Supporting Information to accompany

Amide-functionalised phosphonium-based ionic liquids as ligands for rhodium(III) extraction

Wataru Yoshida ^a and Masahiro Goto ^{a,b}*

a. Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744

Motooka, Fukuoka 819-0395, Japan

b. Center for Future Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan

* To whom correspondence should be addressed.

[M. Goto] Tel: +81 92 802 2806; Fax: +81 92 802 2810;

E-mail address: m-goto@mail.cstm.kyushu-u.ac.jp

Table of Contents		Page
1.	Materials and reagents	S-2
2.	Instrumentation and analysis	S-3
3.	Synthesis of amide-functionalised phosphonium-based ionic liquids General procedure for 2° amide synthesis General procedure for 3° amide synthesis General procedure for amide-phosphonium chloride synthesis	S-4
4.	NMR spectra of synthesised compounds Figure S1–S19	S-9
5.	References	S-16

1. Materials and reagents

All the chemicals and reagents used in this study were obtained from commercial sources and used as received unless otherwise stated. Chloroacetyl chloride (97%), 2-ethylhexylamine (98.0%), triethylamine (99%), dichloromethane (99.5%), 2-propanol (99.7%), deuterated chloroform containing tetramethylsilane (99.7%) and rhodium(III) chloride trihydrate (99.5%) were purchased from FUJIFILM Wako Pure Chemical Corporation. Di(2-ethylhexyl)amine (98.0%), 3-chloropropionyl chloride (98.0%), 4-chlorobutyryl chloride (98.0%), tributylphosphine (>95.0%), trihexylphosphine (>90.0%) and sodium sulfate, anhydrous (99.5%) were purchased from Tokyo Chemical Industry Co., Ltd. Trioctylphosphine (97%) and trihexyl(tetradecyl)phosphonium chloride (\geq 95.0%) were purchased from Sigma-Aldrich Co. LLC. Toluene (99.5%) and 10 mol dm⁻³ hydrochloric acid were purchased from Kishida Chemical Co., Ltd. The rhodium standard solution (1000 mg dm⁻³) was purchased from Kanto Chemical Co., Inc. All of the aqueous solutions in this study were prepared using Millipore water (resistivity > 18.2 MΩcm, Millipore, Milli-Q Integral 3, Merck).

2. Instrumentation and analysis

The ¹H nuclear magnetic resonance (NMR) spectra were recorded on a 300 MHz AV300M (Bruker, Billerica, MA, USA) or on a 400 MHz ECZ400 (JEOL, Tokyo, Japan) operating at 298 K. The ³¹P NMR spectra were recorded on an ECZ400 at 162 MHz. The chemical shifts are noted in parts per million (ppm), referenced to tetramethylsilane (TMS) for 1H and to 85% H₃PO₄ for ³¹P. Deuterated chloroform (CDCl₃) was used as the solvent for recording all the NMR spectra. The elemental analysis of carbon, hydrogen and nitrogen (CHN analysis) was carried out using a Yanaco CHN Corder MT-6 (Anatec Yanaco Co., Kyoto, Japan). The extraction experiments were performed with glass centrifuge tube in a temperature-controlled water bath shaker (NTS-4000BH, EYELA, Tokyo, Japan) after being vigorously mixed by a vortex mixer (VORTEX-GENIE 2, Scientific Industries). The concentrations of Rh in the aqueous solution were measured using an inductively coupled plasma-atomic emission spectrometer (ICP-AES, Optima 8300, Perkin-Elmer Co., Waltham, MA, USA). Ultraviolet-visible (UV-vis) absorption spectra were measured with a V-750 spectrophotometer (JASCO Co., Tokyo, Japan) in the range 300–700 nm at room temperature. Fourier Transform Infrared (FT-IR) spectrum was recorded by a Spectrum Two (PerkinElmer, Waltham, MA, USA), via the attenuated total reflectance (ATR) technique.

3. Synthesis of amide-functionalised phosphonium-based ionic liquids

The amide-functionalised phosphonium-based ionic liquids (APILs) were synthesised based on the procedure described in the reference [S1-3] as follows.

