Supporting Information

for

Chiral aldehyde induced tandem conjugated addition-lactamization reaction for constructing full-substituted pyroglutamic acids

Wen-Zhe Wang, Hao-Ran Shen, Jian Liao, Wei Wen*, Qi-Xiang Guo*

Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China. wenwei1989@swu.edu.cn; <u>qxguo@swu.edu.cn</u>

Table of Contents

1. General data	1
2. Reaction condition optimization	2
3. General procedure for the catalytic asymmetric reaction	3
4. Determination of the absolute configuration	22
5. References	23
6. The spectrums of ¹ H NMR and ¹³ C NMR	24

1. General data

Solvents for reactions were dried appropriately before use: toluene, THF and Et_2O were dried by refluxing with sodium and benzophenone as an indicator, CH_2Cl_2 and $CHCl_3$ were dried by refluxing with CaH₂. All other reagents were directly used as purchased from Aladdin, Adamas-beta[®] and Energy Chemical.

Unless otherwise noted, commercial reagents were used as received and all reactions were carried out directly in the air atmosphere.¹H NMR and ¹³C NMR spectra were recorded on Bruker Avance 600 MHz or 400 MHz spectrometer. Chemical shifts (δ) are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard. Proton signal multiplicities are given as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad) or a combination of them. J-values are in Hz. HRMS (ESI-Q-TOF) spectra were recorded on Bruker Impact-II mass spectrometer. Enantiomer ratios were determined by HPLC (CHIRALPAK AD-H, IA-H, IF-H,OD-H columns were purchased from Daicel Chemical Industries, LTD). Optical rotations were determined at $\lambda = 589$ nm (sodium D line) by using a Rudolph-API automatic polar meter. α , β -unsaturated diester $2^{[1][2]}$, chiral aldehydes^[3] were prepared according to the literature.

2. Reaction condition optimization

Table S1: Additives screening^{*a*}

Entry	Additive	Solvent	Time(h)	Yield(%) ^c	ee ^d	\mathbf{dr}^{d}
1 ^{<i>b</i>}	LiBr	PhCH ₃	16.5	trace		
2 ^b	$ZnCl_2$	PhCH ₃	16.5	55	7	92:8
3 ^b	Cu(OTf) ₂	PhCH ₃	16.5	trace		
4 ^b	ZnF_2	PhCH ₃	24	61	-18	79:12
5 ^b	ZnBr ₂	PhCH ₃	28	56	-9	94:6
6 ^b	$Zn(OAc)_2$	PhCH ₃	28	68	0	62:38
7	$Zn(OAc)_2$	C_6F_6	11	45	5	81:19
8	AgOAc	C_6F_6	22.5	18	53	86:14
9	Ag ₂ CO ₃	C_6F_6	22.5	17	53	87:13
10	Cu(CH ₃ CN) ₄ PF ₆	C_6F_6	8.5	N.R.		
11	Cu(OAc) ₂	C_6F_6	8.5	N.R.		
12	$AgSbF_6$	C_6F_6	23.5	44	59	90:10
13	$AgBF_4$	C_6F_6	23.5	55	61	92:8
14	Zn(OTf) ₂	C_6F_6	19.5	48	23	63:37
15	NaOAc	C_6F_6	23.5	42	67	91:9

^{*a*} Unless noted otherwise, reactions were performed with **1a** (0.40 mmol), **2a** (0.20 mmol), **3** (0.02 mmol), base (0.25 mmol) and additive (0.06mmol) in solvent (1.0 mL) at 60 °C. ^{*b*} base (0.2mmol), additive (0.08mmol), ^{*c*} Isolated yield. ^{*d*} Determined by chiral HPLC.

Table S2: Screening of the alkoxy groups of glycinates^a

H₂N [∕] COOR + 1	Ph COOEt 2a	3e (10 mol%) inuclidine (1.0 equiv.) C ₆ F ₆ , 60 °C	Ph COOR 4 3e: Ar	CHO OH OH Ar = 3.5-2CF ₂ C ₆ H ₂
Entry	R	Yield(%) ^b	ee ^c	dr ^c
1	Me	53	75	99:1
2	Et	68	76	98:2
3	Bn	27	70	93:7
4	^t Bu	83	80	90:10

^{*a*} Reactions were performed with **1** (0.3 mmol), **2a** (0.2 mmol), **3** (0.02 mmol) and base (0.2 mmol) in C_6F_6 (1.0 mL) at 60 °C. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC.

3. General procedure for the catalytic asymmetric reaction

A dry Schlenk tube was charged with α , β -unsaturated diester 2 (0.2 mmol), catalyst 3e (0.02mmol), Quinuclidine (0.2 mmol) and Glycine tert-butyl ester 1(0.3 mmol). After the addition of Hexafluorobenzene (1.0 mL), the reaction mixture was effectively stirred at 30 °C and monitored by TLC. After the complete consumption of reactant 2, the mixture was concentrated in vacuo and purified by flash chromatography on silica gel (petroleum: AcOEt = 5:1 to 1:1) to afford products 4-6.

