Supplementary Information

Boosting Light Harvesting and Charge Separation of WO₃ Via Coupling with Cu₂O/CuO Towards Highly Efficient Tandem Photoanode

Mahmoud A. Khalifa^{1,2}, Luying Shen¹, Jianming Zheng¹, and Chunye Xu^{1,*}

 ¹Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China.
² Physics Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.

*Corresponding Author E-mail Address [<u>chunye@ustc.edu.cn</u>]

Fig. S1 Cross-section SEM images of the as-prepared ITO/WO₃/Cu₂O photoanode (a) before and (b) after annealing at 300 °C in the open air. The scale bar is 1 μ m.

Fig. S2 The optical absorption spectra of (a) WO_3 and (b) Cu_2O and CuO thin films. Tauc plots of (c) WO_3 and (d) Cu_2O and CuO thin films. (e) Schematic diagram of the $WO_3/Cu_2O/CuO$ tandem design. The WO_3 thin film was grown on an ITO by the hydrothermal method. The Cu_2O thin film was deposited by the electrodeposition method. The CuO thin film was prepared by the annealing of Cu_2O at 550 °C for 1hr on muffle furnace.

Fig. S3 SEM images of ITO/WO₃/Cu₂O photoanode at 15 min (a) before and (b) after the PEC test. The scale bar is $2\mu m$.