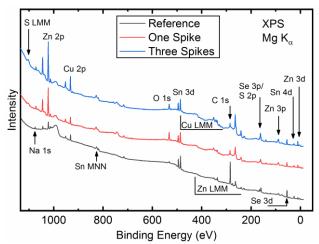
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021


Supporting Information

Steep Sulfur Gradient in CZTSSe Solar Cells by H₂S-Assisted Rapid Surface Sulfurization

Teoman Taskesen*, Devendra Pareek, Dirk Hauschild, Alan Haertel, Lothar Weinhardt, Wanli Yang, Timo Pfeiffelmann, David Nowak, Clemens Heske, Levent Gütay

*Corresponding author e-mail: teoman.taskesen@uni-oldenburg.de

This Supporting Information section contains material to support the main hypotheses raised in the main manuscript.

Figure S1. Mg K_{α} XPS survey spectra of the CZTSe reference (black), one-spike (red), and three-spike (blue) samples. Prominent photoelectron and Auger features are labeled.

Table S1: Saturation current (J_o) , ideality factor (A), shunt resistance (R_{sh}) , and series resistance (R_s) of the best-performing devices from each H_2S -assisted rapid surface sulfurization treatment. The analysis was performed with Shockley's one-diode model on the illuminated current-voltage curves.

Sample	J ₀ (mA/cm ²)	A	$R_{sh} (\Omega.cm^2)$	$R_s (\Omega.cm^2)$
Reference	3.0E-02	2.0	200	0.05
40%P	3.0E-02	2.1	250	0.05
45%P	4.0E-02	2.1	250	0.05
50%P	2.1E-01	2.5	75	0.05
50%P+Selenium	6.5E-02	2.2	200	0.05