General procedure for 2° amide synthesis

The amidation ($S_N 2$) of 2-ethylhexylamine with halogeno-acylchloride (chloroacetyl chloride for amide **1**, 3-chloropropionyl chloride for amide **2**) in the presence of triethylamine (TEA) in dichloromethane produced the intermediary amide with a high yield (> 85%). TEA (1.0 eq) was added to the stirred solution of 2-ethylhexylamine in dichloromethane. The suspension was cooled to 0°C and acylchloride (1.0 eq) was added dropwise. After total addition, the reaction mixture was allowed to stir at room temperature for three hours. The mixture was washed twice with 0.1 mol dm⁻³ HCl and five times with deionized water (each 200 cm³). The organic phase was then separated, dried over anhydrous sodium sulfate, filtered, and concentrated under vacuum, which resulted in the formation of the amide **1** and **2** as a yellowish and brown liquid, respectively. The final products were characterized by ¹H NMR spectroscopy. The obtained amide **1** and **2** were used in the next step.

2-chloro-*N***-(2-ethylhexyl)acetamide 1**; Yield: 95% by mass (61.2 g); ¹H NMR (400 MHz, CDCl₃, 298 K): δ 6.91 (br, 1H, C(=O)N*H*R), 4.05 (s, 2H, C(=O)C*H*₂Cl), 3.24 (t, 2H, NC*H*₂CHR¹R²), 1.51 (t, 1H, NCH₂C*H*R¹R²), 1.38–1.29 (m, 8H, RC*H*₂R), 0.90 (t, 6H, C*H*₃); elemental analysis (CHN) calcd. for C₁₀H₂₀Cl₁N₁O₁: C, 58.38; H, 9.80; N, 6.81; found: C, 58.38; H, 9.83; N, 6.85.

3-chloro-*N***-(2-ethylhexyl)propanamide 2**; Yield: 85% by mass (36.7 g); ¹H NMR (400 MHz, CDCl₃, 298 K): δ 7.31 (br, 1H, C(=O)N*H*R), 3.79 (t, 2H, C(=O)CH₂C*H*₂Cl), 3.2 (m, 2H, NC*H*₂CHR¹R²), 2.71 (t, 2H, C(=O)C*H*₂CH₂Cl), 1.49 (t, 1H, NCH₂C*H*R¹R²), 1.37–1.28 (m, 8H, RC*H*₂R), 0.88 (t, 6H, C*H*₃);

elemental analysis (CHN) calcd. for C₁₁H₂₂Cl₁N₁O₁: C, 60.12; H, 10.09; N, 6.37; found: C, 61.18; H, 10.18; N, 6.48.

General procedure for 3° amide synthesis

The amidation (S_N2) of di(2-ethylhexyl)amine with halogeno-acylchloride (chloroacetyl chloride for amide **3**, 3-chloropropionyl chloride for amide **4**, 4-chlorobutyryl chloride for amide **5**) in the presence of TEA in dichloromethane produced the intermediary amide in an excellent yield (> 94%). TEA (1.0 eq) was added to the stirred solution of di(2-ethylhexyl)amine in dichloromethane. The suspension was cooled to 0°C and acylchloride (1.1 eq) was added dropwise. After total addition, the reaction mixture was allowed to stir at room temperature for three hours. The mixture was washed twice with 0.1 mol dm⁻³ HCl and five times with deionized water (each 200 cm³). The organic phase was then separated, dried over anhydrous sodium sulfate, filtered, and concentrated under vacuum, which resulted in the formation of the amide **3**, **4** and **5** as a dark brown, yellowish and brown liquid, respectively. The final products were characterized by ¹H NMR spectroscopy. The obtained amide **3**– **5** were used in the next step.

2-chloro-*N*,*N*-**di**(**2-ethylhexyl)acetamide 3**; Yield: 94% by mass (60.2 g); ¹H NMR (300 MHz, CDCl₃, 298 K): δ 4.08 (s, 2H, C(=O)CH₂Cl), 3.47–3.11 (m, 4H, NCH₂CHR¹R²), 1.65 (m, 2H, NCH₂CHR¹R²), 1.27 (m, 16H, RCH₂R), 0.89 (q, 12H, CH₃); elemental analysis (CHN) calcd. for C₁₈H₃₆Cl₁N₁O₁: C, 68.00; H, 11.41; N, 4.41; found: C, 67.29; H, 11.31; N, 4.34.

3-chloro-*N*,*N*-**di**(2-ethylhexyl)propanamide 4; Yield: 96% by mass (57.2 g); ¹H NMR (400 MHz, CDCl₃, 298 K): δ 3.84 (t, 2H, C(=O)CH₂CH₂Cl), 3.35–3.14 (m, 4H, NCH₂CHR¹R²), 2.80 (t, 2H, C(=O)CH₂CH₂Cl), 1.71–1.57 (m, 2H, NCH₂CHR¹R²), 1.34–1.23 (m, 16H, RCH₂R), 0.89 (q, 12H,

*CH*₃); elemental analysis (CHN) calcd. for C₁₉H₃₈Cl₁N₁O₁: C, 68.74; H, 11.54; N, 4.22; found: C, 69.33; H, 11.62; N, 4.30.

