Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

Kinetic and deuterium isotope analyses of ammonia electrochemical synthesis

Authors: Chien-I Li,^a Hiroki Matsuo^b and Junichiro Otomo^{*b}

Affiliations and addresses:

^aDepartment of Environment Systems, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8563, Japan

^bDepartment of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.

* Corresponding author:

E-mail correspondence: otomo.j.aa@m.titech.ac.jp

1. Electrode potential

,

electrode potential is described as following equation: Electrode potential = $V_{\text{app}} - (IR_{\text{ohm}} + \overline{nF}_{\text{ln}}(PL_{R_{\text{anode}}} /PL_{R_{\text{1bar}}})$ RT (S1)

The

where V_{app} , *I*, R_{ohm} , R , T , n , F , pH_2 , anode, are applied voltage, current, ohmic resistance, gas constant, temperature, electron transfer number, Faraday constant, H_2 partial pressure in the anode, respectively. *IR*_{ohm} is *IR* loss correction. \overline{nF} ln(\overline{P}_{H2} _{, anode} \overline{P}_{H2} _{, 1bar}) is a correction of the RT potential difference between the H_2 partial pressure in reference electrode and 1 bar H_2 pressure.

2. Reaction order (β) of **nitrogen**

As shown in Fig. S1, the ammonia formation rate was investigated in H_2-N_2 gaseous mixtures with fixed H₂ partial pressure of 0.1 atm and with changing N₂ partial pressures of 0.3–0.6 atm (i.e., Ar was added to control H_2 and N_2 concentrations). The corresponding ammonia partial pressure was estimated in section 3 in the supplementary information. The ammonia formation rate showed a slight increase when N_2 partial pressure was increased. The effect of an increase in N_2 partial pressure on ammonia formation rate was not significant in comparison with that of an increase in H₂ partial pressure. The reaction order of nitrogen, β , was 0.3 at rest potential. After applying the different voltages, *β* were between 0.37 and 0.59. Current densities were almost the same at different N_2 partial pressures. The corresponding electrode potentials were shown in Table S2.

Table S2 Electrode potential calculated by Eq. S1 at different N_2 partial pressures.

Fig. S1 (a) Ammonia formation rate, (b) current density, and (c) $\ln(r_{\text{NH3}})$ vs. $\ln(p_{\text{N2}})$ using porous pure Fe cathode at 550°C and different N₂ partial pressures. \bullet 10% H₂−30% N₂ with cathodic polarization. \bullet 10% H₂−30% N₂ at the rest potential. \approx 10% H₂−40% N₂ with cathodic polarization. ∞ 10% H₂−40% N₂ at the rest potential. \Box 10% H₂−50% N₂ with cathodic polarization. \Box 10% H₂−50% N₂ at the rest potential. \Box 10% H₂−60% N₂ with cathodic polarization. $* 10\% \text{ H}_2$ −60% N₂ at the rest potential.

3. Ammonia partial pressure

The ammonia formation rate was 3.77×10^{-9} at -1.3 V and 550°C in 25% H₂–50% N₂–25% Ar. The total ammonia partial pressure could be obtained by the following equation:

$$
p_{total} = \frac{r_{NH3} \times A \times R \times T}{v}
$$
 (S2)

where A , R , T , and v were the electrode area of cathode, gas constant, temperature, and flow rate in the cathode.

4. *ν***² band for NH³**

The energy level splitting between symmetric state (s) and asymmetric state (a) in $NH₃$ is due to the barrier of umbrella inversion for nitrogen atom travels through the three hydrogen atoms plane, as shown in Fig. S2.[1](#page-27-0) The existence of the barrier resulting in a doubling of each vibrational-energy level is not excessive, so the molecule can tunnel through the planar state and flip between the two conformations. The vibrational-rotational transition in v_2 band were shown in Fig. S3.

Fig. S2 Energy level splitting for the ground state and the first excited state of vibration.

Fig. S3 Transition of Q and P branches for the v_2 vibration. Q and Q' represent the transition from symmetric state (s) to asymmetric state (a) and asymmetric state (a) to symmetric state (s), respectively, as $J = 0$. P and P' represent the transition from symmetric state to asymmetric state and asymmetric state to symmetric state, respectively, as $J = -1$.

