 418.1414; Found 418.1411.

(R,E)-2-(1-(4-methoxyphenyl)-5-oxo-5-phenylpent-1-en-3-yl)isoindoline-1,3-dione $(3ac)^{6}$

Colorless solid (16.7 mg, 41% yield); mp 50-51 °C;

HPLC (Daicel Chiralpak IC, hexane/*i*-PrOH = 60:40, flow rate 1.0 mL/min, λ = 254 nm) t_R (minor) = 12.7 min, t_R (major) = 14.5 min, 9.9:90.1 *e.r.*, 80% *ee*; $[\alpha]_D^{28} = -6.7$ (*c* 1.0, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 7.96-7.95 (m, 2H), 7.83-7.80 (m, 2H), 7.70-7.68 (m, 2H), 7.56-7.53 (m, 1H), 7.45-7.43 (m, 2H), 7.30 (d, *J* = 8.4 Hz, 2H), 6.82 (d, *J* = 9.0 Hz, 2H), 6.66 (d, *J* = 15.6 Hz, 1H), 6.45 (dd, *J* = 8.4, 15.6 Hz, 1H), 5.65-5.61 (m, 1H), 4.13 (dd, *J* = 9.0, 18.0 Hz, 1H), 3.79 (s, 3H), 3.63 (dd, *J* = 5.4, 17.4 Hz, 1H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 196.9, 168.2, 159.7, 136.7, 134.1, 133.5, 132.9, 132.1, 129.0, 128.8, 128.3, 128.0, 123.7, 123.4, 114.1, 55.4, 49.3, 41.0;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{26}H_{21}NO_4Na$ 434.1363; Found

434.1363.

(*R*,*E*)-2-(1-(3-fluorophenyl)-5-oxo-5-phenylpent-1-en-3-yl)isoindoline-1,3-dione (3ad)

Colorless solid (39.8 mg, 99% yield); mp 120-121 °C;

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) t_R (major) = 9.3 min, t_R (minor) = 10.4 min, 98.6:1.4 *e.r.*, 97% *ee*; $[\alpha]_D^{28}$ = -8.0 (*c* 2.0, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 7.96 (d, J = 7.2 Hz, 2H), 7.85-7.82 (m, 2H), 7.71-7.69 (m, 2H), 7.56 (t, J = 7.2 Hz, 1H), 7.45 (t, J = 7.8 Hz, 2H), 7.25-7.23 (m, 1H), 7.12 (d, J = 7.8 Hz, 1H), 7.08-7.06 (m, 1H), 6.94-6.90 (m, 1H), 6.67 (d, J = 16.2 Hz, 1H), 6.59 (dd, J = 7.8, 15.6 Hz, 1H), 5.68-5.65 (m, 1H), 4.11 (dd, J = 8.4, 17.4 Hz, 1H), 3.67 (dd, J = 6.0, 18.0 Hz, 1H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 196.7, 168.1, 163.1 (d, J = 244.5 Hz), 138.6 (d, J = 7.5 Hz), 136.6, 134.2, 133.6, 132.2 (d, J = 1.5 Hz), 132.0, 130.1 (d, J = 9.0 Hz), 128.8, 128.3, 127.4, 123.5, 122.7 (d, J = 3.0 Hz), 115.0 (d, J = 21.0 Hz), 113.2 (d, J = 21.0 Hz), 48.9, 40.8;

¹⁹F {¹H} NMR (564 MHz, CDCl₃) δ –133.4;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₅H₁₈NO₃FNa 422.1163; Found 422.1161.

(R,E)-2-(1-(4-chlorophenyl)-5-oxo-5-phenylpent-1-en-3-yl)isoindoline-1,3-dione (3ae)⁶

Colorless solid (41.5 mg, 99% yield); mp 136-138 °C;

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) t_R (major) = 9.9 min, t_R (minor) = 12.2 min, 98.3:1.7 *e.r.*, 97% *ee*; $[\alpha]_D^{28} = -7.1$ (*c* 2.0, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 7.96-7.95 (m, 2H), 7.84-7.82 (m, 2H), 7.71-7.69 (m, 2H), 7.57-7.54 (m, 1H), 7.46-7.43 (m, 2H), 7.30-7.24 (m, 4H), 6.65 (d, *J* = 16.2 Hz, 1H), 6.56 (d, *J* = 8.4, 16.2 Hz, 1H), 5.67-5.64 (m, 1H), 4.10 (dd, *J* = 8.4, 17.4 Hz, 1H), 3.67 (dd, *J* = 6.0, 18.0 Hz, 1H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 196.3, 168.1, 144.5, 134.8, 134.2, 134.1, 133.8, 132.1, 129.5, 128.9, 128.4, 128.0, 126.7, 123.5, 49.1, 40.7, 21.8;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₅H₁₈NO₃ClNa 438.0867; Found 438.0862.