4-chloro-*N*,*N*-di(2-ethylhexyl)butanamide **5**; Yield: 97% by mass (67.1 g); ¹H NMR (400 MHz, CDCl₃, 298 K): δ 3.64 (t, 2H, C(=O)CH₂CH₂CH₂Cl), 3.30–3.16 (m, 4H, NCH₂CHR¹R²), 2.51 (t, 2H, C(=O)CH₂CH₂CH₂Cl), 2.13 (quin, 2H, C(=O)CH₂CH₂CH₂Cl), 1.70–1.57 (m, 2H, NCH₂CHR¹R²), 1.36–1.23 (m, 16H, RCH₂R), 0.89 (q, 12H, CH₃); elemental analysis (CHN) calcd. for C₂₀H₄₀Cl₁N₁O₁: C, 69.43; H, 11.65; N, 4.05; found: C, 69.33; H, 11.76; N, 4.17.

General procedure for amide-phosphonium chloride synthesis

The corresponding APILs were prepared by alkylation (S_N2) of trialkylphosphine (tributylphosphine for $[2^{\circ}C_1P_{444}][C1]$, $[2^{\circ}C_2P_{444}][C1]$, $[3^{\circ}C_1P_{444}][C1]$, $[3^{\circ}C_2P_{444}][C1]$ and $[3^{\circ}C_3P_{444}][C1]$, tributylphosphine for $[3^{\circ}C_1P_{666}][C1]$, trioctylphosphine for $[3^{\circ}C_1P_{888}][C1]$) with intermediate amide in high yields (>85%). The intermediate amide (1.0 eq) and 2-propanol (200 cm³) were added with a syringe to a 2 or 3-neck flask purged with N₂ gas. Trialkylphosphine (1.0 eq) was added dropwise to the stirred solution of the intermediate amide in 2-propanol. The reaction mixture was heated at 80°C and stirred for 24 h under nitrogen atmosphere. The solvent was removed from the resulting solution in vacuo, the residue was dissolved in dichloromethane and washed twice with deionized water (each 200 cm³). The organic phase was then dried over anhydrous sodium sulfate and filtered. The product was obtained as viscous liquid by drying the organic layer via evaporation and further drying on a vacuum line. The final products were characterized by ¹H and ³¹P NMR spectroscopy.

[2-((2-ethylhexyl)amino)-2-oxoethyl]tributylphosphonium chloride [2°C₁P₄₄₄][Cl]; Yield: 93% by mass (37.9 g); ¹H NMR (400 MHz, CDCl₃, 298 K): δ 4.02–3.99 (d, 2H, NC(=O)CH₂P), 3.23–3.12 (m, 2H, NCH₂CHR¹R²), 2.32 (t, 6H, PCH₂(CH₂)₂CH₃), 1.67–1.50 (m, 13H, PCH₂(CH₂)₂CH₃ and NCH₂C*H*R¹R²), 1.45–1.28 (m, 8H, RC*H*₂R), 0.98 (t, 9H, PCH₂(CH₂)₂C*H*₃), 0.88 (t, 6H, C*H*₃); ³¹P NMR (162 MHz, CDCl₃, 298 K): δ 32.91; elemental analysis (CHN) calcd. for C₂₂H₄₇Cl₁N₁O₁P₁•0.2H₂O: C, 64.19; H, 11.61; N, 3.40; found: C, 64.16; H, 11.51; N, 3.34.

[3-((2-ethylhexyl)amino)-3-oxopropyl]tributylphosphonium chloride [2°C₂P₄₄₄][Cl]; Yield: 85% by mass (35.9 g); ¹H NMR (400 MHz, CDCl₃, 298 K): δ 3.18–3.09 (m, 2H, NC*H*₂CHR¹R²), 3.07–2.98 (m, 2H, NC(=O)C*H*₂CH₂P), 2.65 (quin, 2H, NC(=O)CH₂C*H*₂P), 2.39 (t, 6H, PC*H*₂(CH₂)₂CH₃), 1.57–1.51 (m, 13H, PCH₂(C*H*₂)₂CH₃ and NCH₂C*H*R¹R²), 1.41–1.28 (m, 8H, RC*H*₂R), 0.97 (t, 9H, PCH₂(CH₂)₂C*H*₃), 0.87 (t, 6H, C*H*₃); ³¹P NMR (162 MHz, CDCl₃, 298 K): δ 35.43; elemental analysis (CHN) calcd. for C₂₃H₄₉Cl₁N₁O₁P₁: C, 65.45; H, 11.70; N, 3.32; found: C, 65.17; H, 11.68; N, 3.36.