5. Vibration-rotational states for NH3-xD^x

The Eq. S[3](#page-27-2) was used to calculate the vibrational-rotational energy levels, $E^{2,3}$ $E^{2,3}$ $E^{2,3}$. The parameters for $NH_{3-x}D_x$ were summarized in Tables S3 and S4.

$$
E
$$
\n
$$
= v + 1/2(A + B) \times [J \times (J + 1) - K^{2}] + C \times K^{2} - D_{K} \times K^{4}
$$
\n(S3)

where *J* and *K* were total angular momentum and the projection of *J* onto the principal axis of the molecule, respectively.

Table S5–S8 showed Q, P, and R branches for $NH_{3-x}D_x$ *v*₂ band. i and i' (i = R, P, and Q) represented the wavenumber from symmetric state (s) to asymmetric state (a) and from asymmetric state (a) to symmetric state (s), respectively.

Table S5 Q, P, and R branches for NH_3 v_2 band.								
R branch at $K = 0$ (cm ⁻¹)			P branch at $K = 0$ (cm ⁻¹)			Q branch (cm^{-1})		
\overline{J}	R	R^{\prime}		P	P'		Q	Q'
θ	987.8992	951.7765		948 2314	911 7613		967 9971	931 6279
	1007.546	972.1406	2	928 2478	892 1574	2	967.7364	931.3322
$\overline{2}$	1027.05	993.4597	3	908.1952	872 8421	3	967.3398	930.754
3	1046.401	1013.41	4	888.1012	853821	$\overline{4}$	966.8076	929.8922
$\overline{4}$	1065.594	1034.226	5	867 9973	835 0926	5	966.1401	928.7447
5	1084.627	1055.09	6	847.9183	816.6481	6	965.3378	927.3083

Table S6 Q, P, and R branches for NH2D *ν*² band.

Table 50 \vee , Γ , and in bialities for $\Gamma_{\rm NL}$ \vee γ band.									
R branch at $K = 0$ (cm ⁻¹)				P branch at $K = 0$ (cm ⁻¹)			Q branch (cm^{-1})		
\overline{J}	R	R^{\prime}		P	P'		Q	Q^{\prime}	
θ	759.5759	755.9911		738.8596	735.2591		749.1878	745.5891	
	770.1477	766.5948	2	728 725	725 1412	2	749 1706	745.563	
$\overline{2}$	780.8544	777.4009	3	718 7453	715 1941	3	749 0931	745.4682	
3	791.6896	788.2461	4	708 924	705.4209	4	748.9552	745.3091	
$\overline{4}$	802.6466	799.2785	5	699.2644	695.8238	5	748.7566	745.0917	
5	813.718	810.4373	6	689 769	686.4044	6	748 4972	744.8236	

Table S8 Q, P, and R branches for ND³ *ν*² band.

6. Absorption coefficient of NH3-xD^x

The absorption coefficient, α_i , was determined by the following equation:

$$
\alpha_i = \frac{A}{C_i \times L} \tag{S4}
$$

where A , C_i , and L were the area of the peak in FTIR spectra, concentration for spices ($i = NH_3$. $_{x}D_{x}$), and optical length of 8.0 m.

NH₃ absorption, α_{NH3} , was obtained by flowing 10 ppm NH₃-N₂ with 100 sccm into the cathode. The ammonia formation rate of 8.81 \times 10⁻¹⁰ mol cm⁻² s⁻¹ was observed by HPLC, which is equivalent to 5.07 ppm in the cathode (Eq. S2). NH₃ peak area at 965 cm⁻¹ in the FTIR spectra was 0.13. Therefore, a_{NH3} was 0.0032 ppm⁻¹ m⁻¹ (7.8×10² L mol⁻¹ cm⁻¹), which was smaller by 18% than that of 0.0039 ppm⁻¹ m⁻¹ (9.5×10² L mol⁻¹ cm⁻¹) in the previous study.^{[6](#page-27-5)} α_{NH2D} was determined by Eq. S5 using the FTIR data (5% H₂−95% N₂ in the cathode) at the rest potential (90 mins) and -1 V (90 mins), as shown in Fig. S4. The observed spectra included the peaks of NH₃ and NH₂D,

$$
\alpha_{NH2D} = \frac{A_{NH2D}}{C_{NH2D} \times L}
$$

=
$$
\frac{A_{NH2D}}{(C_{total} - C_{NH3}) \times L}
$$

=
$$
\frac{A_{NH2D}}{(C_{total} - \frac{A_{NH3}}{a_{NH3} \times L}) \times L}
$$
 (S5)

and no other peaks such as NHD₂ and ND₃ were observed.