2-(tert-butyl) 4-ethyl (2S, 3R, 4S)-5-oxo-3-phenylpyrrolidine-2,4-dicarboxylate (4a):

^tBuOOC NH Colorless oil (60.9 mg, 92%); $R_f = 0.23$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 86% by HPLC analysis on Daicel Chirapak IA-H column (hexane/isopropanol = 80/20, flow rate 1.0 mL/min, T = 30 °C), UV 220 nm, t_R (major) 8.578 min, t_R (minor) 14.228 min; $[a]_D^{20}$ = -2.99 (c=1.17, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.36 (t, J = 7.5 Hz, 2H), 7.29 (d, J = 7.4 Hz, 3H), 6.49 (s, 1H), 4.26 – 4.15 (m, 3H), 4.08 (t, J = 7.9 Hz, 1H), 3.59 (d, J = 8.6 Hz, 1H), 1.40 (s, 9H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.62, 169.14, 168.20, 139.74, 129.02, 127.82, 127.44, 82.96, 61.98, 61.27, 56.06, 47.99, 27.91, 14.11. HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₈H₂₄NO₅⁺ 334.1649; found 334.1648.

2-(tert-butyl) 4-ethyl (2S, 3R, 4S)-3-(2-nitrophenyl)-5-oxopyrrolidine-2,4-dicarboxylate (4b):

Yellow oil (53.0 mg, 70%); $R_f = 0.12$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 88% by HPLC analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 220 nm, t_R (major) 9.891 min, t_R (minor) 18.391

min; $[a]_D^{20} = -58.48$ (c=0.56 CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.91 (d, J = 8.1 Hz, 1H), 7.67 (t, J = 7.4 Hz, 1H), 7.56 (d, J = 7.7 Hz, 1H), 7.48 (t, J = 7.7 Hz, 1H), 7.08 (s, 1H), 4.67 (t, J = 6.3 Hz, 1H), 4.24 (m, J = 12.1, 5.2 Hz, 3H), 3.58 (d, J = 7.0 Hz, 1H), 1.41 (s, 9H), 1.28 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.47, 168.74, 167.62, 149.49, 134.94, 133.69, 129.17, 128.79, 124.99, 83.47, 62.23, 60.91, 56.03, 42.61, 27.76, 14.03. HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₈H₂₃N₂O₇⁺ 379.1500; found 379.1492.

2-(tert-butyl) 4-ethyl (2*S*, 3*R*, 4*S*)-3-(2-(diphenylphosphanyl)phenyl)-5-oxopyrrolidine-2,4dicarboxylate (4c):

Colorless oil (101.9 mg, 81%); $R_f = 0.14$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 85% by HPLC analysis on Daicel Chirapak IA-H column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 220 nm, t_R (major) 21.684 min,

 $t_R(minor)$ 37.276 min; $[a]_D^{20} = 6.81$ (c=1.73 CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.40 – 7.35 (m, 2H), 7.34 – 7.29 (m, 6H), 7.23 – 7.15 (m, 5H), 6.95 (dd, J = 7.6, 3.7 Hz, 1H), 6.47 (s, 1H), 5.09 (s, 1H), 4.30 (d, J = 3.7 Hz, 1H), 3.93 – 3.80 (m, 2H), 3.27 (s, 1H), 1.46 (s, 9H), 1.11 (t, J = 7.1 Hz, 3H).¹³C NMR (151 MHz, CDCl₃) δ 171.68, 169.43, 167.57, 136.71, 136.63, 136.28, 136.21, 135.89, 135.79, 134.64, 133.88, 133.79, 133.75, 133.66, 130.25, 128.80, 128.75, 128.66,

128.62, 128.61, 128.58, 127.83, 126.52, 82.84, 62.39, 62.36, 61.66, 56.52, 28.00, 13.92. **HRMS(ESI)** m/z: $[M+H]^+$ Calculated for $C_{30}H_{33}NO_5P$ ⁺ 518.2091; found 518.2089.

2-(tert-butyl) 4-ethyl (2S, 3R, 4S)-5-oxo-3-(m-tolyl)pyrrolidine-2,4-dicarboxylate (4d):

Colorless oil (22.0 mg, 32%); $R_f = 0.28$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 88% by HPLC analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 220 nm, t_R (major) 10.083 min,

 $t_R(minor)$ 20.534 min; $[a]_D^{20} = -22.43$ (c=0.44 CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.22 (d, J = 1.3 Hz, 2H), 7.18 (d, J = 1.5 Hz, 2H), 6.42 (s, 1H), 4.45 (t, J = 6.5 Hz, 1H), 4.25 – 4.18 (m, 2H), 4.14 (d, J = 5.9 Hz, 1H), 3.51 (d, J = 7.2 Hz, 1H), 2.44 (s, 3H), 1.43 (s, 9H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.93, 169.32, 168.40, 139.05, 136.22, 130.73, 127.43, 126.90, 125.83, 82.92, 62.00, 61.93, 56.29, 42.71, 27.88, 19.76, 14.09. HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₉H₂₆NO₅⁺ 348.1805; found 348.1804.

