## Supplementary Information for

# Selectivity for Water Isotopologues Within Metal Organic Nanotubes

Maurice K. Payne, Lindsey C. Applegate, Priyanka Singh, Ashini S. Jayasinghe, George B. Crull, Andrea B. Grafton, Christopher M. Cheatum, and Tori Z. Forbes\*

Correspondence to:tori-forbes@uiowa.edu

## This PDF file includes:

- 1. Materials and Methods
- 2. Structural details of UMON material
- 3. Power X-ray Diffraction of UMON material
- 4. TGA with FTIR of evolved gases
  4.1 Flow-through (Vapor sorption) experiments
  4.2 Batch uptake experiments
  4.3 Extended Flow-through experiments to support batch experiments
- 5. Solid-state FTIR analysis of UMON material
- 6. Solid-state NMR of UMON material
- 7. Proposed mechanism for batch uptake experiments
- 8. Details on <sup>3</sup>T results and activity calculations
- 9. H<sub>2</sub>O isotherm data and modeling

### 1. Materials and Methods

CAUTION: The synthesis of the UMON material requires the use of radioactive <sup>238</sup>U, which is an a emitter, and like all radioactive materials must be handled with care. These experiments were conducted by trained personnel in a licensed research facility with special precautions taken toward the handling, monitoring, and disposal of radioactive materials.

UMON materials were synthesized according to previously published methodology. Briefly, 2.5 mL of a 0.2 M uranyl nitrate hexahydrate solution was mixed with 2.5 mL of a 0.2 M iminodiacetic acid solution in a glass scintiliation vial and followed by the addition of 5 mL of 0.2 M piperazine. Methanol was added to the solution in a H2O:methanol of 1:2 to aid in crystallization. Crystalline materials in pure yields were formed on the bottom of the sample vial with yields of 95% based upon U. The material was filtered, washed with acetone, and air dried. Purity of the bulk material was assessed by powder X-ray diffraction on a Bruker Avance diffractometer (Cu K $\alpha$ ).

*Flow-through*  $D_2O$  *uptake studies:* Dehydrated UMON crystallites were placed in a tared 1.5-dram glass vial and dehydrated at 120° for 18 hrs. The vial was sealed with a septum cap while at temperature, and the initial mass of the sample/vial was recorded using a METTLER AT20 microbalance. The sample was placed on a vapor sorption apparatus and dry air (Praxair 439 compressed air ultra-zero) was bubbled through a sealed vial by perforating the seal with a needle (Fig. S1). The relative humidity (RH) was maintained at 80% by passing the dry gas through 10 mL of  $D_2O$  (99.6%) and the temperature and humidity was monitored by a Sensirion sensor. A Cole Parmer flow-rate gauge was used to control the volume of vapor passed over the UMON material. The weight change of the sample every 10 minutes for one hour.



**Fig. S1**. Vapor sorption apparatus used for  $D_2O$  flow-through experiments includes (a) dry  $N_2$  source, (b) sealed  $D_2O$  chamber, (c) relative humidity sensor, (d) flow meter, (e) sample chamber, and (f) overflow chamber.

Batch  $D_2O$  uptake studies: Crystals were gently ground to achieve a uniform crystallite size range of 250 ± 75 µm, and dehydrated at 120 °C for 18 hrs. A large glove bag (520 L, SigmaAldrich) was purged and backfilled with UHP nitrogen gas (99.999%, Praxair) three times. The N<sub>2</sub> gas was passed through activated molecular sieves (3 Å, 8-12 mesh, Acros Organics) and DrieriteTM (8 mesh) to ensure and monitor the dryness. Approximately 80 mg of the crystals in three 1.5-dram glass vials were removed from the oven and immediately placed into the glove bag (Fig. S2). Two uncapped 20-mL glass scintillation vials with D<sub>2</sub>O (2.5 mL) were also placed into the glove bag. The vials containing the UMON crystals were uncapped and placed inside the 20-mL vials containing D<sub>2</sub>O. The larger vials

were then capped and allowed to equilibrate for 18 hours. The third UMON sample was left uncapped in the glovebox to serve as a blank.  $D_2O$  uptake experiments were performed five times over one calendar year with freshly prepared UMON samples. Uptake of 50%/50%  $H_2O/D_2O$  mixture was also performed using the same methodology as described for the pure  $D_2O$  system.

