Supporting Information

Visible-light mediated cross-coupling of aryl halides with sodium sulfinates via carbonyl-photoredox/nickel dual catalysis

Shan Jiang,^a Zi-Tong Zhang,^a David James Young,^b Lu-Lu Chai,^a Qi Wu^a and Hong-Xi Li*^a

^a College of Chemistry, Chemical Engineering and Materials Science, Soochow University,

Suzhou 215123, People's Republic of China

^bCollege of Engineering, IT and Environment, Charles Darwin University, Darwin, NT 0909, Australia

Table of Contents

Fig. S1	Reaction set-up with a 45 W CFL (a), gram scale reaction set-up with 2×45 W CFLs (b),
the absorbance spectrum of Cl-TXO in DMSO (c), the output spectrum of 45 W CFL (d)S3	
Fig. S2	(a) Emission spectra of Cl-TXO in DMSO $(1 \times 10^{-4} \text{ mol} \cdot \text{L}^{-1})$ in the presence of increasing
2a concentrations excited at $\lambda = 374$ nm. (b) Stern-Volmer plot of I ₀ /I versus 2a concentration in	
Cl-TXO	DMSO solution (I_0 and I represent the intensities of the emission in the absence and
presence	of the quencher)S3
Fig. S3	(a) Emission spectra of Cl-TXO in DMSO $(1 \times 10^{-4} \text{ mol} \cdot \text{L}^{-1})$ in the presence of increasing
1a conce	ntrations excited at $\lambda = 374$ nm. (b) Stern-Volmer plot of I_0/I versus 1a concentration in
Cl-TXO	DMSO solution (I_0 and I represent the intensities of the emission in the absence and
presence	of the quencher)
Fig. S4	The positive-ion ESI mass spectrum of 2,2,6,6-tetramethylpiperidin-1-yl
benzenes	ulfonateS4
Fig. S5	The positive-ion ESI mass spectrum of (2-(phenylsulfonyl)ethene-1,1-diyl)dibenzene. S5
Fig. S6	The positive-ion ESI mass spectrum of (2-(phenylsulfonyl)ethane-1,1-diyl)dibenzene. S5
NMR data of products	
References	
NMR spo	ectraS21

Fig. S1 Reaction set-up with a 45 W CFL (a), gram scale reaction set-up with 2×45 W CFLs (b), the absorbance spectrum of Cl-TXO in DMSO (c), the output spectrum of 45 W CFL (d).

Fig. S2 (a) Emission spectra of Cl-TXO in DMSO $(1 \times 10^{-4} \text{ mol} \cdot \text{L}^{-1})$ in the presence of increasing **2a** concentrations excited at $\lambda = 374$ nm. (b) Stern-Volmer plot of I₀/I versus **2a** concentration in Cl-TXO DMSO solution (I₀ and I represent the intensities of the emission in the absence and presence of the quencher).

Fig. S3 (a) Emission spectra of Cl-TXO in DMSO $(1 \times 10^{-4} \text{ mol} \cdot \text{L}^{-1})$ in the presence of increasing **1a** concentrations excited at $\lambda = 374$ nm. (b) Stern-Volmer plot of I₀/I versus **1a** concentration in Cl-TXO DMSO solution (I₀ and I represent the intensities of the emission in the absence and presence of the quencher).

Fig. S4 The positive-ion ESI mass spectrum of 2,2,6,6-tetramethylpiperidin-1-yl benzenesulfonate.

Fig. S5 The positive-ion ESI mass spectrum of (2-(phenylsulfonyl)ethene-1,1-diyl)dibenzene.

Fig. S6 The positive-ion ESI mass spectrum of (2-(phenylsulfonyl)ethane-1,1-diyl)dibenzene.

NMR data of products

4-(phenylsulfonyl)benzonitrile (3aa)^{S1}

3aa was obtained in 90% yield (43.7 mg) according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.06 (d, *J* = 8.5 Hz, 2H), 7.96 (d, *J* = 7.2 Hz, 2H), 7.81 (d, *J* = 8.5 Hz, 2H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.55 (t, *J* = 7.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 145.9, 140.1, 134.1, 133.1, 129.7, 128.3, 128.0, 117.2, 116.9. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₃H₉NO₂SNa⁺ 266.0246; Found 266.0243.

1-(4-(phenylsulfonyl)phenyl)ethan-1-one (3ba)^{S1}

3ba was obtained in 86% yield (44.7 mg) according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.11-8.00 (m, 4H), 7.96 (d, *J* = 7.1 Hz, 2H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.53 (t, *J* = 7.4 Hz, 2H), 2.62 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 196.7, 145.5, 140.8, 140.4, 133.7, 129.5, 129.1, 128.0, 127.9, 26.9. QTOF-MS *m/z* [M + Na]⁺ Calcd for C₁₄H₁₂O₃SNa⁺ 283.0399; Found 283.0416.

methyl 4-(phenylsulfonyl)benzoate (3ca)^{S1}

3ca was obtained in 87% yield (48.0 mg) according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.15 (d, *J* = 8.7 Hz, 2H), 8.01 (d, *J* = 8.7 Hz, 2H), 7.96 (d, *J* = 7.1 Hz, 2H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.53 (t, *J* = 7.4 Hz, 2H), 3.94 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 165.5, 145.5, 140.8, 134.3, 133.6, 130.5, 129.5, 127.9, 127.7, 52.7. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₄H₁₂O₄SNa⁺ 299.0349; Found 299.0335.

ethyl 4-(phenylsulfonyl)benzoate (3da)^{S1}

3da was obtained in 88% yield (51.0 mg) according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.16 (d, *J* = 8.7 Hz, 2H), 8.01 (d, *J* = 8.7 Hz, 2H), 7.96 (d, *J* = 7.1 Hz, 2H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.53 (t, *J* = 7.4 Hz, 2H), 4.39 (q, *J* = 7.1 Hz, 2H), 1.39 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 165.0, 145.3, 140.8, 134.7, 133.6, 130.4, 129.5, 127.8, 127.7, 61.7, 14.2. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₅H₁₄O₄SNa⁺ 313.0505; Found 313.0515.