where C_{total} was total concentration of ammonia, which was determined by HPLC. The value of α_{NH2D} was 0.0038 ppm⁻¹ m⁻¹ (9.2 × 10² L mol⁻¹ cm⁻¹).

Next, α_{NHD2} and α_{ND3} were determined by the FTIR data (5% D₂−45%Ar −95% N₂ in the cathode) at -1 V (50, 60, 70, 80, and 90 mins), as shown in Fig. S5. The observed spectra included the peaks of NH_3 , NH_2D , NHD_2 and ND_3 . NH_3 and NH_2D concentrations were obtained by following procedure. a_{NHD2} and a_{ND3} were obtained by the following equation:

$$
\frac{A_{ND3}}{\alpha_{ND3} \times L} + \frac{A_{NHD2}}{\alpha_{NHD2} \times L} = C_{total} - C_{NH3} - C_{NH2D}
$$
\n(S6)

where C_{total} was total concentration of ammonia, which was determined by HPLC.

Eq. S6 can be written by Eq. S7:

$$
A_{ND3} = -\frac{\alpha_{ND3}}{\alpha_{NHD2}} A_{NHD2} + (C_{total} - C_{NH3} - C_{NH2D}) \times L \times \alpha_{ND3}
$$
\n
$$
\tag{S7}
$$

*a*_{NHD2} and a_{ND3} were 0.0037 \pm 0.0019 (9.0 \pm 4.6×10² L mol⁻¹ cm⁻¹) and 0.0021 \pm 0.0001 ppm⁻¹ m^{-1} (5.1 ± 0.2 × 10² L mol⁻¹ cm⁻¹), respectively.

Fig. S4 Peak area of NH₂D vs. the concentration of NH₂D. The slope corresponds to $\alpha_{\text{NH2D}} \times L$.

Fig. S5 The intercept was $(C_{total} - C_{NH3} - C_{NH2D}) \times L \times \alpha_{ND3}$, and the slope corresponds to $-\alpha_{ND3}/\alpha_{NHD2}$.

7. Device for ammonia synthesis and FTIR measurement

Fig. S6 Schematic image of the ammonia electrosynthesis device. (a) Ammonia electrosynthesis device. (b) Gas flow into capture solution for HPLC measurement (c) Gas flow into optical cell for FTIR analysis. The three-way valve 1 was used to control the cathode flow into the capture solution or the FTIR device. Valves 2 and 3 are switches for the gas inlet and outlet, respectively, of the optical cell. (A) The influence of gas line temperature on NH₃ concentration was discussed in section 15.

8. H⁺ (or D⁺) diffusion through the electrolyte at the rest potential

Proton diffusion from the anode to the cathode is caused by the driving force of $H₂$ concentration gradient. At the steady state, the proton flux, J_H , is a constant, which can be described by Eq. S8.

$$
J_H = -D_H \frac{\partial c_{H2}}{\partial x}
$$
 (S8)

Because dt at the steady state, Eq. S8 can be written as Eq. S9: ∂t $= 0$

$$
J_H = -D_H \frac{c_{H2,anode} - c_{H2,cathode}}{L}
$$
 (S9)

where D_H , c_{H2} , $c_{H2,anode}$, $c_{H2,cathode}$, and *L* are the diffusion coefficient for H⁺ in BaCe_{0.9}Y_{0.1}O_{3-δ} (BCY), H_2 concentration, H_2 concentration in the anode, H_2 concentration in the cathode, and the thickness of BCY electrolyte, respectively. For the operation condition of 10% H₂−90% Ar in the anode and 5% D₂−45% Ar−50% N₂, the parameters were summarized in Table S9.