After uptake, UMON crystals were removed from the 1.5-dram vials, placed into two tared AI pans, and sealed in glass vials for transport to the TGA/FTIR instrument. Transfer time was ~30sec and based upon our prior vapor sorption experiments (and blank), we are confident that prohibited measurable uptake of atmospheric H<sub>2</sub>O. Samples were analyzed using a TA instruments TGA Q500 (purged with N<sub>2</sub> prior to use) interfaced with a Nicolet FT-IR spectrometer via a Thermo Scientific evolved gas analyzer. The sample was heated from 25 °C to 180 °C (ramp rate of 20 °C per minute) and the evolved gas was analyzed with FTIR spectroscopy. TGA/FTIR data was also collected on H<sub>2</sub>O, D<sub>2</sub>O, and HDO standards.



**Fig. S2**. Illustration of the experimental methodology for the  $D_2O$  adsorption experiments. Two sets of 1.5-dram vials containing dehydrated UMON crystals were placed into a  $N_2$  atmosphere. One set of vials was placed into a 20 mL scintillation vial containing 2.5 mL  $D_2O$  and the other set were exposed to the  $N_2$  atmosphere inside the glovebag. Both sets of vials were equilibrated overnight before being transferred to an aluminum TGA pan for analysis by TGA/FTIR spectroscopy.

*FTIR studies of solid state UMON samples*: Freshly synthesized UMON crystals were vacuum filtered from their mother liquor, rinsed with dry acetone (3 Å, 8-12 mesh, Acros Organics), and dehydrated at 80 °C for 18 hrs. Approximately 30 mg of the heated material was immediately placed into immersion oil and deposited between two KBr discs for FTIR analysis. Two additional 30 mg samples were placed into separate 20 mL vials for hydration with either H<sub>2</sub>O or D<sub>2</sub>O vapor (5-mL of liquid larger sealed glass vials) for 18 hrs in the glove bag. After hydration, the crystals were prepared for FTIR analysis on KBr disks. FTIR spectra were measured using a Bruker Tensor spectrometer equipped with a standard glow bar source and DTGS detector. The spectrometer and sample cavity were purged with air (<1 ppm water and  $CO_2$ ). All spectra are referenced to a common background taken immediately before the sample measurements.

*NMR spectroscopy of solid state UMON samples*: Experiments were conducted on a Bruker AV III instrument (Bruker Biospin, Billerica, MA) operating at a proton frequency of 500.01 MHz using a 4mm

MAS BB/1H Bruker probe head. Measurements were performed without spinning (static) in a 4 mm ZrO<sub>2</sub> rotor. Samples (50 mg) and standards were confined to a Teflon insert placed inside the rotor to provide additional isolation of the sample. Relaxation delay was maintained at 0.1 seconds for the <sup>2</sup>D experiments. The spectral sweep width was 200 ppm centered at 4 ppm. 1024 data points were acquired, zero filled to 16,384 prior to apodization with 100 Hz line broadening and typically 60,000 free induction decays were coadded. Pulse width was 3.75 µsec resulting in an effective bandwidth of 66 KHz. Various relaxation delays and a solid echo did not significantly improve the spectral quality. For the H-1 measurement, the relaxation delay was maintained at 20 seconds, spectral sweep width was 200 ppm centered at 4 ppm, 4096 data points were acquired, and zero filled to 16,384 prior to apodization with 100 Hz line broadening. Typically, 32 free induction decays were coadded. Pulse width was 4 µsec resulting in an effective bandwidth of 62.5 KHz. Spectra were referenced indirectly to TMS using the <sup>1</sup>H or <sup>2</sup>D resonance of water at 4.8 ppm. <sup>2</sup>D spectra were deconvoluted using the Sola program within Topspin 3.2. For plotting, the fit data was simulated using QUEST (V1.1.7, F. A. Perras, University of Ottawa and Ames Laboratory).