[2-(di(2-ethylhexyl)amino)-2-oxoethyl]tributylphosphonium chloride [3°C₁P₄₄₄][Cl]; Yield: 93% by mass (48.5 g); ¹H NMR (400 MHz, CDCl₃, 298 K): δ 4.47–4.27 (m, 2H, NC(=O)CH₂P), 3.51–3.19 (m, 4H, NCH₂CHR¹R²), 2.49 (t, 6H, PCH₂(CH₂)₂CH₃), 1.67–1.50 (m, 14H, PCH₂(CH₂)₂CH₃ and NCH₂CHR¹R²), 1.38–1.29 (m, 16H, RCH₂R), 0.97 (t, 9H, PCH₂(CH₂)₂CH₃), 0.90 (m, 6H, CH₃); ³¹P NMR (162 MHz, CDCl₃, 298 K): δ 34.01; elemental analysis (CHN) calcd. for C₃₀H₆₃Cl₁N₁O₁P₁•0.2H₂O: C, 68.78; H, 12.20; N, 2.67; found: C, 68.62; H, 12.23; N, 2.66.

[2-(di(2-ethylhexyl)amino)-2-oxoethyl]trihexylphosphonium chloride [3°C₁P₆₆₆][Cl]; Yield: 95% by mass (37.5 g); ¹H NMR (400 MHz, CDCl₃, 298 K): δ 4.45–4.35 (m, 2H, NC(=O)CH₂P), 3.47–3.24 (m, 4H, NCH₂CHR¹R²), 2.48 (t, 6H, PCH₂(CH₂)₂(CH₂)₂CH₃), 1.67–1.46 (m, 14H, PCH₂(CH₂)₂(CH₂)₂CH₃ and NCH₂CHR¹R²), 1.35–1.21 (m, 28H, PCH₂(CH₂)₂(CH₂)₂CH₃ and RCH₂R), 0.94–0.84 (m, 21H, CH₃); ³¹P NMR (162 MHz, CDCl₃, 298 K): δ 33.89; elemental analysis (CHN) calcd. for C₃₆H₇₅Cl₁N₁O₁P₁: C, 71.54; H, 12.51; N, 2.32; found: C, 71.62; H, 12.49; N, 2.15.

[2-(di(2-ethylhexyl)amino)-2-oxoethyl]trioctylphosphonium chloride [3°C₁P₈₈₈][Cl]; Yield: 93% by mass (64.2 g); ¹H NMR (400 MHz, CDCl₃, 298 K): δ 4.30–4.22 (m, 2H, NC(=O)CH₂P), 3.37–3.12 (m, 4H, NCH₂CHR¹R²), 2.38 (t, 6H, PCH₂(CH₂)₂(CH₂)₄CH₃), 1.48–1.38 (m, 14H, PCH₂(CH₂)₂(CH₂)₄CH₃ and NCH₂CHR¹R²), 1.19 (m, 40H, PCH₂(CH₂)₂(CH₂)₄CH₃ and RCH₂R), 0.87–0.79 (m, 21H, CH₃); ³¹P NMR (162 MHz, CDCl₃, 298 K): δ 33.78; elemental analysis (CHN) calcd. for C₄₂H₈₇Cl₁N₁O₁P₁: C, 73.26; H, 12.74; N, 2.03; found: C, 73.32; H, 12.80; N, 1.98.

[3-(di(2-ethylhexyl)amino)-3-oxopropyl]tributylphosphonium chloride [3°C₂P₄₄₄][Cl]; Yield: 96% by mass (51.5 g); ¹H NMR (400 MHz, CDCl₃, 298 K): δ 3.33–3.19 (m, 4H, NCH₂CHR¹R²), 3.07–3.03 (m, 2H, NC(=O)CH₂CH₂P), 2.69 (t, 2H, NC(=O)CH₂CH₂P), 2.45 (t, 6H, PCH₂(CH₂)₂CH₃), 1.59–1.47 (m, 14H, PCH₂(CH₂)₂CH₃ and NCH₂CHR¹R²), 1.31–1.22 (m, 16H, RCH₂R), 0.97 (t, 9H, PCH₂(CH₂)₂CH₃), 0.92–0.85 (m, 12H, CH₃); ³¹P NMR (162 MHz, CDCl₃, 298 K): δ 34.49; elemental analysis (CHN) calcd. for C₃₁H₆₅Cl₁N₁O₁P₁•0.2H₂O: C, 69.22; H, 12.26; N, 2.60; found: C, 69.26; H, 12.11; N, 2.60.