(*R*,*E*)-2-(1-(4-bromophenyl)-5-oxo-5-phenylpent-1-en-3-yl)isoindoline-1,3-dione (3af)

Colorless solid (45.2 mg, 98% yield); mp 131-133 °C;

HPLC (Daicel Chiralpak IF, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) t_R (major) = 20.0 min, t_R (minor) = 23.3 min, 98.8:1.2 *e.r.*, 98% *ee*; $[\alpha]_D^{28}$ = + 2.6 (*c* 2.0, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 7.96- 7.95 (m, 2H), 7.84-7.82 (m, 2H), 7.72-7.69 (m, 2H), 7.57-7.54 (m, 1H), 7.46-7.40 (m, 4H), 7.24-7.22 (m, 2H), 6.64 (d, *J* = 16.2 Hz, 1H), 6.57 (dd, *J* = 7.8, 15.6 Hz, 1H), 5.67-5.63 (m, 1H), 4.10 (dd, *J* = 8.4, 18.0 Hz, 1H), 3.67 (dd, *J* = 5.4, 17.4 Hz, 1H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 196.7, 168.1, 136.6, 135.2, 134.2, 133.6, 132.2, 132.0, 131.8, 128.9, 128.33, 128.27, 126.7, 123.5, 122.0, 49.0, 40.8;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₅H₁₈NO₃BrNa 482.0362; Found 482.0360.

(R,E)-2-(5-oxo-5-phenyl-1-(4-(trifluoromethyl)phenyl)pent-1-en-3-yl)isoindoline-1,3-dione (3ag)⁶

Colorless solid (44.9 mg, 99% yield); mp 106-108 °C;

HPLC (Daicel Chiralpak IF, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) t_R (major) = 26.6 min, t_R (minor) = 29.2 min, 97.0:3.0 *e.r.*, 94% *ee*; $[\alpha]_D^{27}$ = -10.4 (*c* 2.0, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 7.97-7.96 (m, 2H), 7.85-7.84 (m, 2H), 7.72-7.70 (m, 2H), 7.58-7.53 (m, 3H), 7.47-7.44 (m, 4H), 6.73 (d, *J* = 15.6 Hz, 1H), 6.67 (dd, *J* = 7.8, 16.2 Hz, 1H), 5.71-5.67 (m, 1H), 4.10 (dd, *J* = 8.4, 18.0 Hz, 1H), 3.74 (dd, *J* = 6.0, 17.4 Hz, 1H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 196.6, 168.1, 139.7, 136.5, 134.2, 133.6, 131.98, 131.95, 129.9 (q, J = 33.0 Hz), 128.8, 128.7, 128.2, 127.0, 125.6 (q, J = 3.0 Hz), 124.2 (q, J = 270.0 Hz), 123.5, 48.9, 40.7;

¹⁹F {¹H} NMR (564 MHz, CDCl₃) δ –62.58;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{26}H_{18}NO_3F_3Na$ 472.1131; Found 472.1124.

(*R*)-2-(1-(furan-2-yl)-3-oxo-3-phenylpropyl)isoindoline-1,3-dione (3ah)

Colorless oil (34.5 mg, 99% yield);

HPLC (Daicel Chiralpak IF, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) t_R (minor) = 17.5 min, t_R (major) = 19.5 min, 6.0:94.0 *e.r.*, 88% *ee*; $[\alpha]_D^{28}$ = -15.3 (*c* 2.0, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 7.99-7.98 (m, 2H), 7.84-7.81 (m, 2H), 7.70-7.68 (m, 2H), 7.57 (t, *J* = 7.2 Hz, 1H), 7.46 (t, *J* = 7.8 Hz, 1H), 7.34 (d, *J* = 1.2 Hz, 1H), 6.37 (d, *J* = 3.6 Hz, 1H), 6.33-6.32 (m, 1H), 6.18 (dd, *J* = 5.4, 9.0 Hz, 1H), 4.40 (dd, *J* = 9.0, 18.0 Hz, 1H), 3.91 (dd, *J* = 5.4, 18.0 Hz, 1H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 196.3, 167.9, 151.8, 142.3, 136.4, 134.2, 133.6, 132.0, 128.8, 128.3, 123.5, 110.6, 107.7, 43.9, 38.8;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₁H₁₅NO₄Na 368.0893; Found 368.0895.

(*R*)-2-(1-(benzofuran-2-yl)-3-oxo-3-phenylpropyl)isoindoline-1,3-dione (3ai)⁶

Colorless solid (39.4 mg, 99% yield); mp 108-110 °C;

HPLC (Daicel Chiralpak IF, hexane/*i*-PrOH = 70:30, flow rate 1.0 mL/min, λ = 254 nm) t_R (minor) = 16.1 min, t_R (major) = 20.6 min, 4.7:95.3 *e.r.*, 90% *ee*; $[\alpha]_D^{28} = -1.5$ (*c* 2.0, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 8.02-8.00 (m, 2H), 7.85-7.83 (m, 2H), 7.72-7.70 (m, 2H), 7.60-7.57 (m, 1H), 7.51-7.42 (m, 4H), 7.25-7.23 (m, 1H), 7.20-7.17 (m, 1H), 6.75 (s, 1H), 6.33-6.31 (m, 1H), 4.49 (dd, J = 9.0, 18.0 Hz, 1H), 4.04 (dd, J = 5.4, 18.6 Hz, 1H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 196.0, 167.8, 154.8, 154.4, 136.3, 134.2, 133.7, 131.9, 128.9, 128.3, 128.2, 124.5, 123.6, 123.0, 121.2, 111.5, 104.5, 44.4, 38.7;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₅H₁₇NO₄Na 418.1050; Found 418.1050.