1-(phenylsulfonyl)-4-(trifluoromethyl)benzene (3ea)^{S2}

3ea was obtained in 61% yield (34.9 mg) according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.08 (d, *J* = 8.2 Hz, 2H), 7.97 (dt, *J* = 3.5, 2.4 Hz, 2H), 7.77 (d, *J* = 8.3 Hz, 2H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.54 (t, *J* = 7.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 145.2, 140.6, 134.9 (q, ²*J*_{C-F} = 33.2 Hz), 133.8, 129.6, 128.2, 127.9, 126.5 (q, ³*J*_{C-F} = 3.7 Hz), 123.1 (d, ¹*J*_{C-F} = 273.3 Hz). ¹⁹F NMR (377 MHz, CDCl₃, ppm) δ -63.2. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₃H₉F₃O₂SNa⁺ 309.0168; Found 309.0177.

4-(phenylsulfonyl)benzaldehyde (3fa)^{S1}

3fa was obtained in 58% yield (28.5 mg) according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 10.08 (s, 1H), 8.12 (d, *J* = 8.3 Hz, 2H), 7.99 (dd, *J* = 13.2, 7.8 Hz, 4H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.54 (t, *J* = 7.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 190.7, 146.7, 140.6, 139.1, 133.8, 130.3, 129.6, 128.4, 128.0. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₃H₁₀O₃SNa⁺ 269.0243; Found 269.0268.

1-nitro-4-(phenylsulfonyl)benzene (3ga)^{S1}

3ga was obtained in 90% yield (47.3 mg) according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.46-8.23 (m, 2H), 8.23-8.05 (m, 2H), 8.05-7.91 (m, 2H), 7.74-7.61 (m, 1H), 7.57 (dt, *J* = 8.3, 5.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 150.3, 147.4, 140.0, 134.1, 129.7, 129.0, 128.0, 124.5. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₂H₉NO₄SNa⁺ 286.0144; Found 286.0173.

4-(phenylsulfonyl)-1,1'-biphenyl (3ha)^{S1}

3ha was obtained in 64% yield (37.6 mg) according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.00 (t, *J* = 7.5 Hz, 4H), 7.70 (d, *J* = 8.5 Hz, 2H), 7.63-7.49 (m, 5H), 7.43 (dt, *J* = 22.2, 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 146.2, 141.7, 140.1, 139.2, 133.2, 129.3, 129.1, 128.6, 128.2, 128.0, 127.7, 127.4. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₈H₁₄O₂SNa⁺ 317.0607; Found 317.0614.

1-(tert-butyl)-4-(phenylsulfonyl)benzene (3ia)^{S3}

3ia was obtained in 54% yield (29.6 mg) according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.95 (d, *J* = 6.9 Hz, 2H), 7.86 (d, *J* = 8.7 Hz, 2H), 7.55 (t, *J* = 7.3 Hz, 1H), 7.53-7.47 (m, 4H), 1.31 (s, 9H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 157.1, 142.0, 138.6, 133.0, 129.2, 127.6, 127.5, 126.3, 35.2, 31.0. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₆H₁₈O₂SNa⁺ 297.0920; Found 297.0895.

1-fluoro-4-(phenylsulfonyl)benzene (3ja)^{S4}

3ja was obtained in 75% yield (35.4 mg) according to the general procedure (petroleum

ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.02-7.87 (m, 4H), 7.58 (t, J = 7.3 Hz, 1H), 7.51 (t, J = 7.4 Hz, 2H), 7.22-7.14 (m, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 165.5 (d, ¹ $J_{C-F} = 256.1$ Hz), 141.5, 137.7 (d, ⁴ $J_{C-F} = 3.0$ Hz), 133.3, 130.5 (d, ³ $J_{C-F} = 9.6$ Hz), 129.4, 127.6, 116.6 (d, ² $J_{C-F} = 22.7$ Hz). ¹⁹F NMR (377 MHz, CDCl₃, ppm) δ -104.2. QTOF-MS m/z [M + Na]⁺ Calcd for C₁₂H₉FO₂SNa⁺ 259.0199; Found 259.0184.

1-methoxy-4-(phenylsulfonyl)benzene (3ka)^{S1}

3ka was obtained in 35% yield (17.4 mg) based on 1-bromo-4-methoxybenzene, 57% yield (28.3 mg) based on 1-iodo-4-methoxybenzene according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.90 (dd, *J* = 14.8, 8.0 Hz, 4H), 7.54 (t, *J* = 7.3 Hz, 1H), 7.49 (t, *J* = 7.3 Hz, 2H), 6.97 (d, *J* = 8.9 Hz, 2H), 3.84 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 163.4, 142.3, 133.1, 132.8, 130.0, 129.2, 127.3, 114.5, 55.6. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₃H₁₂O₃SNa⁺ 271.0399; Found 271.0396.

3-(phenylsulfonyl)benzonitrile (3la)^{S1}

3la was obtained in 61% yield (29.6 mg) according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.22 (s, 1H), 8.18 (d, *J* = 8.0 Hz, 1H), 7.96 (d, *J* = 7.2 Hz, 2H), 7.84 (d, *J* = 7.8 Hz, 1H), 7.65 (dd, *J* = 15.1, 7.5 Hz, 2H), 7.57 (t, *J* = 7.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 143.5, 140.2, 136.2, 134.0, 131.5, 131.3, 130.4, 129.7, 127.9, 117.0, 114.0. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₃H₉NO₂SNa⁺ 266.0246; Found 266.0258.

methyl 3-(phenylsulfonyl)benzoate (3ma)

3ma was obtained in 49% yield (27.0 mg) according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. M.P. = 60.5-61.9 °C. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.60 (s,

1H), 8.23 (d, J = 7.8 Hz, 1H), 8.14 (d, J = 8.5 Hz, 1H), 7.97 (d, J = 7.1 Hz, 2H), 7.74-7.56 (m, 2H), 7.53 (t, J = 7.4 Hz, 2H), 3.95 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 165.3, 142.4, 141.0, 134.1, 133.5, 131.6, 131.6, 129.6, 129.5, 128.8, 127.8, 52.6. IR (KBr disk) 3076, 2954, 2918, 2850, 1716, 1597, 1444, 1317, 1266, 1153, 1125, 1094, 1023, 999, 974, 925, 847, 820, 744, 712, 684 cm⁻¹. QTOF-MS m/z [M + Na]⁺ Calcd for C₁₄H₁₂O₄SNa⁺ 299.0349; Found 299.0343.