Tritiated water uptake: CAUTION: This methodology requires the use of radioactive  ${}^{3}$ T, which is an  $\beta$  emitter, and like all radioactive materials must be handled with care. These experiments were conducted by trained personnel in a licensed research facility with special precautions taken toward the handling, monitoring, and disposal of radioactive materials.

Tritiated water was obtained from Perkin Elmer NET001B001MC, Lot: 2396166 (predicted specific activity: 1 mCi/ml; measured specific activity 4 mCi/ml). All tritiated samples were analyzed by a Packard 2900 TR Series Liquid Scintillation Counter (with a PerkinElmer Ultima Gold cocktail). The experimental design was tested with H<sub>2</sub>O to confirm the uptake methodology.

Freshly prepared crystals were placed in glass vial in a gravimetric oven set at 120° for 30 min to dehydrate. Four experimental and three control replicates of these crystals (~5-15mg) were placed into a cut Eppendorf tube (~0.4 ml) (Fig. S3) and then a second 0.6-mL Eppendorf tube for transport. The tubes were closed and sealed with parafilm before removal from the oven. As-synthesized (fully hydrated) nanotubes were used as the control.

Tritiated water (50  $\mu$ l) was placed into four 2.0 mL tubes and the 0.4 mL Eppendorf containing the dehydrated UMON crystals was added. The 2.0 mL tubes were sealed and then placed on an orbital shaker for hydration. After 40 minutes, the 0.4 mL Eppendorf tube was removed, and 100  $\mu$ L of pure deionized/distilled H<sub>2</sub>O was added directly to the crystals. The tube was gently shaken to ensure mixing and a 5- $\mu$ L aliquot of solution was transferred to a 20 mL scintillation vial containing 15 mL of PerkinElemer Ultima Gold scintillation cocktail. The process was repeated every four minutes for a total of 70 minutes. Finally, 150  $\mu$ L of 1M HCl was added to dissolve the UMON material and a five  $\mu$ l aliquot was analyzed by LSC to measure total <sup>3</sup>T.



**Fig. S3**. Illustration depicting tritiated water adsorption methodology. UMON crystals were placed into a 0.4 mL Eppendorf tube and then placed into a larger vial containing tritiated water (1 mCi/mL). After exposure for 40 minutes, the reacted crystals were placed into Millipure H<sub>2</sub>O and aliquots were taken every 4 minutes for a 72 minute experiment. Total <sup>3</sup>T in the sample was then analyzed by dissolving the crystals in acid and then measuring the activity by Liquid Scintillation Counting (LSC).

#### 2. Structural Details of UMON material



**Fig. S4.** The asymmetric unit of the UMON material depicted using thermal ellipsoids (50%) based upon structure determination using single-crystal X-ray diffraction.



**Fig. S5**. (a) Image of water packing viewed down the UMON channel obtained from single crystal X-ray diffraction indicates a hexameric arrangement of water molecules. (b) The extended view of the ice-like arrangement of the water molecules within the UMON channels shows an extended network of H-bonding.



Fig. S6. Representative powder diffraction pattern of UMON showing purity before uptake experiments.



**Fig. S7**. Representative powder diffraction pattern of UMON after vapor sorption experiment, indicating that the material maintained its crystallinity and purity.

## 4. TGA with FTIR of evolved gases



**Fig. S8**. FTIR spectra of  $H_2O$ , HDO, and  $D_2O$  standards used in this study. Spectral band located at 2350 cm<sup>-1</sup> corresponds to imperfect background subtraction of carbon dioxide in the evolved gas.

4.1 Flow-through (Vapor sorption) experiments



Fig. S9. Thermogravimetric analysis of the UMON material after exposure to  $H_2O$  in the flow-through experiments.