(*R*)-2-(3-oxo-3-phenyl-1-(thiophen-2-yl)propyl)isoindoline-1,3-dione (3aj)

Colorless oil (32.3 mg, 90% yield);

HPLC (Daicel Chiralpak IF, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) t_R (minor) = 18.3 min, t_R (major) = 19.5 min, 3.1:96.9 *e.r.*, 94% *ee*; $[\alpha]_D^{28}$ = -40.2 (*c* 2.0, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 7.98-7.97 (m, 2H), 7.82-7.79 (m, 2H), 7.69-7.66 (m, 2H), 7.58-7.55 (m, 1H), 7.45 (t, *J* = 7.8 Hz, 2H), 7.23-7.22 (m, 2H), 6.95 (dd, *J* = 3.6, 5.4 Hz, 1H), 6.36 (dd, *J* = 5.4, 9.6 Hz, 1H), 4.58 (dd, *J* = 9.6, 18.0 Hz, 1H), 3.89 (dd, *J* = 4.8, 18.0 Hz, 1H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 196.3, 167.9, 142.1, 136.4, 134.2, 133.7, 131.9, 128.8, 128.3, 126.9, 126.6, 125.6, 123.5, 45.6, 41.6;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₁H₁₅NO₃SNa 384.0665; Found 384.0662.

(*R*)-2-(1-(benzo[*b*]thiophen-2-yl)-3-oxo-3-phenylpropyl)isoindoline-1,3-dione (3ak)⁶

Colorless solid (37.2 mg, 91% yield); mp 127-128 °C; HPLC (Daicel Chiralpak IC, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) t_R (minor) = 17.9 min, t_R (major) = 19.1 min, 2.2:97.8 *e.r.*, 95% *ee*; $[\alpha]_D^{26} = -17.8$ (*c* 2.0, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ 8.01-7.98 (m, 2H), 7.83-7.81 (m, 2H), 7.76-7.67 (m, 4H), 7.59-7.55 (m, 1H), 7.48-7.43 (m, 3H), 7.33-7.26 (m, 2H), 6.43 (dd, *J* = 5.2, 8.8 Hz, 1H), 4.60 (dd, *J* = 9.2, 18.0 Hz, 1H), 4.00 (dd, *J* = 5.2, 18.0 Hz, 1H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 196.2, 168.0, 142.7, 139.7, 139.3, 136.4, 134.3, 133.7, 131.9, 128.9, 128.3, 124.8, 124.6, 123.9, 123.6, 123.1, 122.4, 46.3, 41.2;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₅H₁₇NO₃SNa 434.0821; Found 434.0818.

(*R*,*E*)-2-(1-oxo-1-phenylundec-4-en-3-yl)isoindoline-1,3-dione (3al)

Colorless oil (24.0 mg, 62% yield);

HPLC (Daicel Chiralpak IF, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) t_R (minor) = 10.4 min, t_R (major) = 11.0 min, 0.8:99.2 *e.r.*, 98% *ee*; $[\alpha]_D^{29}$ = -32.7 (*c* 2.0, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 7.95-7.93 (m, 2H), 7.82-7.79 (m, 2H), 7.67-7.66 (m, 2H), 7.55-7.53 (m, 1H), 7.45-7.42 (m, 2H), 5.86-5.75 (m, 2H), 5.46-5.42 (m, 1H), 4.02 (dd, *J* = 8.4, 17.4 Hz, 1H), 3.52 (dd, *J* = 6.0, 17.4 Hz, 1H), 2.00 (q, *J* = 7.2 Hz, 2H), 1.34-1.23 (m, 8H), 0.85-0.83 (m, 3H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 197.1, 168.1, 136.8, 135.0, 134.0, 133.4, 132.1, 128.8, 128.2, 126.4, 123.3, 49.1, 40.9, 32.2, 31.7, 28.92, 28.89, 22.7, 14.2;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₅H₂₇NO₃Na 412.1883; Found 412.1884.

(*R*)-2-(5-methyl-1-oxo-1-phenylhex-4-en-3-yl)isoindoline-1,3-dione (3am)

Colorless oil (24.6 mg, 74% yield);

HPLC (Daicel Chiralpak IA, hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, λ = 254 nm) t_R (major) =14.1 min, t_R (minor) = 15.1 min, 88.1:11.9 *e.r.*, 76% *ee*; $[\alpha]_D^{26}$ =

-28.4 (*c* 2.0, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 7.95-7.93 (m, 2H), 7.81-7.78 (m, 2H), 7.68-7.65 (m, 2H), 7.55-7.52 (m, 1H), 7.43 (t, *J* = 7.8 Hz, 2H), 5.73-5.67 (m, 2H), 3.95 (dd, *J* = 7.8, 17.4 Hz, 1H), 3.50 (dd, *J* = 5.4, 17.4 Hz, 1H), 1.81 (s, 3H), 1.71 (s, 3H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 197.4, 168.2, 137.3, 136.8, 133.9, 133.4, 132.2, 128.8, 128.2, 123.3, 121.9, 45.2, 41.4, 25.8, 18.4;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{21}H_{19}NO_3Na$ 356.1257; Found 356.1256.

5. Large-scale reaction and synthetic transformations of products

To a 100 mL Schlenk tube equipped with a stirring bar was added 4 Å MS (2.5 g), and the tube was flamed-dried under high vacuum. After cooling to r.t., the tube was then backed-filled with nitrogen. Then boronic acid **2a** (5.0 mmol, 2 equiv), **Cat 1** [(*S*)-2,15-Cl₂-DHTP] (0.25 mmol, 10 mol %), β -aminoenones **1h** (2.5 mmol, 1.0 equiv), and dry toluene (25.0 mL) were successively added to the test tube under N₂. The tube was capped, sealed and allowed to stir at 25 °C for 48 h. After the removal of solvents via rotary evaporation, the residue was purified through flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 8:1–5:1) to give pure adduct **3ha** (1.03 g, 90% yield, 97% *ee*).