*J*_H is about 1.86 × 10⁻¹⁰ mol cm⁻² s⁻¹. The H₂ partial pressure, p_{H2} , in the cathode was obtained by Eq. S10.

$$
p_{H2} = \frac{J_H \times A \times R \times T}{f}
$$
 (S10)

where *A*, *R*, *T*, and *f* are the electrode area, gas constant, temperature, and flow rate.

The same calculation was conducted for the operation condition of 10% D₂−90% Ar in the anode and 5% H₂−95% N₂ in the cathode. The diffusion coefficient for deuterium in BCY, D_D , is described by Eq. S11.

$$
D_D = \frac{D_H}{\sqrt{2}}
$$

The parameters were summarized in Table S10.

Here, D_H , $c_{H2,anode}$, $c_{H2,cathode}$ are the diffusion coefficient for D^+ in BCY, D_2 concentration in the anode, and D_2 concentration in the cathode, respectively.

 J_D is about 1.31×10^{-10} mol cm⁻² s⁻¹. D₂ partial pressure, p_{D2} , in the cathode was also obtained by Eq. S10.

9. Decomposition behavior of ammonia species

The decomposition behavior of ammonia species was examined. As described in the main text, the valves 1, 2, and 3 (see Fig. S6) were closed to examine the influence of the optical cell on the concentration of ammonia product (i.e., the adsorption or decomposition of ammonia), as shown in Fig. $S7$, the intensities of the $ND₃$ peaks monotonously decreased with elapsed time, whereas the intensities of the NH_3 , NH_2D , and NHD_2 peaks did not change with elapsed time. Thus, the decrease in the ND_3 concentration was caused by the decomposition rather than the exchange reaction of ND₃ and H₂O to form NH_{3-x}D_x in the optical cell. The decomposition rate was about 0.4% per min based on the result in the stage 3, and the space time in the optical cell was 5 min in the stage 2, considering the current condition (the total gas flow rate in the cathode:100 sccm; the volume of the optical cell: 500 cm³). Therefore, the decomposition rate in the space time was around 2% in the stage 2, which can be negligible in our experiments.

Fig. S7 (a) was FTIR spectra of ammonia products using porous pure Fe in 5% D₂−45% Ar–50% N₂ with three valves closed. (b) shows the concentrations of the NH_{3-x}D_x peaks in (a).

10. Deconvolution of the spectrum involving NH2D Q' branch and NH³ P

Fig. S8 Deconvolution of the spectrum involving NH₂D Q' branch and NH₃ P branch. The spectrum was observed at −1 V and 550 °C in 5% H₂−95% N₂ in the cathode. The spectrum was observed at 90 min after applying the voltage.

11. FTIR spectra of the ammonia products

 (a)

Fig. S9 (a) was FTIR spectra of the ammonia products using porous pure Fe in 5% H₂−95% N_2 with three valves closed. (b) showed the concentrations of the $NH_{3-x}D_x$ peaks in (a).

12. Cell shape and the equipment for ammonia formation and FTIR

Fig. S10 Schematic images of a single cell (working electrode (WE) is porous pure Fe, and counter electrode (CE) and reference electrode (RE) are platinum (Pt).)

13. Experimental conditions for ammonia electrochemical synthesis

Table S11 Reaction conditions in the experiment for the electrochemical promotion of ammonia formation and deuterium isotope analysis.

14. Protocol for the benchmarking of electrochemical nitrogen reduction

A protocol for benchmarking of ammonia electrochemical synthesis is summarized in Table S12.

1. To check the accuracy of present ammonia electrochemical measurements, blank tests were conducted in pure N_2 (purity: 99.9999%) or pure Ar (purity: 99.99%), according to the following protocol, which is described in sections 16 and 17 in detail.

2. The influence of Ar purity (99.99% and 99.9999%) on ammonia formation rate in a gaseous mixture of H₂−N₂−Ar was examined in section 18.

2'. The ammonia formation rate in a gaseous mixture of Ar (purity: 99.99%)−H² (purity: 99.99%) was also examined. No ammonia formation was observed.