**Fig. S10.** (a) TGA of UMON sample exposed to  $D_2O$  in the vapor sorption apparatus (flow-through experiments). (b) FTIR of the evolved gases released during heating on the TGA of the UMON sample exposed to  $D_2O$  in the vapor sorption apparatus (flow-through experiments). Vibrational bands in the FTIR spectra indicate that the evolved gases are  $H_2O$ . Spectral band located at 2350 cm<sup>-1</sup> corresponds to residual carbon dioxide (from loading the sample) in the evolved gase.



Fig. S11. Representative TGA analysis of an as-synthesized UMON sample (batch experiment) with weight loss corresponding to  $H_2O$ .



Fig. S12. Representative TGA analysis of a dehydrated UMON control sample (batch experiment) that was placed in the glove bag for 18 hours.



Fig. S13. Collated replicate TGA data for dehydrated UMON samples exposed to D<sub>2</sub>O vapor for 18 hours in batch experiments.



**Fig. S14.** FTIR spectrum of evolved gases released from UMON exposed to  $D_2O$  vapor for 18 hours in batch experiments. The window of interest is associated with the  $v_1 O$ -D stretch located at 2723 cm<sup>-1</sup> which was collected at 120 °C.



**Fig. S15**. FTIR spectrum of evolved gases released from UMON exposed to  $D_2O$  vapor in batch experiments collected over time. The window of interest is again associated with the  $v_1 O$ -D stretch located at 2723 cm<sup>-1</sup>. The peak begins to grow in after 5 minutes (80 °C) of heating.



**Fig. S16**. Uptake of 50/50 wt%  $D_2O/H_2O$  solution using the batch uptake methodology resulted in (a) 5.5% weight loss in the TGA that corresponds to full uptake within the channels. (b) FTIR spectrum of evolved gases released from UMON during the TGA analysis of the UMON material exposed to the 50/50 wt%  $D_2O/H_2O$  solution indicate the presence of  $H_2O$  with no bands associated with  $D_2O$  present in the spectrum. Spectral band located at 2350 cm<sup>-1</sup> corresponds to residual carbon dioxide in the evolved gas.



**Fig. S17.** (a) Extended analysis of  $D_2O$  uptake using the vapor sorption apparatus (flow-through experiments). Full uptake (6%) was achieved after 6 hours of exposure (b) TGA of the extended analysis of the  $D_2O$  uptake using the vapor sorption apparatus. A weight loss of 5.8% was achieved by 100 °C, which corresponds to the presence of  $H_2O$  in the nanotubes. (c) The FTIR of the evolved gases released during heating on the TGA of the UMON sample exposed to  $D_2O$  in the vapor sorption apparatus (extended flow-through experiments). Vibrational bands in the FTIR spectra indicate that the evolved gases are  $H_2O$ . There is no evidence of  $D_2O$  bands within the FTIR spectra, supporting the results of the batch experiments.



Fig. S18. Full FTIR spectrum of the solid UMON samples in immersion oil.



**Fig. S19.** Condensed phase FTIR of UMON exposed to either  $H_2O$  or  $D_2O$  vapor contains broad bands between 3400 and 4000 cm<sup>-1</sup> that are indicative of light water. An additional peak at 2280 cm<sup>-1</sup> is suggestive of <sup>2</sup>D exchange with amine groups.

#### 6. Solid-state NMR of UMON material



**Fig. S20.** The solid state <sup>1</sup>H NMR spectra for the hydrated UMON displays a large single peak near 5 ppm corresponding to  $H_2O$  in the channels.



**Fig. S21.** No signal is observed for the solid-state 2D-NMR of the UMON material exposed to  $H_2O$ , but peaks are present when exposed to  $D_2O$ . The shape of the band indicates that the <sup>2</sup>D is in a different chemical environment than just the DHO or  $D_2O$  molecule.



Fig. S22. The solid state <sup>2</sup>D NMR spectra for the UMON material exposed to  $D_2O$  vapor for 18 hours (top) and modeled fit of the data (bottom).