An oven-dried 10 mL Schlenk tube equipped with a stirring bar and capped with a rubber septum was chraged with **3ha** (97% *ee*, 46.0 mg, 0.1 mmol, 1 equiv). The tube was degassed and backfilled with N₂ (3 times). THF (2 mL) and MeOH (1 mL) was added into the tube via a syringe. The reaction mixture was cooled down to 0 °C, and NaBH₄ (0.2 mmol, 2.0 equiv) was added slowly. The reaction mixture was stirred at 0 °C for 1 h under N₂ atmosphere, and stirred at room temperature for 11 h. The resulting mixture was quenched by the addition of H₂O (2.0 mL). The resulting mixture was extracted with ethyl acetate (10 mL×3). The combined organic layers were then washed with brine and dried over anhydrous Na₂SO₄ and concentrated *in*

vacuo. The residue was purified through flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 5:1) to give product **4** and **4'** (10.9 mg, 24% yield, 9:1 *dr*, 97% *ee*), and by-product (2.3 mg, 5% yield). The compound **4** and **4'** cannot be separated by flash column chromatography on silica gel or prepared thin layer chromatography.

2-((3R,E)-5-(4-bromophenyl)-5-hydroxy-1-phenylpent-1-en-3-yl) isoindoline-1,3-dion e (4 and 4')

Colorless solid (10.9 mg, 9:1 *dr*; 97% *ee*); mp 63-65 °C;

Major isomer:

HPLC (Daicel Chiralpak IA, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) t_R (major) = 17.5 min, t_R (minor) = 27.9 min, 97% *ee*; $[\alpha]_D^{17}$ = +6.1 (*c* 0.8, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ 7.81-7.77 (m, 2H), 7.70-7.67 (m, 2H), 7.39-7.18 (m, 9H), 6.69-6.62 (m, 2H), 5.21 (q, *J* = 4.8 Hz, 1H), 4.79 (dd, *J* = 2.4, 5.6 Hz, 1H), 2.56-2.53 (m, 1H), 2.46-2.41 (m, 1H);

¹³C {¹H} NMR (100 MHz, CDCl₃) δ 168.3, 143.1, 136.3, 134.1, 133.9, 132.1, 131.7, 128.7, 128.2, 127.5, 126.8, 126.2, 123.3, 121.5, 71.4, 51.0, 41.1;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₅H₂₀NO₃BrNa 484.0519; Found 484.0495.

2-((*3R*,*E*)-5-(4-bromophenyl)-5-hydroxy-1-phenylpent-1-en-3-yl)-3-hydroxyisoindoli n-1-one (**by-product**)

Colorless oil (2.3 mg, 5% yield);

¹H NMR (400 MHz, CDCl₃) δ 7.81-7.80 (m, 1H), 7.62-7.53 (m, 3H), 7.44-7.25 (m, 11H), 6.70 (d, *J* = 10.8 Hz, 1H), 6.51 (dd, *J* = 5.2, 10.8 Hz, 1H), 6.09 (d, *J* = 6.4 Hz, 1H), 5.25-5.22 (m, 1H), 4.74 (d, *J* = 6.8 Hz, 1H), 4.44 (s, 1H), 2.74 (d, *J* = 7.2 Hz, 1H), 2.47-2.42 (m, 1H), 2.13-2.04 (m, 1H);

¹³C {¹H} NMR (100 MHz, CDCl₃) δ 168.8, 144.0, 143.1, 136.2, 134.3, 132.9, 131.6, 131.2, 130.4, 128.9, 128.4, 127.6, 126.8, 126.6, 123.9, 123.2, 121.1, 82.0, 69.6, 51.4, 44.4;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{25}H_{22}NO_3BrNa$ 486.0675; Found 486.0674.

An oven-dried 10 mL Schlenk tube equipped with a stirring bar and capped with a rubber septum was chraged with **3ha** (97% *ee*, 23.0 mg, 0.05 mmol, 1 equiv). The tube was degassed and backfilled with N₂ (3 times). THF (2 mL) and MeOH (1 mL) was added into the tube via a syringe. The reaction mixture was cooled down to 0 °C, and NaBH₄ (0.06 mmol, 1.2 equiv) was added slowly. The reaction mixture was stirred at 0 °C for 1 h under N₂ atmosphere, and stirred at room temperature for 1 h. The resulting mixture was quenched by the addition of H₂O (2.0 mL). The resulting mixture was extracted with ethyl acetate (10 mL×3). The combined organic layers were then washed with brine and dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was purified through flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 5:1) to give product **4** and **4'** (9.6 mg, 42% yield, 4:1 *dr*, 97%/97% *ee*), and by-product (2.6 mg, 11% yield). The compound **4** and **4'** cannot be separated by flash column chromatography on silica gel or prepared thin layer chromatography.

2-((3R,E)-5-(4-bromophenyl)-5-hydroxy-1-phenylpent-1-en-3-yl)isoindoline-1,3-dion e (**4** and **4'** 4:1 dr)

HPLC (Daicel Chiralpak IA, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) $t_R(1) = 17.4$ min, $t_R(2) = 23.5$ min, $t_R(3) = 28.2$ min, $t_R(4) = 30.9$ min, 4:1 dr, 97% / 97% ee.