2-(phenylsulfonyl)benzonitrile (3na)^{S1}

3na was obtained in 47% yield (22.8 mg) according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.35 (d, *J* = 7.1 Hz, 1H), 8.09 (d, *J* = 7.2 Hz, 2H), 7.81 (t, *J* = 6.8 Hz, 2H), 7.69 (t, *J* = 7.6 Hz, 1H), 7.65 (t, *J* = 7.4 Hz, 1H), 7.57 (t, *J* = 7.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 143.7, 139.5, 135.7, 134.2, 133.4, 133.3, 129.8, 129.4, 128.7, 115.6, 111.5. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₃H₉NO₂SNa⁺ 266.0246; Found 266.0251.

1-(2-(phenylsulfonyl)phenyl)ethan-1-one (3oa)^{S5}

30a was obtained in 56% yield (29.1 mg) according to the general procedure (petroleum ether/EtOAc, 10:1): colorless oil. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.05 (d, *J* = 7.8 Hz, 1H), 7.95 (d, *J* = 7.0 Hz, 2H), 7.65-7.47 (m, 5H), 7.30 (d, *J* = 7.5 Hz, 1H), 2.69 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 203.3, 142.4, 141.3, 138.1, 133.4, 133.4, 130.0, 129.9, 129.1, 128.0, 126.0, 32.0. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₄H₁₂O₃SNa⁺ 283.0399; Found 283.0424.

phenyl(2-(phenylsulfonyl)phenyl)methanone (3pa)^{S1}

3pa was obtained in 59% yield (38.0 mg) according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.22-8.09 (m, 1H), 7.92 (d, *J* = 7.2 Hz, 2H), 7.79 (d, *J* = 7.1 Hz, 2H), 7.64 (d, *J* = 9.1 Hz, 2H), 7.62-7.53 (m, 2H), 7.53-7.42 (m,

4H), 7.38-7.28 (m, 1H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 195.7, 141.3, 140.0, 139.7, 136.8, 133.7, 133.3, 132.9, 130.2, 130.2, 130.1, 129.1, 128.5, 128.2, 128.1. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₉H₁₄O₃SNa⁺ 345.0556; Found 345.0551.

methyl 2-(phenylsulfonyl)benzoate (3qa)^{S6}

3qa was obtained in 53% yield (29.2 mg) according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.20-8.10 (m, 1H), 7.97 (d, *J* = 7.1 Hz, 2H), 7.67-7.61 (m, 2H), 7.61-7.55 (m, 2H), 7.52 (t, *J* = 7.4 Hz, 2H), 3.92 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 167.7, 141.5, 139.0, 133.3, 133.2, 130.9, 130.2, 129.2, 129.0, 127.8, 53.0, 29.7. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₄H₁₂O₄SNa⁺ 299.0349; Found 299.0349.

4-(phenylsulfonyl)-2-(trifluoromethyl)benzonitrile (3ra)^{S1}

3ra was obtained in 91% yield (56.6 mg) according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.33 (s, 1H), 8.24 (d, *J* = 8.1 Hz, 1H), 8.10-7.88 (m, 3H), 7.68 (t, *J* = 7.4 Hz, 1H), 7.59 (t, *J* = 7.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 146.6, 139.3, 135.8, 134.6, 134.3 (d, ²*J*_{C-F} = 33.7 Hz), 131.3, 130.0, 128.2, 125.8 (q, ³*J*_{C-F} = 4.5 Hz), 121.5 (d, ¹*J*_{C-F} = 274.9 Hz), 114.5, 114.0. ¹⁹F NMR (377 MHz, CDCl₃, ppm) δ -62.1. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₄H₈F₃NO₂SNa⁺ 334.0120; Found 334.0133.

3-(phenylsulfonyl)-5-(trifluoromethyl)benzonitrile (3sa)^{S1}

3sa was obtained in 71% yield (44.2 mg) according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.39 (d, *J* = 12.6 Hz, 2H), 8.08 (s, 1H), 7.99 (d, *J* = 7.1 Hz, 2H), 7.69 (t, *J* = 7.4 Hz, 1H), 7.61 (t, *J* = 7.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 145.1, 139.3, 134.6, 134.3, 133.5 (d, ²*J*_{C-F} = 34.9 Hz), 133.0 (q, ³*J*_{C-F} = 3.4 Hz), 130.0, 128.3 (q, ³*J*_{C-F} = 3.6 Hz), 128.2, 122.0 (q, ¹*J*_{C-F} = 273.8 Hz), 115.7, 115.2. ¹⁹F

NMR (377 MHz, CDCl₃, ppm) δ -63.1. QTOF-MS m/z [M + Na]⁺ Calcd for C₁₄H₈F₃NO₂SNa⁺ 334.0120; Found 334.0137.

5-(phenylsulfonyl)benzo[d][1,3]dioxole (3ta)^{S1}

3ta was obtained in 26% yield (13.6 mg) based on 5-bromobenzo[d][1,3]dioxole, 43% yield (22.5 mg) based on 5-iodobenzo[d][1,3]dioxole according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.91 (d, *J* = 7.0 Hz, 2H), 7.59-7.53 (m, 2H), 7.50 (t, *J* = 7.3 Hz, 2H), 7.32 (d, *J* = 1.8 Hz, 1H), 6.88 (d, *J* = 8.2 Hz, 1H), 6.05 (s, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 151.9, 148.4, 142.0, 134.9, 133.0, 129.2, 127.4, 123.6, 108.5, 107.9, 102.4. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₃H₁₀O₄SNa⁺ 285.0192; Found 285.0197.