7. Proposed mechanism for batch uptake experiments



**Figure S23.** A summary of the proposed adsorption process (steps 1 and 2 of the overall selectivity) when UMON is exposed to  $D_2O$ . (A)  $D_2O$  adsorbs to the surface of the UMON sample but does not enter the channel. (B) Proton exchange can occur between the amine groups and the  $D_2O$  molecule. (C) After exchange, the H<sub>2</sub>O molecule can enter the channel and adsorbed HDO remains on the surface.

#### 8.Details on <sup>3</sup>T results and activity calculations

The LSC was calibrated using <sup>14</sup>C and <sup>3</sup>T standards and the established protocols. Raw data collected from the LSC was converted from counts per minute (CPM) to disintegrations per minute (DPM) by considering counting efficiency. Converting from DPM to disintegrations per second (DPS) led to activity in units of Becquerel (1 DPS = 1Bq). We then corrected for the sample volume loss (we removed 5 mL of solution for each time point and the final point is corrected for the addition of 150 mL of HCl). The activity was then converted to number of <sup>3</sup>T atoms in the sample using the decay constant for <sup>3</sup>T ( $\lambda$  = 1.783 x10<sup>-9</sup> sec<sup>-1</sup>) with A =  $\lambda$ N. The specific activity of the tritiated water (4.2 mCi/mL = 1.554 x 10<sup>-8</sup> Bq/mL) was used to calculate the volume of water. Using the density and molecular weight of water allows us to calculate nanomoles of tritiated water that are adsorbed in the UMON sample. This value can then be normalized to the mass of the sample. The separation factor was estimated by considering the <sup>3</sup>T concentration in the water vapor (from the specific activity) divided by the <sup>3</sup>T concentration observed with the sample (<sup>3</sup>T activity of the sample in Bq divided by volume of water in the sample).



**Fig. S24**. Test of the UMON tritiated water adsorption methodology using pure  $H_2O$ . TGA and FTIR analysis indicate complete hydration (5.8%) after 40 minutes of exposure to  $H_2O$  in the Eppendorf vial.



**Fig. S25**. Total Bq of <sup>3</sup>T for the tritiated UMON and control samples over the 72 minute sampling period. The sample consisted of a dehydrated UMON crystals and the control was hydrated UMON crystals. The last data point represents the addition of acid to the system to completely dissolve the UMON material and accounts for total activity in the sample.



**Figure S26**. <sup>3</sup>T uptake experiments were converted from activity to total moles of water using the specific activity of the tritiated water. Expected amount of water (Theoretical Uptake) calculated from TGA analysis for UMON is 3222 nanomoles water/mg UMON. Dehydrated UMON (Experimental uptake) adsorbed 80 ± 40 nanomoles of water/mg, which suggests that the HTO is much more likely surface adsorbed water (2.8%).