2-(tert-butyl) 4-ethyl (2S, 3R, 4S)-3-(3-nitrophenyl)-5-oxopyrrolidine-2,4-dicarboxylate (4e):

Colorless oil (52.4 mg, 69%); $R_f = 0.18$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 77% by HPLC analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 220 nm, t_R (major) 8.302 min,

 t_{R} (minor) 13.596 min; $[a]_{D}^{20} = -11.83$ (c=1.05 CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 8.23 (s, 1H), 8.19 (d, J = 8.1 Hz, 1H), 7.69 (d, J = 7.6 Hz, 1H), 7.58 (t, J = 7.9 Hz, 1H), 7.01 (bs, 1H), 4.28 – 4.19 (m, 4H), 3.65 (d, J = 8.9 Hz, 1H), 1.41 (s, 9H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 169.85, 168.52, 167.67, 148.61, 141.54, 133.84, 130.09, 122.91, 122.68, 83.56, 62.26, 60.74, 55.72, 47.40, 27.87, 14.07. HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₈H₂₃N₂O₇⁺ 379.1500; found 379.1493.

Colorless oil (55.8 mg, 79%); $R_f = 0.24$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 83% by HPLC analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 220 nm, t_R (major) 7.017 min,

 $t_{R}(\text{minor})$ 11.749 min; $[a]_{D}^{20} = 10.91$ (c=1.01 CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.33 (dd, J = 14.2, 7.3 Hz, 1H), 7.08 (d, J = 7.6 Hz, 1H), 7.00 (t, J = 9.3 Hz, 2H), 6.35 (s, 1H), 4.26 – 4.19 (m, 2H), 4.16 (d, J = 7.3 Hz, 1H), 4.08 (t, J = 8.0 Hz, 1H), 3.56 (d, J = 8.8 Hz, 1H), 1.41 (s, 9H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.18, 168.82, 167.93, 163.81, 162.17, 142.08, 142.03, 130.64, 130.58, 123.09, 123.07, 114.88, 114.74, 114.67, 114.53, 83.20, 62.10, 60.91, 55.85, 47.57, 27.88, 14.09. HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₈H₂₃FNO₅⁺ 352.1555; found 352.1557.

2-(tert-butyl) 4-ethyl (2*S*, 3*R*, 4*S*)-5-oxo-3-(3-(trifluoromethyl)phenyl)pyrrolidine-2,4dicarboxylate (4g):

White solid (55.2 mg, 69%); $R_f = 0.29$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 72% by HPLC analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 220 nm, t_R (major) 10.509 min,

 $t_{R}(\text{minor})$ 19.574 min; $[a]_{D}^{20} = -18.79$ (c=1.08 CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.61 – 7.55 (m, 2H), 7.52 (s, 2H), 6.75 (s, 1H), 4.27 – 4.18 (m, 3H), 4.14 (t, J = 8.2 Hz, 1H), 3.60 (d, J = 9.0 Hz, 1H), 1.40 (s, 9H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.18, 168.75, 167.84, 140.55, 131.48, 131.26, 130.76, 129.61, 124.74, 124.71, 124.64, 124.61, 83.29, 62.15, 60.94, 55.84, 47.65, 27.82, 14.04. HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₉H₂₃F₃NO₅⁺ 402.1523; found 402.1527.

(4h):

Light yellow oil (63.7 mg, 77%); $R_f = 0.28$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 85% by HPLC analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 220 nm, t_R (major) 5.859 min,

t_R(minor) 9.544 min; $[a]_D^{20} = -15.62$ (c=1.27 CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.46 (s, 1H), 7.44 (s, 1H), 7.24 (d, J = 4.6 Hz, 2H), 6.92 (s, 1H), 4.26 – 4.18 (m, 2H), 4.16 (d, J = 7.3 Hz, 1H), 4.04 (t, J = 8.1 Hz, 1H), 3.58 (d, J = 8.8 Hz, 1H), 1.42 (s, 9H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.34, 168.83, 167.91, 141.89, 130.96, 130.80, 130.56, 126.07, 122.92, 83.19, 62.09, 61.05, 55.79, 47.44, 27.89, 14.09. HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₈H₂₃BrNO₅⁺ 412.0754; found 412.0735.

Colorless oil (36.8 mg, 53%); $R_f = 0.23$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 88% by HPLC analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 80/20, flow rate 1.0 mL/min, T = 30 °C), UV 220 nm, t_R (major) 7.381 min,

 t_{R} (minor) 13.450 min; $[a]_{D}^{20} = -14.88$ (c=0.80 CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.25 (m, J = 14.3, 6.9 Hz, 1H), 7.10 (t, J = 9.4 Hz, 3H), 6.56 (s, 1H), 4.22 (m, J = 16.7, 9.3 Hz, 2H), 4.16 (d, J = 6.9 Hz, 1H), 4.04 (t, J = 7.5 Hz, 1H), 3.59 (d, J = 8.4 Hz, 1H), 2.35 (s, 3H), 1.42 (s, 9H), 1.26 (t, J = 6.9 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.85, 169.23, 168.27, 139.81, 138.64, 128.86, 128.49, 128.15, 124.37, 82.84, 61.90, 61.43, 56.01, 47.80, 27.89, 21.38, 14.08. HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₉H₂₆NO₅⁺ 348.1805; found 348.1804.