2-(phenylsulfonyl)naphthalene (3ua)^{S1}

3ua was obtained in 54% yield (28.9 mg) according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.58 (s, 1H), 8.00 (t, *J* = 7.1 Hz, 3H), 7.93 (d, *J* = 8.7 Hz, 1H), 7.87 (t, *J* = 7.8 Hz, 2H), 7.63 (ddd, *J* = 14.4, 7.1, 1.5 Hz, 2H), 7.57-7.46 (m, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 141.6, 138.4, 135.0, 133.2, 132.2, 129.7, 129.4, 129.3, 129.2, 129.1, 127.9, 127.7, 127.6, 122.7. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₆H₁₂O₂SNa⁺ 291.0450; Found 291.0454.

2-(phenylsulfonyl)pyridine (3va)^{S7}

3va was obtained in 63% yield (27.6 mg) according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.68 (d, *J* = 4.7 Hz, 1H), 8.21 (d, *J* = 7.9 Hz, 1H), 8.07 (d, *J* = 7.1 Hz, 2H), 7.93 (td, *J* = 7.8, 1.7 Hz, 1H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.54 (t, *J* = 7.5 Hz, 2H), 7.46 (ddd, *J* = 7.7, 4.7, 1.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃,

ppm) δ 158.9, 150.5, 139.0, 138.1, 133.8, 129.1, 128.9, 126.9, 122.2. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₁H₉NO₂SNa⁺ 242.0246; Found 242.0251.

6-(phenylsulfonyl)picolinonitrile (3wa)^{S1}

3wa was obtained in 50% yield (24.4 mg) according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.42 (dd, *J* = 8.0, 1.0 Hz, 1H), 8.20-7.98 (m, 3H), 7.84 (dd, *J* = 7.8, 1.0 Hz, 1H), 7.69 (t, *J* = 7.5 Hz, 1H), 7.59 (t, *J* = 7.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 160.5, 139.7, 137.4, 134.5, 134.3, 131.1, 129.4, 129.4, 124.8, 115.7. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₂H₈N₂O₂SNa⁺ 267.0199; Found 267.0187.

2-phenyl-6-(phenylsulfonyl)pyridine (3xa)^{S8}

3xa was obtained in 42% yield (24.8 mg) according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.16 (d, *J* = 7.1 Hz, 2H), 8.11 (d, *J* = 7.2 Hz, 1H), 8.02-7.91 (m, 3H), 7.87 (d, *J* = 7.4 Hz, 1H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.56 (t, *J* = 7.5 Hz, 2H), 7.49-7.40 (m, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 158.7, 158.0, 138.9, 138.7, 137.1, 133.7, 130.1, 129.2, 128.9, 128.8, 127.0, 123.1, 119.8. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₇H₁₃NO₂SNa⁺ 318.0559; Found 318.0544.

4-(phenylsulfonyl)pyridine (3ya)^{S1}

3ya was obtained in 72% yield (31.5 mg) according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.83 (dd, *J* = 4.5, 1.6 Hz, 2H), 7.98 (d, *J* = 7.1 Hz, 2H), 7.77 (dd, *J* = 4.5, 1.6 Hz, 2H), 7.65 (t, *J* = 7.4 Hz, 1H), 7.57 (t, *J* = 7.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 151.2, 149.8, 139.7, 134.2, 129.7, 128.2, 120.6. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₁H₉NO₂SNa⁺ 242.0246; Found 242.0253.

2-methyl-4-(phenylsulfonyl)pyridine (3za)^{S9}

3za was obtained in 52% yield (24.2 mg) according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.69 (d, *J* = 5.2 Hz, 1H), 7.97 (d, *J* = 8.3 Hz, 2H), 7.64 (t, *J* = 8.0 Hz, 2H), 7.56 (t, *J* = 7.8 Hz, 3H), 2.64 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 160.7, 150.6, 149.9, 139.9, 134.1, 129.6, 128.1, 120.1, 117.7, 24.7. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₂H₁₁NO₂SNa⁺ 256.0403; Found 256.0432.

3-(phenylsulfonyl)quinoline (3a'a)^{S2}

3a'a was obtained in 88% yield (47.3 mg) according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 9.28 (d, *J* = 2.3 Hz, 1H), 8.83 (d, *J* = 2.1 Hz, 1H), 8.17 (d, *J* = 8.5 Hz, 1H), 8.04 (d, *J* = 7.1 Hz, 2H), 7.98 (d, *J* = 8.2 Hz, 1H), 7.89 (ddd, *J* = 8.5, 7.0, 1.4 Hz, 1H), 7.69 (ddd, *J* = 8.1, 7.1, 1.0 Hz, 1H), 7.61 (t, *J* = 7.3 Hz, 1H), 7.55 (t, *J* = 7.3 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 149.4, 147.1, 141.0, 137.0, 134.7, 133.8, 132.8, 129.6, 129.6, 129.2, 128.4, 127.8, 126.4. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₅H₁₁NO₂SNa⁺ 292.0403; Found 292.0380.

2-(phenylsulfonyl)quinoline (3b'a)^{S1}

3b'a was obtained in 45% yield (24.1 mg) according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.39 (d, *J* = 8.5 Hz, 1H), 8.30-8.07 (m, 4H), 7.89 (d, *J* = 8.1 Hz, 1H), 7.80 (t, *J* = 7.7 Hz, 1H), 7.67 (t, *J* = 7.5 Hz, 1H), 7.61 (t, *J* = 7.3 Hz, 1H), 7.54 (t, *J* = 7.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 158.1, 147.5, 139.1, 138.7, 133.7, 131.0, 130.4, 129.2, 129.1, 129.1, 128.9, 127.7, 117.7. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₅H₁₁NO₂SNa⁺ 292.0403; Found 292.0378.