|                            | Sampling time |       |       |        |       |
|----------------------------|---------------|-------|-------|--------|-------|
| Sample                     | point (min)   | CPM   | SIS   | tSIE   | DPM   |
| Dehydrated UMON 1          | 0             | 2062  | 14.16 | 658.74 | 4443  |
| (mass of sample = 5.03 mg) | 4             | 6622  | 14.05 | 665.99 | 14187 |
|                            | 8             | 8195  | 13.9  | 667.66 | 17544 |
|                            | 12            | 6520  | 14.13 | 679.87 | 13815 |
|                            | 16            | 23183 | 13.86 | 662.74 | 49819 |
|                            | 20            | 9774  | 13.99 | 671.33 | 20856 |
|                            | 24            | 9769  | 14    | 675.33 | 20778 |
|                            | 28            | 15059 | 14.04 | 674.94 | 32036 |
|                            | 32            | 10808 | 13.86 | 665.18 | 23188 |
|                            | 36            | 11309 | 13.98 | 673.67 | 24086 |
|                            | 40            | 16078 | 13.75 | 661.57 | 34603 |
|                            | 44            | 10519 | 13.76 | 665.58 | 22565 |
|                            | 48            | 7069  | 13.89 | 663.28 | 15184 |
|                            | 52            | 6431  | 14.06 | 677.58 | 13656 |
|                            | 56            | 11635 | 13.86 | 667.76 | 24910 |
|                            | 60            | 10475 | 14.05 | 669.43 | 22383 |
|                            | 64            | 6459  | 13.97 | 667.34 | 13830 |
|                            | 68            | 6534  | 14.06 | 668.79 | 13968 |
|                            | 72            | 10171 | 14.16 | 667.44 | 21766 |
| Dissolved UMON 1           | 76            | 2099  | 15.68 | 661.77 | 4502  |
| Dehydrated UMON 2          | 0             | 2116  | 14.32 | 657.88 | 4559  |
| (mass of sample = 6.44 mg) | 4             | 1467  | 14.49 | 668.36 | 3133  |
|                            | 8             | 9725  | 13.94 | 668.48 | 20793 |
|                            | 12            | 33974 | 13.79 | 661.86 | 73080 |
|                            | 16            | 20153 | 13.77 | 659.11 | 43442 |
|                            | 20            | 32280 | 13.91 | 671.71 | 68884 |
|                            | 24            | 9358  | 14.06 | 676.59 | 19884 |
|                            | 28            | 10258 | 13.8  | 663.83 | 22028 |
|                            | 32            | 4518  | 14    | 663.75 | 9700  |
|                            | 36            | 12819 | 13.96 | 659.27 | 27616 |
|                            | 40            | 14840 | 13.86 | 662.65 | 31907 |
|                            | 44            | 8287  | 13.85 | 659.29 | 17866 |
|                            | 48            | 9648  | 14.03 | 666.96 | 20658 |
|                            | 52            | 10155 | 13.95 | 663.64 | 21807 |
|                            | 56            | 10538 | 14.09 | 664.48 | 22604 |
|                            | 60            | 9078  | 14.06 | 669.68 | 19397 |

**Table S1.** Raw counts (CPM), quenching statistics (SIS/tSIE), and activity (DPM) of the tritiated samples collected by Liquid Scintillation Counting. This data has not be corrected for dilution factors.

|                             | 64 | 10336 | 14.04 | 662.8  | 22211 |
|-----------------------------|----|-------|-------|--------|-------|
|                             | 68 | 8519  | 14.01 | 666.96 | 18237 |
|                             | 72 | 8361  | 14.04 | 660.43 | 17995 |
| Dissolved UMON 2            | 76 | 2156  | 15.78 | 668.64 | 4600  |
| Dehydrated UMON 3           | 0  | 2829  | 14.3  | 673.55 | 6019  |
| (mass of sample = 11.85 mg) | 4  | 8945  | 13.85 | 662.63 | 19224 |
|                             | 8  | 26490 | 13.95 | 679.31 | 56189 |
|                             | 12 | 21606 | 13.85 | 668.38 | 46220 |
|                             | 16 | 14533 | 13.81 | 664.68 | 31192 |
|                             | 20 | 10966 | 13.9  | 669.29 | 23442 |
|                             | 24 | 12292 | 13.97 | 670.38 | 26247 |
|                             | 28 | 20405 | 13.99 | 672.14 | 43516 |
|                             | 32 | 18205 | 13.88 | 671.81 | 38846 |
|                             | 36 | 16842 | 13.92 | 674.06 | 35872 |
|                             | 40 | 21539 | 13.89 | 659.93 | 46389 |
|                             | 44 | 15039 | 13.82 | 662.27 | 32345 |
|                             | 48 | 13402 | 13.91 | 663.79 | 28774 |
|                             | 52 | 18446 | 13.98 | 664.28 | 39590 |
|                             | 56 | 14766 | 13.95 | 673.65 | 31470 |
|                             | 60 | 8559  | 14.03 | 674.64 | 18208 |
|                             | 64 | 14596 | 14.11 | 666.57 | 31268 |
|                             | 68 | 10177 | 14.15 | 676.14 | 21627 |
|                             | 72 | 10807 | 13.94 | 662.32 | 23224 |
| Dissolved UMON 3            | 76 | 2850  | 16.22 | 660.15 | 6116  |
| Dehydrated UMON 4           | 0  | 6698  | 13.86 | 657.86 | 14452 |
| (mass of sample = 7.97 mg)  | 4  | 7854  | 13.97 | 662.67 | 16869 |
|                             | 8  | 15860 | 13.78 | 664.08 | 34051 |
|                             | 12 | 5206  | 13.92 | 661.72 | 11200 |
|                             | 16 | 15469 | 13.9  | 667.26 | 33123 |
|                             | 20 | 10669 | 13.95 | 665.6  | 22874 |
|                             | 24 | 12631 | 13.81 | 664.41 | 27109 |
|                             | 28 | 9259  | 13.97 | 662.72 | 19891 |
|                             | 32 | 15844 | 13.88 | 672.42 | 33803 |
|                             | 36 | 7319  | 13.91 | 664.22 | 15709 |
|                             | 40 | 10204 | 13.92 | 661.61 | 21934 |
|                             | 44 | 11614 | 13.85 | 660.52 | 25003 |
|                             | 48 | 12099 | 13.9  | 663.21 | 25994 |
|                             | 52 | 12293 | 13.91 | 663.17 | 26409 |
|                             | 56 | 13057 | 13.76 | 660.87 | 28113 |
|                             | 60 | 11515 | 13.9  | 661.12 | 24781 |