2-(tert-butyl) 4-ethyl (2*S*, 3*R*, 4*S*)-5-oxo-3-(3-(trifluoromethoxy)phenyl)pyrrolidine-2,4dicarboxylate (4j):

^tBuOOC NH Colorless oil (65.3 mg, 78%); $R_f = 0.24$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 83% by HPLC analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C),

UV 220 nm, $t_R(major)$ 16.640 min, $t_R(minor)$ 24.175 min; $[a]_D^{20} = -10.77$ (c=1.31 CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.34 (d, J = 8.5 Hz, 2H), 7.22 (d, J = 8.1 Hz, 2H), 6.49 (s, 1H), 4.22 (dddd, J = 17.9, 10.8, 7.2, 3.7 Hz, 2H), 4.15 (d, J = 7.4 Hz, 1H), 4.10 (t, J = 8.1 Hz, 1H), 3.56 (d, J = 8.8 Hz, 1H), 1.40 (s, 9H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.15, 168.77, 167.91, 148.73, 138.22, 128.96, 121.49, 121.28, 119.57, 83.24, 62.13, 61.01, 55.91, 47.27, 27.86, 14.08. HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₉H₂₃F₃NO₆⁺ 418.1472; found 418.1469.

2-(tert-butyl) 4-ethyl (2S, 3R, 4S)-3-(4-nitrophenyl)-5-oxopyrrolidine-2,4-dicarboxylate (4k):

Colorless oil (62.8 mg, 83%); $R_f = 0.14$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 77% by HPLC analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV

220 nm, $t_R(major)$ 11.763 min, $t_R(minor)$ 23.507 min; $[a]_D^{20} = -6.95$ (c=1.25 CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 8.25 (d, J = 8.6 Hz, 2H), 7.51 (d, J = 8.6 Hz, 2H), 6.63 (s, 1H), 4.30 – 4.15 (m, 4H), 3.59 (dd, J = 6.0, 3.0 Hz, 1H), 1.41 (s, 9H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 169.55, 168.38, 167.57, 147.59, 146.69, 128.60, 124.28, 83.69, 62.35, 60.47, 55.66, 47.46, 27.90, 14.09. HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₈H₂₃N₂O₇⁺ 379.1500; found 379.1497.

2-(tert-butyl) 4-ethyl (2S, 3R, 4S)-3-(4-cyanophenyl)-5-oxopyrrolidine-2,4-dicarboxylate (4l):

NC VIEW CODEt

White solid (55.3 mg, 77%); $R_f = 0.14$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 86% by HPLC analysis on Daicel Chirapak IA-H column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 220 nm, t_R (major)

10.778 min, $t_R(minor)$ 20.727 min; $[a]_D^{20} = -22.38$ (c=0.29 CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.68 (d, J = 8.0 Hz, 2H), 7.45 (d, J = 7.9 Hz, 2H), 6.75 (s, 1H), 4.28 – 4.16 (m, 3H), 4.14 (t, J = 8.1 Hz, 1H), 3.57 (d, J = 8.8 Hz, 1H), 1.40 (s, 9H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 169.86, 168.51, 167.65, 144.81, 132.82, 128.44, 118.28, 111.98, 83.51, 62.24, 60.58, 55.63, 47.72, 27.88, 14.06. HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₉H₂₃N₂O₅⁺ 359.1601; found 359.1597.

2-(tert-butyl) 4-ethyl (2*S*, 3*R*, 4*S*)-3-(4-chlorophenyl)-5-oxopyrrolidine-2,4-dicarboxylate (4m):

White solid (60.9 mg, 83%); $R_f = 0.20$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 90% by HPLC analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 220 nm, t_R (major) 7.821

min, $t_R(minor)$ 14.362 min; $[a]_D^{20} = 5.02$ (c=0.58, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.34 (d, J = 8.2 Hz, 2H), 7.25 (d, J = 10.2 Hz, 2H), 6.21 (s, 1H), 4.26 – 4.16 (m, 2H), 4.13 (d, J = 7.4 Hz, 1H), 4.06 (t, J = 8.2 Hz, 1H), 3.53 (d, J = 8.9 Hz, 1H), 1.41 (s, 9H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.26, 168.84, 167.95, 138.05, 133.72, 129.17, 128.84, 83.20, 62.07, 61.02, 55.95, 47.34, 27.90, 14.08. HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₉H₂₆NO₅⁺ 368.1259; found 368.1254.