4-((4-fluorophenyl)sulfonyl)benzonitrile (3ab)^{S1}

3ab was obtained in 83% yield (43.3 mg) according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.04 (d, *J* = 8.6 Hz, 2H), 7.97 (dd, *J* = 8.9, 5.0 Hz, 2H), 7.81 (d, *J* = 8.6 Hz, 2H), 7.26-7.19 (m, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 166.0 (d, ¹*J*_{C-F} = 257.6 Hz), 145.7, 136.2, 133.2, 130.9 (d, ³*J*_{C-F} = 9.6 Hz), 128.2, 117.1, 117.1 (d, ²*J*_{C-F} = 22.7 Hz), 117.1. ¹⁹F NMR (377 MHz, CDCl₃, ppm) δ -102.3. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₃H₈FNO₂SNa⁺ 284.0152; Found 284.0167.

4-((4-chlorophenyl)sulfonyl)benzonitrile (3ac)^{S2}

3ac was obtained in 57% yield (31.6 mg) according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.04 (d, *J* = 8.7 Hz, 2H), 7.89 (d, *J* = 8.8 Hz, 2H), 7.81 (d, *J* = 8.7 Hz, 2H), 7.52 (d, *J* = 8.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 145.5, 141.0, 138.6, 133.2, 130.0, 129.4, 128.3, 117.2, 117.0. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₃H₈ClNO₂SNa⁺ 299.9856; Found 299.9878.

4-tosylbenzonitrile (3ad)^{S1}

3ad was obtained in 65% yield (33.4 mg) according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.04 (d, *J* = 8.6 Hz, 2H), 7.83 (d, *J* = 8.3 Hz, 2H), 7.79 (d, *J* = 8.6 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 2.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 146.3, 145.3, 137.1, 133.0, 130.3, 128.1, 128.0, 117.2, 116.7, 21.6. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₄H₁₁NO₂SNa⁺ 280.0403; Found 280.0431.

4-((4-(tert-butyl)phenyl)sulfonyl)benzonitrile (3ae)^{S1}

3ae was obtained in 89% yield (53.2mg) according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.05 (d, *J* = 8.5 Hz, 2H), 7.86 (d, *J* = 8.6 Hz, 2H), 7.79 (d, *J* = 8.5 Hz, 2H), 7.55 (d, *J* = 8.6 Hz, 2H), 1.32 (s, 9H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 158.2, 146.2, 137.0, 133.0, 128.2, 127.9, 126.7, 117.2, 116.7, 35.3, 31.0. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₇H₁₇NO₂SNa⁺ 322.0872; Found 322.0859.

4-((4-methoxyphenyl)sulfonyl)benzonitrile (3af)^{S1}

3af was obtained in 59% yield (32.2 mg) according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.02 (d, *J* = 8.7 Hz, 2H), 7.88 (d, *J* = 9.0 Hz, 2H), 7.78 (d, *J* = 8.7 Hz, 2H), 7.00 (d, *J* = 9.0 Hz, 2H), 3.86 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 164.1, 146.6, 133.0, 131.4, 130.3, 128.0, 117.2, 116.5, 114.9, 55.8. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₄H₁₁NO₃SNa⁺ 296.0352; Found 296.0359.

4-(m-tolylsulfonyl)benzonitrile (3ag)^{S1}

3ag was obtained in 55% yield (28.3 mg) according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.05 (d, *J* = 8.4 Hz, 2H), 7.80 (d, *J* = 8.5 Hz, 2H), 7.75 (s, 2H), 7.47-7.39 (m, 2H), 2.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 146.0, 140.0, 139.9, 134.9, 133.1, 129.5, 128.3, 128.2, 125.2, 117.2, 116.8, 21.4. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₄H₁₁NO₂SNa⁺ 280.0403; Found 280.0386.

4-((3-(trifluoromethyl)phenyl)sulfonyl)benzonitrile (3ah)^{S1}

3ah was obtained in 62% yield (38.6 mg) according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.22 (s, 1H), 8.14 (d, *J* = 7.9 Hz, 1H), 8.08 (d, *J* = 8.7 Hz, 2H), 7.89 (d, *J* = 7.8 Hz, 1H), 7.84 (d, *J* = 8.7 Hz, 2H), 7.72 (t, *J* = 7.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 144.9, 141.6, 133.3, 132.5 (d, ²*J*_{C-F} = 33.7 Hz),

131.2, 130.7 (q, ${}^{3}J_{C-F} = 3.5 \text{ Hz}$), 130.5, 128.5, 125.0 (q, ${}^{3}J_{C-F} = 3.9 \text{ Hz}$), 122.9 (d, ${}^{1}J_{C-F} = 273.1 \text{ Hz}$), 117.6, 116.9. ${}^{19}\text{F}$ NMR (377 MHz, CDCl₃, ppm) δ -62.9. QTOF-MS m/z [M + Na]⁺ Calcd for C₁₄H₈F₃NO₂SNa⁺ 334.0120; Found 334.0134.

4-((3,5-difluorophenyl)sulfonyl)benzonitrile (3ai)^{S1}

3ai was obtained in 82% yield (45.8 mg) according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.06 (d, *J* = 8.6 Hz, 2H), 7.85 (d, *J* = 8.6 Hz, 2H), 7.48 (d, *J* = 3.9 Hz, 2H), 7.07 (t, *J* = 8.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 163.1 (dd, ¹*J*_{C-F} = 256.9 Hz), 144.5, 143.5 (t, ³*J*_{C-F} = 8.2 Hz), 133.4, 128.6, 117.8, 116.9, 111.6 (dd, ²*J*_{C-F} = 28.4 Hz), 109.8 (t, ²*J*_{C-F} = 24.9 Hz). ¹⁹F NMR (377 MHz, CDCl₃, ppm) δ -103.9. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₃H₇F₂NO₂SNa⁺ 302.0058; Found 302.0074.