3. FTIR and HPLC detection limits were also determined in sections 16 and 17.

4. The influence of gas-line temperature on the NH₃ concentration was tested in section 15.

5. Stability test for composition and concentration of $NH_{3-x}D_x$ were examined in Fig. S7 and Fig. S9 to check the changes of $NH_{3-x}D_x$ in an optical cell with elapsed time.

1. Blank test	HPLC	Section 16	
	FTIR	Section 17	
2. Ar purity	HPLC	Section 18	
3. Detection limit	HPLC	Section 16	
	FTIR	Section 17	
4. Gas line			
temperature	The influence of gas tube temperature on the $NH3$ partial pressure	Section 15	
5. Stability test	8 m-optical cell	Fig. S7 and Fig. S9	

Table S12 Protocol for the benchmarking of ammonia electrochemical synthesis.

15. Influence of gas line temperature on ammonia concentration

Fig. S11 shows detected NH³ concentration with 10 ppm NH3−N² flow into the optical cell at different gas-line temperatures. The result showed that the NH₃ concentration kept constant around at 10 ppm when the gas-line temperature changed from 80°C to 160°C, which indicates that the influence of gas line temperature on ammonia concentration can be negligible.

Fig. S11 The relationship between the gas-line temperature and ammonia concentration in the optical cell.

16. Blank test for ammonia formation using HPLC in pure N² and Ar

As blank tests, ammonia formation rates were measured in pure Ar and N_2 with cathodic polarization using porous pure Fe cathode at 550°C, as shown in Fig. S12. The detection limit of ammonia formation rate was around 2×10^{-12} mol cm⁻² s⁻¹ for HPLC, and the observed ammonia formation rates were below 2×10^{-12} mol cm⁻² s⁻¹. Based on the results, we concluded almost no

Fig. S12 Ammonia formation rates in pure Ar and pure N_2 at 550°C. The red broken line is the detection limit of HPLC.

ammonia formation in pure N_2 and Ar.

17. Blank test for ammonia formation using FTIR in pure Ar and pure N² with an 8 moptical cell

As blank tests, FTIR spectra were measured at 550° C in pure Ar and N₂ at OCV and -1 V, respectively, as shown in Fig. S13. 10% H₂–90% Ar was introduced into the anode. The result showed that no peaks of the compositions of NH³ were observed. The background noise of the absorbance is around ± 0.00025 between 900 and 1000 cm⁻¹. Based on the background noise, the NH₃ peak height of 0.001 is the detection limit, which corresponds to the NH₃ concentration of 0.2 ppm.

Fig. S13 FTIR spectra after reaction time of 90 min in N_2 and Ar at OCV and $-1V$.

18. The effect of Ar purity on ammonia formation rate

Fig. S14 shows the ammonia formation rate at 550°C and 10% H₂−40% Ar−50% N₂ using Fe cathode with different Ar purity (99.99% and 99.9999%). The result shows that the ammonia formation rate does not change with different Ar purity.

Fig. S14 Ammonia formation rate with Ar purity 99.9999% (black square) and purity 99.99% (red circle) at 550°C using Fe cathode.

References

- 1. C. W. David, *Journal of Chemical Education,* **73** (1), 46−50 (1996).
- 2. S. Urban and D. Papousek, *Journal of Molecular Spectroscopy,* **101** 1−15 (1983).
- 3. V. A. Job, S. B. Kartha, K. Singh, and V. B. Kartha, *Journal of Molecular Spectroscopy,* **126** 290−306 (1987).
- 4. V. M. Devi, P. P. Das, and K. N. Rao, *Journal of Molecular Spectroscopy,* **88** 293−299 (1981).
- 5. S. B. Kartha, K. Singh, V. A. Job, and V. B. Kartha, *Journal of Molecular Spectroscopy,* **129** 86−98 (1988).
- 6. G. Laroche, J. Vallade, R. Bazinette, P. v. Nijnatten, E. Hernandez, G. Hernandez, and F. Massines, *Revuw of scientific instrumnt,* **83** 103508 (2012).
- 7. S. Zhuang, N. Han, Q. Zou, S. Zhang, and F. Song, *Membranes,* **10** (8), 164 (2020).