2-(tert-butyl) 4-ethyl (2*S*, 3*R*, 4*S*)-3-([1,1'-biphenyl]-4-yl)-5-oxopyrrolidine-2,4-dicarboxylate (4n):

Colorless oil (56.0 mg, 68%); $R_f = 0.24$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 88% by HPLC analysis on Daicel Chirapak IA-H column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 220 nm, t_R (major)

22.718 min, $t_R(minor)$ 39.652 min; $[a]_D^{20} = -10.37$ (c=1.22 CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.58 (t, J = 6.9 Hz, 4H), 7.44 (t, J = 7.5 Hz, 2H), 7.39 – 7.34 (m, 3H), 6.89 (s, 1H), 4.26 – 4.19 (m, 3H), 4.13 (t, J = 7.8 Hz, 1H), 3.64 (d, J = 8.6 Hz, 1H), 1.43 (s, 9H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.78, 169.17, 168.23, 140.76, 140.45, 138.75, 128.83, 127.87, 127.66, 127.49, 127.02, 82.99, 61.98, 61.36, 56.04, 47.61, 27.92, 14.11. HRMS(ESI) m/z: [M+H]⁺Calculated for C₂₄H₂₈NO₅⁺ 410.1962; found 410.1948.

2-(tert-butyl) 4-ethyl (2*S*, 3*R*, 4*S*)-3-(4-methoxyphenyl)-5-oxopyrrolidine-2,4dicarboxylate(40):

^tBuOOC

MeO

Colorless oil (33.9 mg, 47%); $R_f = 0.20$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 86 % COOEt by HPLC analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV

220 nm, $t_R(major)$ 8.419 min, $t_R(minor)$ 14.098 min; $[a]_D^{20} = -12.24$ (c=0.68, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.21 (d, J = 8.3 Hz, 2H), 6.88 (d, J = 8.3 Hz, 2H), 6.43 (s, 1H), 4.26 – 4.15 (m, 2H), 4.13 (d, J = 7.3 Hz, 1H), 4.03 (t, J = 8.1 Hz, 1H), 3.80 (s, 3H), 3.55 (d, J = 8.8 Hz, 1H), 1.41 (s, 9H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.65, 169.17, 168.25, 159.14, 131.60, 128.50, 114.34, 82.88, 61.91, 61.41, 56.16, 55.31, 47.37, 27.91, 14.10. HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₉H₂₆NO₆⁺ 364.1755; found 364.1751.

2-(tert-butyl) 4-ethyl (2*S*, 3*R*, 4*S*)-3-(3,4-dichlorophenyl)-5-oxopyrrolidine-2,4-dicarboxylate (4p):

Colorless oil (62.6 mg, 78%); $R_f = 0.29$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 83% by HPLC analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 85/15, flow rate 1.0 mL/min, T = 30 °C), UV 220 nm, t_R (major) 8.892

min, $t_R(minor)$ 17.757 min; $[a]_D^{20} = -19.04$ (c=1.25 CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.45 (d, J = 8.3 Hz, 1H), 7.41 (d, J = 1.8 Hz, 1H), 7.27 (s, 1H), 7.15 (d, J = 8.2, 1.8 Hz, 1H), 6.41 (s, 1H), 4.27 - 4.19 (m, 2H), 4.13 (d, J = 7.5 Hz, 1H), 4.05 (t, J = 8.3 Hz, 1H), 3.54 (d, J = 9.0 Hz, 1H), 1.42 (s, 9H), 1.28 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 169.78, 168.56, 167.73, 139.66, 133.08, 132.07, 130.99, 129.75, 126.78, 83.51, 62.24, 60.72, 55.63, 46.95, 27.92, 14.09. HRMS(ESI) m/z: $[M+H]^+$ Calculated for $C_{18}H_{22}Cl_2NO_5^+$ 402.0870; found 402.0860.

2-(tert-butyl) 4-ethyl (2S, 3R, 4S)-3-(6-methoxynaphthalen-2-yl)-5-oxopyrrolidine-2,4dicarboxylate (4q):

Light yellow oil (42.2 mg, 51%); $R_f = 0.14$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 87% by HPLC analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T

= 30 °C), UV 220 nm, $t_R(major)$ 21.644 min, $t_R(minor)$ 33.594 min; $[a]_D^{20} = -20.93$ (c=0.84 CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.75 (d, J = 8.4 Hz, 1H), 7.71 (d, J = 8.8 Hz, 1H), 7.68 (s, 1H), 7.37 (d, J = 8.3 Hz, 1H), 7.16 (d, J = 8.9 Hz, 1H), 7.13 (s, 1H), 6.77 (s, 1H), 4.27 (d, J = 7.0 Hz, 1H), 4.24 – 4.17 (m, 3H), 3.92 (s, 3H), 3.70 (d, J = 8.5 Hz, 1H), 1.39 (s, 9H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.83, 169.25, 168.31, 157.97, 134.65, 134.01, 129.25, 128.84, 127.80, 126.48, 125.38, 119.37, 105.75, 82.91, 61.94, 61.39, 56.04, 55.33, 47.99, 27.91, 27.83, 14.08. HRMS(ESI) m/z: [M+H]⁺ Calculated for C₂₃H₂₈NO₆⁺ 414.1911; found 414.1905.