4-(mesitylsulfonyl)benzonitrile (3aj)^{S1}

3aj was obtained in 58% yield (33.1 mg) according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.88 (d, *J* = 8.5 Hz, 2H), 7.77 (d, *J* = 8.5 Hz, 2H), 6.98 (s, 2H), 2.57 (s, 6H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 147.6, 144.4, 140.3, 132.8, 132.5, 132.3, 126.8, 117.3, 116.3, 22.8, 21.1. QTOF-MS *m/z* [M + Na]⁺ Calcd for C₁₆H₁₅NO₂SNa⁺ 308.0716; Found 308.0733.

4-(naphthalen-2-ylsulfonyl)benzonitrile (3ak)^{S1}

3ak was obtained in 60% yield (35.2 mg) according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.59 (s, 1H), 8.11 (d, *J* = 8.6 Hz, 2H), 7.99 (dd, *J* = 13.4, 8.3 Hz, 2H), 7.90 (d, *J* = 8.0 Hz, 1H), 7.84 (dd, *J* = 8.7, 1.9 Hz, 1H), 7.79 (d, *J* = 8.6 Hz, 2H), 7.73-7.60 (m, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 145.9, 136.8, 135.3, 133.1, 132.2, 130.1, 129.9, 129.7, 129.5, 128.3, 128.0, 128.0, 122.4, 117.2, 116.9.

QTOF-MS m/z [M + Na]⁺ Calcd for C₁₇H₁₁NO₂SNa⁺ 316.0403; Found 316.0434.

4-(pyridin-3-ylsulfonyl)benzonitrile (3al)^{S10}

3al was obtained in 50% yield (24.4 mg) according to the general procedure (petroleum ether/EtOAc, 10:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 9.16 (d, *J* = 2.0 Hz, 1H), 8.85 (dd, *J* = 4.8, 1.4 Hz, 1H), 8.23 (ddd, *J* = 8.1, 2.3, 1.7 Hz, 1H), 8.09 (d, *J* = 8.7 Hz, 2H), 7.85 (d, *J* = 8.7 Hz, 2H), 7.51 (ddd, *J* = 8.1, 4.9, 0.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 154.4, 148.9, 144.9, 137.0, 135.5, 133.4, 128.4, 124.1, 117.6, 116.9. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₂H₈N₂O₂SNa⁺ 267.0199; Found 267.0187.

8-chloro-3-(phenylsulfonyl)quinolone (3c'a)^{S1}

3c'a was obtained in 80% yield (48.5 mg) according to the general procedure (petroleum ether/EtOAc, 5:1): white solid. ¹H NMR (400 MHz, CDCl₃, ppm) δ 9.37 (d, *J* = 2.2 Hz, 1H), 8.85 (d, *J* = 2.2 Hz, 1H), 8.03 (dd, *J* = 5.3, 3.4 Hz, 2H), 7.99 (dd, *J* = 7.5, 1.2 Hz, 1H), 7.91 (dd, *J* = 8.2, 1.1 Hz, 1H), 7.70-7.58 (m, 2H), 7.58-7.51 (m, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 147.8, 145.5, 140.6, 137.2, 135.8, 134.1, 134.0, 132.7, 129.7, 128.4, 128.2, 127.9, 127.8. QTOF-MS *m*/*z* [M + Na]⁺ Calcd for C₁₅H₁₀ClNO₂SNa⁺ 326.0013; Found 326.0028.

N-phenyl-2-(phenylsulfonyl)benzamide (3d'a)

3d'a was obtained in 83% yield (56.0 mg) according to the general procedure (petroleum ether/EtOAc, 3:1): white solid. M.P. = 185.6-187.2 °C. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.24-8.12 (m, 2H), 7.97-7.78 (m, 2H), 7.70-7.59 (m, 3H), 7.55 (dd, J = 14.6, 7.5 Hz, 3H), 7.41 (t,

J = 7.8 Hz, 2H), 7.36 (t, J = 7.9 Hz, 2H), 7.17 (t, J = 7.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 164.9, 140.2, 138.1, 137.6, 136.7, 133.8, 133.7, 130.5, 130.0, 129.2, 129.1, 129.1, 128.1, 124.9, 120.2. IR (KBr disk) 3255, 3197, 3134, 3066, 2353, 2165, 1962, 1662, 1598, 1540, 1492, 1441, 1315, 1264, 1156, 1120, 1085, 1055, 1024, 998, 971, 924, 888, 840, 754, 684 cm⁻¹. QTOF-MS m/z [M + Na]⁺ Calcd for C₁₉H₁₅NO₃SNa⁺ 360.0665; Found 360.0687.

4-((4-(9H-carbazol-9-yl)phenyl)sulfonyl)benzonitrile (4)

A 10 mL test tube was charged with 4-((4-fluorophenyl)sulfonyl)benzonitrile (0.4 mmol), carbazole (0.4 mmol), K₂CO₃ (0.6 mmol) in degased, dry DMF (6 mL).The reaction was stirred under an nitrogen atmosphere at 100 °C for 24 h. Next, the mixture was cooled to room temperature and poured into ice water slowly, stired for 30 min. After that, this mixture was filtered. The filter cake was dried via suction filtration, washed with water, distilled water, anhydrous methanol, respectively. The crude product was obtained in 91% yiled (148.5 mg), white solid. M.P. = 202.8-204.7 °C. ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.14 (dd, *J* = 15.7, 8.0 Hz, 6H), 7.84 (d, *J* = 8.4 Hz, 2H), 7.78 (d, *J* = 8.6 Hz, 2H), 7.41 (q, *J* = 8.3 Hz, 4H), 7.32 (t, *J* = 7.2 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 145.6, 143.3, 139.8, 138.0, 133.3, 129.9, 128.4, 127.3, 126.4, 124.1, 121.2, 120.6, 117.2, 117.1, 109.6. IR (KBr disk) 3098, 3057, 2231, 1587, 1500, 1443, 1312, 1240, 1212, 1148, 1100, 1011, 972, 934, 909, 839, 794, 746, 721, 679, 626 cm⁻¹. QTOF-MS *m*/z [M + Na]⁺ Calcd for C₂₅H₁₆N₂O₂SNa⁺ 431.0825; Found 431.0841.