To a stirring of compound **4** and **4'** (4:1 dr, 97% / 97% ee, 9.3 mg, 0.02 mmol, 1 equiv) in MeOH (1 mL), NH₂·NH₂ (0.06 mmol, 3.0 equiv) was added. The reaction mixture was stirred at room temperature for 12 h. After the removal of solvents via

rotary evaporation, the residue was purified through flash column chromatography on silica gel (eluent: DCM/MeOH = 20:1) and prepared thin layer chromatography (eluent: DCM/MeOH = 10:1) to give the major isomer of product 5 (4.4 mg, 66% yield). The compound 5 and 5' can be separated by prepared thin layer chromatography.

(1S,3R,E)-3-amino-1-(4-bromophenyl)-5-phenylpent-4-en-1-ol (major)

Colorless oil (4.4 mg, 66% yield);

¹H NMR (400 MHz, CDCl₃) δ 7.46-7.44 (m, 2H), 7.35-7.22 (m, 7H), 6.46 (d, J = 16.0 Hz, 1H), 6.17 (dd, J = 6.8, 16.0 Hz, 1H), 4.97 (dd, J = 2.0, 10.4 Hz, 1H), 3.83-3.79 (m, 1H), 1.93-1.88 (m, 1H), 1.71-1.62 (m, 1H);

¹³C {¹H} NMR (150 MHz, CDCl₃) δ 144.1, 136.6, 131.5, 129.0, 128.8, 127.9, 127.6, 126.5, 121.0, 74.7, 55.0, 44.9;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{17}H_{18}NO_3BrNa$ 354.0464; Found 354.0450.

To a solution of **5** (8.3 mg, 0.025 mmol, 1 equiv) in DCM (1 mL) was added CDI (0.075 mmol, 3.0 equiv) at room temperature. After stirring for 6 h, the reaction mixture was quenched by the addition of H₂O (1.0 mL). The resulting mixture was extracted with ethyl acetate (5 mL×3). The combined organic layers were then washed with 1N HCl and brine, dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was purified through flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 2:1) to give product **6** (6.7 mg, 75% yield, 97% *ee*).

(*4R*,*6S*)-6-(4-bromophenyl)-4-((E)-styryl)-1,3-oxazinan-2-one (**6**)

Colorless solid (6.7 mg, 75% yield); mp 188-190 °C;

HPLC (Daicel Chiralpak IF, hexane/*i*-PrOH = 60:40, flow rate 1.0 mL/min, λ = 254 nm) t_R (minor) = 10.1 min, t_R (major) = 12.6 min, 1.7:98.3 *e.r.*, 97% *ee*; $[\alpha]_D^{19}$ = -16.4 (*c* 0.3, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ 7.55-7.51 (m, 2H), 7.38-7.28 (m, 7H), 6.65 (d, *J* = 15.6 Hz, 1H), 6.06 (dd, *J* = 8.0, 15.6 Hz, 1H), 5.32 (dd, *J* = 2.0, 11.6 Hz, 1H), 5.23 (s, 1H), 4.38-4.32 (m, 1H), 2.34-2.28 (m, 1H), 1.97-1.88 (m, 1H);

¹³C {¹H} NMR (100 MHz, CDCl₃) δ 153.4, 137.7, 135.6, 133.5, 132.0, 129.0, 128.7, 127.7, 127.6, 126.8, 122.8, 54.2, 36.7, 29.9;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{18}H_{16}NO_2BrNa$ 380.0257; Found 380.0242.

To a stirred solution of **3da** (98% *ee*, 39.5 mg, 0.1 mmol, 1 equiv) in MeOH (2 mL) was added Pd-C (0.01 mmol, 10 mol %). The reaction mixture was stirred under H₂ balloon for 24 h at room temperature. The resulting mixture was filtered through a Celite pad and solvents were concentrated via rotary evaporation. The residue was purified through flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 10:1) to give product **7** (36.3 mg, 91% yield, 98% *ee*).

(S)-2-(1-oxo-5-phenyl-1-(o-tolyl)pentan-3-yl)isoindoline-1,3-dione (7)

Colorless oil (36.3 mg, 91% yield);

HPLC (Daicel Chiralpak IB, hexane/*i*-PrOH = 80:20, flow rate 1.0 mL/min, λ = 254 nm) t_R (major) =6.6 min, t_R (minor) = 7.6 min, 99.2:0.8 *e.r.*, 98% *ee*; $[\alpha]_D^{17}$ = +2.4 (*c* 1.0, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ 7.79-7.60 (m, 5H), 7.33-7.03 (m, 8H), 4.96-4.91 (m, 1H), 3.87-3.80 (m, 1H), 3.40-3.34 (m, 1H), 2.74-2.49 (m, 3H), 2.40 (s, 3H), 2.13-2.06 (m, 1H);

¹³C {¹H} NMR (100 MHz, CDCl₃) δ 201.3, 168.6, 141.0, 138.4, 137.6, 134.0, 132.1, 131.9, 131.6, 128.8, 128.5, 128.4, 126.0, 125.9, 123.3, 47.9, 44.0, 34.1, 33.1, 21.3;

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₆H₂₃NO₃Na 420.1570; Found 420.1563.