2-(tert-butyl) 4-ethyl (2S, 3R, 4S)-5-oxo-3-(pyridin-2-yl)pyrrolidine-2,4-dicarboxylate (5a):

^tBuOOC White solid (54.5 mg, 82%); $R_f = 0.14$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 88% by HPLC analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 220 nm, t_R (major) 12.112 min, t_R (minor) 20.371 min; $[a]_D^{20} = -14.07$ (c=1.10 CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 8.61 (d, J = 3.9 Hz, 1H), 7.65 (t, J = 7.6 Hz, 1H), 7.28 (d, J = 1.8 Hz, 1H), 7.24 – 7.20 (m, 1H), 6.62 (s, 1H), 4.55 (d, J = 7.9 Hz, 1H), 4.26 – 4.17 (m, 3H), 3.98 (d, J = 9.5 Hz, 1H), 1.40 (s, 9H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) 170.23, 169.31, 168.39, 157.81, 149.88, 136.62, 124.08, 122.65, 82.82, 61.82, 59.30, 54.56, 49.30, 27.89, 14.09. HRMS(ESI) m/z: $[M+H]^+$ Calculated for $C_{17}H_{23}N_2O_5^+$ 335.1601; found 335.1598.

2-(tert-butyl) 4-ethyl (2*S*, 3*R*, 4*S*)-3-(3-bromopyridin-2-yl)-5-oxopyrrolidine-2,4dicarboxylate (5b):

Colorless oil (60.0 mg, 73%); $R_f = 0.10$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 91% by HPLC analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C), UV 220 nm, t_R (major) 15.506 min,

 $t_R(minor)$ 20.651 min; $[a]_D^{20} = -3.69$ (c=0.71 CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 8.55 (d, J = 3.4 Hz, 1H), 7.90 – 7.86 (m, 1H), 7.11 (dd, J = 8.0, 4.5 Hz, 1H), 6.36 (s, 1H), 4.84 (t, J = 7.9 Hz, 1H), 4.62 (d, J = 7.2 Hz, 1H), 4.28 – 4.18 (m, 2H), 3.76 (d, J = 8.5 Hz, 1H), 1.41 (s, 9H), 1.28 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 169.97, 169.15, 168.05, 156.67, 148.38, 140.65, 123.82, 121.72, 82.95, 61.93, 59.50, 55.07, 47.26, 27.78, 14.11. HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₇H₂₂BrN₂O₅⁺ 413.0707; found 413.0714.

2-(tert-butyl) 4-ethyl (2S, 3R, 4S)-5-oxo-3-(quinolin-2-yl)pyrrolidine-2,4-dicarboxylate (5c):

Yellow oil (72.6 mg, 94%); $R_f = 0.20$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 85% by HPLC analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 80/20, flow rate 1.0 mL/min, T = 30 °C), UV 220 nm, t_R (major) 10.611 min,

 $t_R(minor)$ 23.306 min; $[a]_D^{20} = -50.25$ (c=1.45 CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 8.13 (d, J = 8.3 Hz, 1H), 8.04 (d, J = 8.4 Hz, 1H), 7.81 (d, J = 8.1 Hz, 1H), 7.72 (t, J = 7.6 Hz, 1H), 7.53 (t, J = 7.4 Hz, 1H), 7.43 (d, J = 8.3 Hz, 1H), 6.76 (s, 1H), 4.72 (d, J = 7.5 Hz, 1H), 4.43 (dd, J = 8.8, 7.7 Hz, 1H), 4.28 – 4.16 (m, 3H), 1.42 (s, 9H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.46, 169.47, 168.55, 158.32, 147.96, 136.77, 129.70, 129.27, 127.55, 127.47, 126.54, 121.95, 82.95, 61.88, 59.62, 54.44, 49.43, 27.93, 27.86, 14.11. HRMS(ESI) m/z: [M+H]⁺ Calculated for C₂₁H₂₅N₂O₅⁺ 385.1758; found 385.1757.

2-(tert-butyl) 4-ethyl (2S, 3R, 4S)-5-oxo-3-(thiophen-3-yl)pyrrolidine-2,4-dicarboxylate (5d):

^tBuOOC NH Colorless oil (51.3 mg, 76%); $R_f = 0.23$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 87% by HPLC analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 220 nm, t_R (major) 26.987 min, t_R (minor) 45.892 min; $[a]_D^{20} = -5.79$ (c=1.08 CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.34 (dd, J = 4.6, 2.9 Hz, 1H), 7.18 (s, 1H), 7.05 (d, J = 4.2 Hz, 1H), 6.90 (s, 1H), 4.23 (m, J = 20.2, 12.2, 5.7 Hz, 3H), 4.16 (d, J = 7.1 Hz, 1H), 3.57 (d, J = 8.6 Hz, 1H), 1.44 (s, 9H), 1.28 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.79, 170.71, 169.11, 169.09, 168.22, 140.09, 126.87, 126.13, 126.11, 121.96, 83.01, 82.98, 62.01, 60.98, 60.93, 55.59, 55.57, 43.16, 43.11, 27.91, 14.12. HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₆H₂₂NO₅S ⁺ 340.1213; found 340.1204.