References

- S1 D. L. Zhu, Q. Wu, H. Y. Li, H. X. Li and J. P. Lang, Hantzsch ester as a visible-light photoredox catalyst for transition-metal-free coupling of arylhalides and arylsulfinates. *Chem. Eur. J.*, 2020, 26, 3484-3488.
- M. J. Cabrera-Afonso, Z. P. Lu, C. B. Kelly, S. B. Lang, R. Dykstra, O. Gutierrez and G. A. Molander, Engaging sulfinate salts via Ni/photoredox dual catalysis enables facile Csp²–SO₂R coupling, *Chem. Sci.*, 2018, 9, 3186-3191.
- S3 N. Umierski and G. Manolikakes, Metal-free synthesis of diaryl sulfones from arylsulfinic acid salts and diaryliodonium salts, *Org. Lett.*, 2013, 15, 188-191.
- S4 D. H. Kim, J. Lee and A. Lee, Visible-light-driven silver-catalyzed one-pot approach: A selective synthesis of diaryl sulfoxides and diaryl sulfones, *Org. Lett.*, 2018, 20, 764-767.
- S5 R. Leardini, H. McNab, M. Minozzi and D. Nanni, Thermal decomposition of tert-butyl ortho-(phenylsulfanyl)- and ortho-(phenylsulfonyl)phenyliminoxyperacetates: The reactivity of thio-substituted iminyl radicals, *J. Chem. Soc. Perkin Trans.* 1, 2001, 9, 1072-1078.
- S6 C. Shen, J. Xu, W. Yu and P. Zhang, A highly active and easily recoverable chitosan@copper catalyst for the C–S coupling and its application in the synthesis of zolimidine, *Green Chem.*, 2014, **16**, 3007-3012.
- S7 T. Thierry, E. Pfund and T. Lequeux, Metal-free aminomethylation of aromatic sulfones promoted by Eosin Y, *Chem. Eur.*, J. 2021, 27, 14826-14830.
- S8 B. Qu, L. P. Samankumara, J. Savoie, D. R. Fandrick, N. Haddad, X. Wei, S. Ma, H. Lee, S. Rodriguez, C. A. Busacca, N. K. Yee, J. J. Song and C. H. Senanayake, Synthesis of pyridyl-dihydrobenzooxaphosphole ligands and their application in asymmetric hydrogenation of unfunctionalized alkenes, *J. Org. Chem.*, 2014, **79**, 993-1000.
- S9 D. Moser, Y. Duan, F. Wang, Y. Ma, M. J. O'Neill and J. Cornella, Selective functionalization of aminoheterocycles by a pyrylium salt, *Angew. Chem. Int. Ed.*, 2018, 57, 11035-11039.
- S10 H. Yue, C. Zhu and M. Rueping, Cross-coupling of sodium sulfinates with aryl, heteroaryl, and vinyl halides by nickel/photoredox dual catalysis, *Angew. Chem. Int. Ed.*, 2018, 57, 1371-1375.

NMR spectra

Fig. S7 The ¹H (400 MHz), ¹³C (101 MHz) NMR spectra for 4-(phenylsulfonyl)benzonitrile (**3aa**) in CDCl₃

7.82 7.79 7.64 7.57 7.55 7.55

Fig. S8 The ¹H (400 MHz), ¹³C (101 MHz) NMR spectra for 1-(4-(phenylsulfonyl)phenyl)ethan-1-one (**3ba**) in CDCl₃

Fig. S9 The ¹H (400 MHz), ¹³C (101 MHz) NMR spectra for methyl 4-(phenylsulfonyl)benzoate (**3ca**) in CDCl₃

Fig. S10 The ¹H (400 MHz), ¹³C (101 MHz) NMR spectra for ethyl 4-(phenylsulfonyl)benzoate (**3da**) in CDCl₃

Fig. S11 The ¹H (400 MHz), ¹³C (101 MHz), ¹⁹F (377 MHz) NMR spectra for 1-(phenylsulfonyl)-4-(trifluoromethyl)benzene (**3ea**) in CDCl₃

Fig. S12 The ¹H (400 MHz), ¹³C (101 MHz) NMR spectra for 4-(phenylsulfonyl)benzaldehyde (**3fa**) in CDCl₃

Fig. S13 The ¹H (400 MHz), ¹³C (101 MHz) NMR spectra for 1-nitro-4-(phenylsulfonyl)benzene (3ga) in CDCl₃

8.34 8.15 8.15 8.13 7.99 7.97 7.97 7.56 - 7.27

Fig. S14 The ¹H (400 MHz), ¹³C (101 MHz) NMR spectra for 4-(phenylsulfonyl)-1,1'-biphenyl (**3ha**) in CDCl₃

Fig. S15 The $^{1}\mathrm{H}$ (400 MHz), ¹³C (101 spectra MHz) NMR for

Fig. S16 The ¹H (400 MHz), ¹³C (101 MHz), ¹⁹F (377 MHz) NMR spectra for 1-fluoro-4-(phenylsulfonyl)benzene (3ja) in CDCl₃

Fig. S17 The ¹H (400 MHz), ¹³C (101 MHz) NMR spectra for 1-methoxy-4-(phenylsulfonyl)benzene (3ka) in CDCl₃

Fig. S18 The ¹H (400 MHz), ¹³C (101 MHz) NMR spectra for 3-(phenylsulfonyl)benzonitrile (**3la**) in CDCl₃