6. References

[1] (a) Chai, G.-L.; Zhu, B.; Chang, J. J. Org. Chem. 2019, 84, 120–127; (b) Chai,
G.-L.; Han, J.-W.; Wong, H. N. C. Synthesis 2017, 49, 181–187.

[2] (a) Han, Y.-Q.; Ding, Y.; Zhou, T.; Yan, S.-Y.; Song, H.; Shi, B.-F. J. Am. Chem. Soc. 2019, 141, 4558–4563. (b) Tong, H.-R.; Zheng, W.; Lv, X.; He, G.; Liu, P.; Chen, G. ACS Catal. 2020, 10, 114–120.

[3] (a) Rong, J.; Li, H.; Fu, R.; Sun, W.; Loh, T.-P.; Jiang, Y. ACS Catal. 2020, 10, 3664–3669; (b) Wang, J.-F.; Meng, X.; Zhang, C.-H.; Yu, C.-M.; Mao, B. Org. Lett. 2020, 22, 7427–7432; (c) Sundstrom, S.; Nguyen, T. S.; May, J. A. Org. Lett. 2020, 22, 1355–1359.

[4] (a) Trubits õn, D.; Mart õnova, J.; Kudrjašova, M.; Erkman, K.; Järving, I.;
Kanger, T. Org. Lett. 2021, 23, 1820–1824; (b) Liang, G.; Rong, J.; Sun, W.;
Chen, G.; Jiang, Y.; Loh, T.-P. Org. Lett. 2018, 20, 7326–7331.

[5] Ma, Y.; Reddy, B. R. P.; Bi, X. Org. Lett. 2019, 21, 9860–9863.

[6] Mao, B.; Tong, M.; Wang, J.; Bai, X.; Chen, Z.; Zhu, X.; Yu, C. Method for catalyzing asymmetric synthesis of chiral β -aminoketone derivative. CN 109748841 (China Patent).

[7] Ding, W.; Hu, J.; Jin, H.; Yu, X.; Wang, S. Synthesis 2018, 50, 107–118.

[8] Roscales, S.; Rincón, Á.; Buxaderas, E.; Cs ákÿ, A. G. *Tetrahedron Lett.* **2012**, *53*, 4721–4724.

7. X-ray crystallography data

The absolute configuration of product **3af** was determined by an X-ray chromatography analysis

ORTEP view with displacement ellipsoids drawn at 50% probably level. Single crystal of **3af** was obtained by recrystallization in DCM, hexane and ⁱPrOH;

CCDC (2126742) contains the supplementary crystallographic data which can be obtained free of charge from The Cambridge Crystallographic Data Centre.

Identification code	yez-20211130
Empirical formula	C ₂₅ H ₁₈ BrNO ₃
Formula weight	460.31
Temperature/K	293(2)
Crystal system	monoclinic
Space group	P21
a/Å	10.61630(10)
b/Å	9.85540(10)
c/Å	10.88780(10)
α/°	90
β /°	105.5520(10)
γ /°	90
Volume/Å ³	1097.460(19)
Z	2
$\rho_{calc}g/cm^3$	1.393
μ /mm ⁻¹	2.760
F(000)	468.0
Crystal size/mm ³	0.3 $ imes$ 0.2 $ imes$ 0.1
Radiation	CuKa (λ = 1.54184)
$2\Theta~$ range for data collection/^	8.43 to 143.074
Index ranges	-13 \leqslant h \leqslant 13, -11 \leqslant k \leqslant 12, -13 \leqslant l \leqslant
Reflections collected	33241
Independent reflections	4019 [$R_{int} = 0.0430, R_{sigma} = 0.0198$]
Data/restraints/parameters	4019/1/271
Goodness-of-fit on F ²	1.090
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0626, wR_2 = 0.1689$

Final R indexes [all data]

Flack parameter

Largest diff. peak/hole / e Å⁻³

Crystal data and structure refinement for compound 3af.

 $R_1 = 0.0640, wR_2 = 0.1708$

0.75/-1.11

-0.006(11)

13

8. Copies of ¹H, ¹³C, and ¹⁹F NMR spectra

(*E*)-2-(3-oxo-3-(*p*-tolyl)prop-1-en-1-yl)isoindoline-1,3-dione (**1b**)

¹H NMR (600 MHz, CDCl₃)

S37

(*E*)-2-(3-(4-chlorophenyl)-3-oxoprop-1-en-1-yl)isoindoline-1,3-dione (**1g**) 1 H NMR (400 MHz, CDCl₃)

(1- b)

(*E*)-2-(3-(4-bromophenyl)-3-oxoprop-1-en-1-yl)isoindoline-1,3-dione (**1h**) 1 H NMR (600 MHz, CDCl₃)

S39

(*E*)-2-(3-(3-bromophenyl)-3-oxoprop-1-en-1-yl)isoindoline-1,3-dione (**1i**) ¹H NMR (600 MHz, CDCl₃)

-10 170 160 150 140 130 120 110 100 f1 (ppm)

(*E*)-2-(3-(2-bromophenyl)-3-oxoprop-1-en-1-yl)isoindoline-1,3-dione (**1**j) 1 H NMR (600 MHz, CDCl₃)

S41

(*E*)-2-(3-oxo-3-(4-(trifluoromethyl)phenyl)prop-1-en-1-yl)isoindoline-1,3-dione (**1k**) ¹H NMR (400 MHz, CDCl₃)