2-(tert-butyl) 4-ethyl (2S, 3R, 4S)-3-(furan-2-yl)-5-oxopyrrolidine-2,4-dicarboxylate (5e):

^tBuOOC , NH = 2:1); the enantiomeric excess was determined to be 87% by HPLC = 2:1); the enantiomeric excess was determined to be 87% by HPLC analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 220 nm, t_R(major) 19.886 min, t_R(minor) 36.529 min; $[a]_D^{20}$ = -5.52 (c=1.03 CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.38 (s, 1H), 6.79 (s, 1H), 6.33 (d, J = 1.1 Hz, 1H), 6.24 (d, J = 2.8 Hz, 1H), 4.28 – 4.22 (m, 3H), 4.19 (t, J = 8.2 Hz, 1H), 3.69 (d, J = 8.9 Hz, 1H), 1.45 (s, 9H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.19, 168.80, 167.93, 151.36, 142.41, 142.09, 110.46, 107.45, 83.07, 62.03, 58.56, 58.54, 53.35, 53.18, 41.35, 30.87, 27.89, 27.82, 14.09, 13.86. HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₆H₂₂NO₆ ⁺ 324.1442; found 324.1446.

Colorless oil (24.0 mg, 27%); $R_f = 0.16$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 89% by HPLC analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 70/30, flow rate 1.0 mL/min, T = 30 °C),

UV 220 nm, $t_R(major)$ 22.589 min, $t_R(minor)$ 44.668 min; $[a]_D^{20} = -34.25$ (c=0.25 CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 8.08 (d, J = 7.7 Hz, 1H), 8.01 (s, 1H), 7.48 (t, J = 7.5 Hz, 1H), 7.43 – 7.37 (m, 3H), 7.23 (d, J = 7.4 Hz, 1H), 6.43 (s, 1H), 4.37 (q, J = 7.1 Hz, 2H), 4.28 (q, J = 6.9 Hz, 2H), 4.21 (m, J = 10.7, 7.2, 3.6 Hz, 2H), 3.74 (d, J = 7.6 Hz, 1H), 1.47 – 1.38 (m, 12H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.84, 169.37, 168.46, 140.40, 139.46, 130.10, 126.01, 124.85, 123.29, 122.59, 120.41, 119.33, 119.05, 108.89, 108.62, 82.85, 62.04, 61.89, 56.67, 48.29, 37.64, 27.94, 27.86, 14.10, 13.78. HRMS(ESI) m/z: [M+H]⁺ Calculated for C₂₆H₃₁N₂O₅ ⁺ 451.2227; found 451.2207.

^tBuOOC NH Colorless solid (30.3 mg, 56%); $R_f = 0.20$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 84% by HPLC COOEt analysis on Daicel Chirapak OD-H column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 220 nm, $t_R(major)$ 23.972 min, $t_R(minor)$ 16.472 min; $[a]_D^{20}$ = 0.72 (c=0.61, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 6.20 (s, 1H), 4.25 (q, J = 6.7 Hz, 2H), 3.71 (d, J = 7.6 Hz, 1H), 3.09 (d, J = 9.3 Hz, 1H), 3.00 – 2.83 (m, 1H), 1.50 (s, 9H), 1.34 (d, J = 6.7 Hz, 3H), 1.31 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.97, 169.48, 168.60, 82.92, 61.80, 60.97, 55.80, 38.34, 28.02, 18.58, 14.18. HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₃H₂₂NO₅ ⁺ 272.1492; found 272.1495.

2-(tert-butyl) 4-ethyl (2S, 3R, 4S)-3-ethyl-5-oxopyrrolidine-2,4-dicarboxylate (6b):

^tBuOOC NH Colorless oil (13.4 mg, 24%); $R_f = 0.23$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 79% by HPLC COOEt analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 200 nm, $t_R(major)$ 11.906 min, $t_R(minor)$ 17.996 min; $[a]_D^{20}$ = 8.46 (c=0.53 CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 6.20 (s, 1H), 4.26 – 4.20 (m, 2H), 3.75 (d, J = 6.3 Hz, 1H), 3.13 (d, J = 7.7 Hz, 1H), 2.89 – 2.83 (m, 1H), 1.86 (dt, J = 13.5, 6.7 Hz, 1H), 1.61 – 1.54 (m, 1H), 1.50 (s, 9H), 1.30 (t, J = 7.1 Hz, 3H), 0.97 (t, J = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 171.39, 169.81, 169.14, 82.76, 61.75, 59.59, 53.86, 44.18, 27.97, 27.15, 14.09, 11.18. HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₄H₂₄NO₅ + 286.1649; found 286.1639.