Fig. S19 The ¹H (400 MHz), ¹³C (101 MHz) NMR spectra for methyl 3-(phenylsulfonyl)benzoate (**3ma**) in CDCl₃

Fig. S20 The ¹H (400 MHz), ¹³C (101 MHz) NMR spectra for 2-(phenylsulfonyl)benzonitrile (**3na**) in CDCl₃

Fig. S23 The ¹H (400 MHz), ¹³C (101 MHz) NMR spectra for methyl 2-(phenylsulfonyl)benzoate (**3qa**) in CDCl₃

Fig. S24 The ¹H (400 MHz), ¹³C (101 MHz), ¹⁹F (377 MHz) NMR spectra for 4-(phenylsulfonyl)-2-(trifluoromethyl)benzonitrile (**3ra**) in CDCl₃

Fig. S25 The ¹H (400 MHz), ¹³C (101 MHz), ¹⁹F (377 MHz) NMR spectra for 3-(phenylsulfonyl)-5-(trifluoromethyl)benzonitrile (**3sa**) in CDCl₃

Fig. S26 The ¹H (400 MHz), ¹³C (101 MHz) NMR spectra for 5-(phenylsulfonyl)benzo[d][1,3]dioxole (3ta) in CDCl₃

Fig. S27 The ¹H (400 MHz), ¹³C (101 MHz) NMR spectra for 2-(phenylsulfonyl)naphthalene (**3ua**) in CDCl₃

Fig. S28 The ¹H (400 MHz), ¹³C (101 MHz) NMR spectra for 2-(phenylsulfonyl)pyridine (**3va**) in CDCl₃

Fig. S29 The ¹H (400 MHz), ¹³C (101 MHz) NMR spectra for 6-(phenylsulfonyl)picolinonitrile (**3wa**) in CDCl₃

Fig. S31 The ¹H (400 MHz), ¹³C (101 MHz) NMR spectra for 4-(phenylsulfonyl)pyridine (**3ya**) in CDCl₃

Fig. S32 The $^{1}\mathrm{H}$ (400 MHz), ¹³C (101 MHz) NMR spectra for

Fig. S33 The ¹H (400 MHz), ¹³C (101 MHz) NMR spectra for 3-(phenylsulfonyl)quinoline (**3a'a**) in CDCl₃

Fig. S34 The ¹H (400 MHz), ¹³C (101 MHz) NMR spectra for 2-(phenylsulfonyl)quinoline (3b'a) in CDCl₃

Fig. S35 The ¹H (400 MHz), ¹³C (101 MHz) and ¹⁹F (377 MHz) NMR spectra for 4-((4-fluorophenyl)sulfonyl)benzonitrile (3ab) in CDCl₃

Fig. S36 The ¹H (400 MHz), ¹³C (101 MHz) NMR spectra for $4-((4-\text{chlorophenyl})\text{sulfonyl})\text{benzonitrile } (3ac) \text{ in CDCl}_3$

Fig. S37 The ¹H (400 MHz), ¹³C (101 MHz) NMR spectra for 4-tosylbenzonitrile (3ad) in

Fig. S38 The ¹H (400 MHz), ¹³C (101 MHz) NMR spectra for 4-((4-(tert-butyl)phenyl)sulfonyl)benzonitrile (**3ae**) in CDCl₃

Fig. **S39** The $^{1}\mathrm{H}$ (400 MHz), ¹³C (101 MHz) spectra NMR for

Fig. S40 The ¹H (400 MHz), ¹³C (101 MHz) NMR spectra for 4-(m-tolylsulfonyl)benzonitrile (**3ag**) in CDCl₃

Fig. S41 The ¹H (400 MHz), ¹³C (101 MHz), and ¹⁹F (377 MHz) NMR spectra for 4-((3-(trifluoromethyl)phenyl)sulfonyl)benzonitrile (**3ah**) in CDCl₃

Fig. S42 The ¹H (400 MHz), ¹³C (101 MHz) and ¹⁹F (377 MHz) NMR spectra for 4-((3,5-difluorophenyl)sulfonyl)benzonitrile (3ai) in CDCl₃

Fig. S43 The ¹H (400 MHz), ¹³C (101 MHz) NMR spectra for 4-(mesitylsulfonyl)benzonitrile (3aj) in CDCl₃ — 2.57 — 2.32 7.79 7.77 7.77 7.76 7.76 7.76 7.76 -- 6.98 - 7.26 -- 6.98 7.89 7.87 7.86 7.79 7.78 7.77 7.77 7.76 Me 0 0 NC Ме Me 1.95 1.98 2.00 7.6 7 5 7 4 f1 (ppm) 7.3 7.0 7.9 7.8 7.2 7.1 7.7 1.98 2.00 1.95-6.05 3.05 8.5 8.0 7.0 4.5 4.0 f1 (ppm) 2.5 2.0 1.5 0.0 7.5 6.5 6.0 5.5 5.0 3.5 3.0 1.0 0.5 -- 147.64 -- 144.39 -- 149.36 - 126.85 <117.29
<116.32</pre> 77.35
77.04
76.72 22.82
21.09 0 ,o NC Me Me 160 80 70 f1 (ppm) -10 150 140 130 120 110 100 60 50 40 20 10 90 30 0

S65

∠ 9.16
2.16
9.16
8.85
8.85
8.85
8.11
8.23
8.13
8.13
8.14
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85
8.85

Fig. S46 The ¹H (400 MHz), ¹³C (101 MHz) NMR spectra for 8-chloro-3-(phenylsulfonyl)quinoline ($3c^{2}a$) in CDCl₃

S67

Fig. S47 The ¹H (400 MHz), ¹³C (101 MHz) NMR spectra for N-phenyl-2-(phenylsulfonyl)benzamide (**3d'a**) in CDCl₃

Fig. S48 The ¹H (400 MHz), ¹³C (101 MHz) NMR spectra for 4-((4-(9H-carbazol-9-yl)phenyl)sulfonyl)benzonitrile (4) in CDCl₃