¹³C {¹H} NMR (150 MHz, CDCl₃) \downarrow^{0} \downarrow^{0}

210 110 100 f1 (ppm) 70 30 20 10 0 -10 200 190 180 170 160 . 150 140 130 120 90 80 60 . 50 40

(E)-2-(3-(4-nitrophenyl)-3-oxoprop-1-en-1-yl)isoindoline-1,3-dione (11)

(*E*)-2-(3-(3,4-dichlorophenyl)-3-oxoprop-1-en-1-yl)isoindoline-1,3-dione (**1m**) 1 H NMR (600 MHz, CDCl₃)

S44

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.1 fl (ppt)

(*E*)-2-(3-(naphthalen-2-yl)-3-oxoprop-1-en-1-yl)isoindoline-1,3-dione (**1n**) 1 H NMR (600 MHz CDCl₂)

(*E*)-2-(3-(naphthalen-1-yl)-3-oxoprop-1-en-1-yl)isoindoline-1,3-dione (10) ¹H NMR (600 MHz, CDCl₃)

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 fl (ppm)

¹³C {¹H} NMR (150 MHz, CDCl₃)

(*E*)-2-(3-oxo-3-(thiophen-2-yl)prop-1-en-1-yl)isoindoline-1,3-dione (1q) 1 H NMR (400 MHz, CDCl₃)

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1. fl (ppm)

¹³C {¹H} NMR (100 MHz, CDCl₃)

S47

(*E*)-2-(3-oxo-3-(thiophen-3-yl)prop-1-en-1-yl)isoindoline-1,3-dione ($\mathbf{1r}$) ¹H NMR (600 MHz, CDCl₃)

¹³C {¹H} NMR (150 MHz, CDCl₃)

(*E*)-2-(3-cyclohexyl-3-oxoprop-1-en-1-yl)isoindoline-1,3-dione (**1t**) ¹H NMR (600 MHz, CDCl₃)

ıı (ppm

(*E*)-3-(1*H*-benzo[*d*]imidazol-1-yl)-1-phenylprop-2-en-1-one (1v) ¹H NMR (600 MHz, CDCl₃)

¹³C {¹H} NMR (150 MHz, CDCl₃)

(*R*,*E*)-2-(5-oxo-1,5-diphenylpent-1-en-3-yl)isoindoline-1,3-dione (3aa) ¹H NMR (400 MHz, CDCl₃)

(R,E)-2-(5-oxo-1-phenyl-5-(p-tolyl)pent-1-en-3-yl)isoindoline-1,3-dione (3ba) ¹H NMR (600 MHz, CDCl₃)

(*R*,*E*)-2-(5-oxo-1-phenyl-5-(*m*-tolyl)pent-1-en-3-yl)isoindoline-1,3-dione (3ca) ¹H NMR (400 MHz, CDCl₃)

(R,E)-2-(5-oxo-1-phenyl-5-(*o*-tolyl)pent-1-en-3-yl)isoindoline-1,3-dione (3da) ¹H NMR (600 MHz, CDCl₃)

$(R,E)\mbox{-}2\mbox{-}(5\mbox{-}(4\mbox{-}methoxyphenyl)\mbox{-}5\mbox{-}oxo\mbox{-}1\mbox{-}phenylpent\mbox{-}1\mbox{-}en\mbox{-}3\mbox{-}yl)\mbox{isoindoline\mbox{-}}1,3\mbox{-}dione\mbox{-}(3ea)$

$(R,E)\mbox{-}2\mbox{-}(5\mbox{-}(4\mbox{-}fluorophenyl)\mbox{-}5\mbox{-}ox\mbox{-}1\mbox{-}phenylpent\mbox{-}1\mbox{-}en\mbox{-}3\mbox{-}yl)\mbox{isoindoline\mbox{-}}1,3\mbox{-}dione\mbox{-}(3fa)$

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

 $(\textit{R,E})\mbox{-}2\mbox{-}(5\mbox{-}(4\mbox{-}chlorophenyl)\mbox{-}5\mbox{-}ox\mbox{-}1\mbox{-}phenylpent\mbox{-}1\mbox{-}en\mbox{-}3\mbox{-}yl)\mbox{isoindoline\mbox{-}1,3\mbox{-}dione\mbox{-}(3ga)$

 $(R,E)\mbox{-}2\mbox{-}(5\mbox{-}(4\mbox{-}bromophenyl)\mbox{-}5\mbox{-}oxo\mbox{-}1\mbox{-}phenylpent\mbox{-}1\mbox{-}en\mbox{-}3\mbox{-}yl)\mbox{isoindoline\mbox{-}}1,3\mbox{-}dione (3ha)$

 $(R,E)\mbox{-}2\mbox{-}(5\mbox{-}(3\mbox{-}b\mbox{-}m\mbox{-}b\mbox{-}m\mbox{-})\mbox{-}1\mbox{-}p\mbox{-}h\mbox{-}n\mbox{-}1\mbox{-}1\mbox{-}1\mbox{-}n\mbox{-}1\mb$

(*R*,*E*)-2-(5-(2-bromophenyl)-5-oxo-1-phenylpent-1-en-3-yl)isoindoline-1,3-dione (3ja)

(*R*,*E*)-2-(5-oxo-1-phenyl-5-(4-(trifluoromethyl)phenyl)pent-1-en-3-yl)isoindoline-1,3-dione (3ka)

¹⁹F {¹H}NMR (564 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

(*R*,*E*)-2-(5-(4-nitrophenyl)-5-oxo-1-phenylpent-1-en-3-yl)isoindoline-1,3-dione (3la)