2-(tert-butyl) 4-ethyl (2S, 3R, 4S)-3-isobutyl-5-oxopyrrolidine-2,4-dicarboxylate (6c):

^tBuOOC

Colorless oil (19.0 mg, 30%); $R_f = 0.14$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 72% by HPLC COOEt S19 analysis on Daicel Chirapak AD-H column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 200 nm, $t_R(major)$ 9.455 min, $t_R(minor)$ 18.232 min; $[a]_D^{20} = 0.09$ (c=0.38 CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 6.06 (s, 1H), 4.28 – 4.20 (m, 2H), 3.71 (d, J = 6.0 Hz, 1H), 3.09 (d, J = 7.3 Hz, 1H), 3.01 (dt, J = 13.4, 6.7 Hz, 1H), 1.69 – 1.63 (m, 1H), 1.50 (s, 9H), 1.45 (m, J = 15.6, 6.8 Hz, 1H), 1.29 (t, J = 7.1 Hz, 3H), 0.95 (d, J = 6.4 Hz, 3H), 0.91 (d, J = 6.3 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 171.44, 169.84, 169.14, 82.80, 61.79, 60.17, 54.87, 44.56, 40.70, 28.00, 25.75, 23.26, 21.67, 14.08. HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₆H₂₈NO₅ + 314.1962; found 314.1959.

2-(tert-butyl) 4-ethyl (2S, 3R, 4S)-5-oxo-3-(phenylethynyl)pyrrolidine-2,4-dicarboxylate (6d):

Colorless oil (49.2 mg, 69%); $R_f = 0.33$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 68% by HPLC Ph COOEt analysis on Daicel Chirapak IF-H column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 220 nm, $t_R(major)$ 20.281 min, $t_R(minor)$ 23.757 min; $[a]_D^{20}$ = 23.67 (c=1.15 CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.41 (m, J = 7.5, 1.8 Hz, 2H), 7.31 (m, J = 7.1 Hz, 3H), 6.67 (s, 1H), 4.31 – 4.27 (m, 2H), 4.20 (d, J = 7.1 Hz, 1H), 3.99 – 3.95 (m, 1H), 3.61 (d, J = 8.5 Hz, 1H), 1.53 (s, 9H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 169.83, 168.34, 167.53, 131.73, 128.53, 128.32, 122.42, 86.39, 83.62, 83.41, 62.26, 60.02, 54.77, 34.34, 27.98, 14.23, 14.14. HRMS(ESI) m/z: [M+H]⁺ Calculated for C₂₀H₂₄NO₅ ⁺ 358.1649; found 358.1659.

2-(tert-butyl) 4-ethyl (2*S*, 3*R*, 4*S*)-5-oxo-3-((trimethylsilyl)ethynyl)pyrrolidine-2,4dicarboxylate (6e):

^tBuOOC NH = 2:1); the enantiomeric excess was determined to be 77% by HPLC = 2:1); the enantiomeric excess was determined to be 77% by HPLC analysis on Daicel Chirapak IF-H column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 220 nm, t_R(major) 11.052 min, t_R(minor) 13.302 min; [a]_D²⁰ = -9.23 (c=1.12 CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 6.52 (s, 1H), 4.31 – 4.23 (m, 2H), 4.09 (d, J = 6.8 Hz, 1H), 3.75 (dd, J = 7.9, 7.0 Hz, 1H), 3.49 (d, J = 8.1 Hz, 1H), 1.51 (s, 9H), 1.32 (t, J = 7.1 Hz, 3H), 0.16 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 170.14, 168.74, 167.82, 103.29, 88.77, 83.70, 62.52, 60.35, 55.07, 34.84, 28.32, 14.48, 0.37, 0.19. [M+H]⁺ Calculated for C₁₇H₃₀NO₄Si ⁺ 354.1731; found 354.1736.

4. Determination of the absolute configuration

The absolute configuration of compound **4-6** was established by comparing its optical rotation value with the known compound 4-ethyl 2-methyl (2S,3R,4S)-5-oxo-3-phenyl-pyrrolidine-2,4-dicarboxylate (**7a**) in literature data:

5. References

- I. A. Andreev, N. K. Ratmanova, A. U. Augustin, O. A. Ivanova, I. I. Levina, V. N. Khrustalev,
 D. B. Werz, I. V. Trushkov, *Angew.Chem. Int. Ed.* 2021, **60**,7927–7934.
- [2]. B.-C. Hong, N. Dange, P.-J. Yen, G.-H. Lee and J.-H. Liao, Org. Lett. 2012, 14, 5346.
- [3]. L. Chen, M.-J. Luo, F. Zhu, W. Wen and Q.-X. Guo, J. Am. Chem. Soc. 2018, 140, 9774.
- [4]. J. Hernández-Toribio, R. G. Arrayás and J. C. Carretero, *Chem. Eur. J.*, 2011, 17, 6334-6337.

6. The spectrums of ¹H NMR and ¹³C NMR

S31