[4-(di(2-ethylhexyl)amino)-4-oxobutyl]tributylphosphonium chloride [3°C₃P₄₄₄][Cl]; Yield: 94% by mass (51.6 g); ¹H NMR (400 MHz, CDCl₃, 298 K): δ 3.35–3.13 (m, 4H, NCH₂CHR¹R²), 2.86–2.85 (m, 2H, NC(=O)CH₂CH₂CH₂P), 2.58 (t, 2H, NC(=O)CH₂CH₂CH₂P), 2.43 (t, 6H, PCH₂(CH₂)₂CH₃), 1.96–1.80 (m, 2H, NC(=O)CH₂CH₂CH₂P), 1.68–1.50 (m, 14H, PCH₂(CH₂)₂CH₃ and NCH₂CHR¹R²), 1.31–1.25 (m, 16H, RCH₂R), 0.97 (t, 9H, PCH₂(CH₂)₂CH₃), 0.92–0.85 (m, 12H, CH₃); ³¹P NMR (162 MHz, CDCl₃, 298 K): δ 33.90; elemental analysis (CHN) calcd. for C₃₂H₆₇Cl₁N₁O₁P₁: C, 70.10; H, 12.32; N, 2.55; found: C, 69.95; H, 12.30; N, 2.82.

4. NMR spectra of synthesised compounds

Figure S1. ¹H-NMR spectrum of Compound 1 (400 MHz, CDCl₃).

Figure S2. ¹H-NMR spectrum of Compound 2 (400 MHz, CDCl₃).

Figure S3. ¹H-NMR spectrum of Compound 3 (300 MHz, CDCl₃).

Figure S4. ¹H-NMR spectrum of Compound 4 (400 MHz, CDCl₃).

Figure S5. ¹H-NMR spectrum of Compound 5 (400 MHz, CDCl₃).

Figure S6. ¹H-NMR spectrum of [2°C₁P₄₄₄][CI] (400 MHz, CDCI₃).

Figure S7. ³¹P-NMR spectrum of [2°C₁P₄₄₄][Cl] (162 MHz, CDCl₃).

Figure S8. ¹H-NMR spectrum of $[2^{\circ}C_2P_{444}]$ [CI] (400 MHz, CDCI₃).

Figure S9. ³¹P-NMR spectrum of [2°C₂P₄₄₄][Cl] (162 MHz, CDCl₃).

Figure S10. ¹H-NMR spectrum of [3°C₁P₄₄₄][Cl] (400 MHz, CDCl₃).

Figure S11. ³¹P-NMR spectrum of $[3^{\circ}C_{1}P_{444}]$ [CI] (162 MHz, CDCI₃).

Figure S12. ¹H-NMR spectrum of [3°C₁P₆₆₆][CI] (400 MHz, CDCI₃).

Figure S13. ³¹P-NMR spectrum of [3°C₁P₆₆₆][Cl] (162 MHz, CDCl₃).

Figure S14. ¹H-NMR spectrum of [3°C₁P₈₈₈][CI] (400 MHz, CDCI₃).

Figure S15. ³¹P-NMR spectrum of [3°C₁P₈₈₈][CI] (162 MHz, CDCI₃).

Figure S16. ¹H-NMR spectrum of $[3^{\circ}C_2P_{444}]$ [CI] (400 MHz, CDCI₃).

Figure S17. ³¹P-NMR spectrum of [3°C₂P₄₄₄][CI] (162 MHz, CDCI₃).

Figure S18. ¹H-NMR spectrum of $[3^{\circ}C_{3}P_{444}][CI]$ (400 MHz, CDCI₃).

Figure S19. ³¹P-NMR spectrum of $[3^{\circ}C_{3}P_{444}]$ [CI] (162 MHz, CDCI₃).

5. References

- [S1] A M. Vasiloiu, I. Cervenka, P. Gaertner, M. Weil, C. Schröder and K. Bica, *Tetrahedron: Asymmetry*, 2015, **26**, 1069.
- [S2] B. Naveen, A. Mudiraj, G. Khamushavalli, P.P. Babu and R. Nagarajan, *Eur. J. Med. Chem.*, 2016, **113**, 167.
- [S3] S. Dewilde, W. Dehaen and K. Binnemans, Green Chem., 2016, 18, 1639.