(*R*,*E*)-2-(5-(3,4-dichlorophenyl)-5-oxo-1-phenylpent-1-en-3-yl)isoindoline-1,3-dio ne (3ma)

Ph	.705 .700 .700 .696 .691 .517 .370 .370 .370 .370 .231 .231 .231	.696 .580 .567	.634 .634 .621 .621 .621 .621 .621 .621 .621 .623 .579 .579	.633	000
CI N		999	0000044440000	Ī	0
	>				

(*R*,*E*)-2-(5-(naphthalen-2-yl)-5-oxo-1-phenylpent-1-en-3-yl)isoindoline-1,3-dione (3na)

(*R*,*E*)-2-(5-(naphthalen-1-yl)-5-oxo-1-phenylpent-1-en-3-yl)isoindoline-1,3-dione (30a)

(R,E)-2-(5-(furan-2-yl)-5-oxo-1-phenylpent-1-en-3-yl)isoindoline-1,3-dione (3pa) ¹H NMR (400 MHz, CDCl₃)

$(R,E)\mbox{-}2\mbox{-}(5\mbox{-}0\mbox{-}0\mbox{-}1\mbo$

0 1.1284 1.1284 1.1284 1.1355 1.	- 4.048 4.0028 3.616 3.560 3.560 - 0.000
---	---

(*R*,*E*)-2-(5-oxo-1-phenyl-5-(thiophen-3-yl)pent-1-en-3-yl)isoindoline-1,3-dione (3ra)

(*R*,*E*)-2-(5-oxo-1-phenylhex-1-en-3-yl)isoindoline-1,3-dione (3sa) 1 H NMR (600 MHz, CDCl₃)

(*R*,*E*)-2-(5-cyclohexyl-5-oxo-1-phenylpent-1-en-3-yl)isoindoline-1,3-dione (3ta) ¹H NMR (600 MHz, CDCl₃)

(R,E)-2-(5-oxo-5-phenyl-1-(p-tolyl)pent-1-en-3-yl)isoindoline-1,3-dione (3ab) ¹H NMR (600 MHz, CDCl₃)

(R,E)-2-(1-(4-methoxyphenyl)-5-oxo-5-phenylpent-1-en-3-yl) isoindoline-1,3-dione (3ac)

(R,E)-2-(1-(3-fluorophenyl)-5-oxo-5-phenylpent-1-en-3-yl) isoindoline-1,3-dione (3ad)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

(*R*,*E*)-2-(1-(4-chlorophenyl)-5-oxo-5-phenylpent-1-en-3-yl)isoindoline-1,3-dione (3ae)

 $(R,E)\mbox{-}2\mbox{-}(1\mbox{-}(4\mbox{-}bromophenyl)\mbox{-}5\mbox{-}oxo\mbox{-}5\mbox{-}phenylpent\mbox{-}1\mbox{-}en\mbox{-}3\mbox{-}yl)\mbox{isoindoline\mbox{-}}1,\mbox{3\mbox{-}dione} (3af)$

(*R*,*E*)-2-(5-oxo-5-phenyl-1-(4-(trifluoromethyl)phenyl)pent-1-en-3-yl)isoindoline-1,3-dione (3ag)

(*R*)-2-(1-(benzofuran-2-yl)-3-oxo-3-phenylpropyl)isoindoline-1,3-dione (3ai) ¹H NMR (600 MHz, CDCl₃)

(*R*)-2-(1-(benzo[*b*]thiophen-2-yl)-3-oxo-3-phenylpropyl)isoindoline-1,3-dione (3ak)

¹H NMR (400 MHz, $CDCl_3$)

(*R*,*E*)-2-(1-oxo-1-phenylundec-4-en-3-yl)isoindoline-1,3-dione (3al) ¹H NMR (600 MHz, CDCl₃)

2-((3R,E)-5-(4-bromophenyl)-5-hydroxy-1-phenylpent-1-en-3-yl) isoindoline-1,3-d ione (4+4') (9:1 dr)

2-((3R,E)-5-(4-bromophenyl)-5-hydroxy-1-phenylpent-1-en-3-yl) isoindoline-1,3-d ione (4+4') (4:1 dr)

2-((3R,E)-5-(4-bromophenyl)-5-hydroxy-1-phenylpent-1-en-3-yl)-3-hydroxyisoin dolin-1-one (by-product)

HR-MS (ESI)

(1S,3R,E)-3-amino-1-(4-bromophenyl)-5-phenylpent-4-en-1-ol (5: major)

S91

9. HPLC traces of optically active compounds

Compound 3aa

Compound 3ba

Compound 3ca

Compound 3da

Compound 3ea

Compound 3fa

Compound 3ga

Compound 3ha

Compound 3ha (scale-up version)

Compound 3ia

Compound 3ja

Compound 3ka

Compound 3la

Compound 3ma

Compound 3na

Compound 3oa

Compound 3pa

Compound 3qa

Compound 3ra

Compound 3sa

Compound 3ta

Compound 3ua

Compound 3ab

Compound 3ac

Compound 3ad

Compound 3ae

Compound 3af

Compound 3ag

Compound 3ah

Compound 3ai

Compound 3aj

Compound 3ak

Compound 3al

Compound 3am

Compound 4+4' (9:1 *dr*)

Compound 4+4' (4:1 *dr*)

Compound 6

Compound 7