|                             | 64 | 12398 | 13.88 | 661.93 | 26658 |  |
|-----------------------------|----|-------|-------|--------|-------|--|
|                             | 68 | 14890 | 14.05 | 670.2  | 31803 |  |
|                             | 72 | 8803  | 13.95 | 672.1  | 18775 |  |
| Dissolved UMON 4            | 76 | 2579  | 15.52 | 665.45 | 5518  |  |
| Control 1                   | 0  | 5392  | 14.08 | 664.3  | 11565 |  |
| (mass of sample = 12.26 mg) | 4  | 11032 | 13.98 | 661.34 | 23729 |  |
|                             | 8  | 13223 | 13.98 | 676.82 | 28106 |  |
|                             | 12 | 14955 | 13.91 | 663.54 | 32115 |  |
|                             | 16 | 11160 | 13.91 | 674.06 | 23779 |  |
|                             | 20 | 9352  | 14.07 | 665.44 | 20049 |  |
|                             | 24 | 4793  | 14.23 | 674.21 | 10199 |  |
|                             | 28 | 7897  | 14.05 | 667.58 | 16897 |  |
|                             | 32 | 14877 | 13.98 | 664.85 | 31917 |  |
|                             | 36 | 9548  | 13.82 | 658.33 | 20590 |  |
|                             | 40 | 16179 | 13.92 | 663.62 | 34741 |  |
|                             | 44 | 11850 | 13.98 | 673.46 | 25249 |  |
|                             | 48 | 12820 | 13.94 | 666.21 | 27478 |  |
|                             | 52 | 12838 | 13.92 | 665.22 | 27537 |  |
|                             | 56 | 15679 | 14.07 | 665.31 | 33620 |  |
|                             | 60 | 17062 | 14.04 | 667.02 | 36535 |  |
|                             | 64 | 12177 | 13.99 | 666.97 | 26071 |  |
|                             | 68 | 16457 | 14.02 | 662.64 | 35363 |  |
|                             | 72 | 13160 | 14.01 | 663.36 | 28265 |  |
| Dissolved Control 1         | 76 | 3532  | 16.03 | 658.54 | 7597  |  |
| Control 2                   | 0  | 7789  | 13.98 | 660.06 | 16768 |  |
| (mass of sample = 9.14 mg)  | 4  | 8639  | 14.06 | 662.81 | 18557 |  |
|                             | 8  | 4485  | 14.2  | 676.53 | 9525  |  |
|                             | 12 | 13091 | 14    | 670.41 | 27953 |  |
|                             | 16 | 13647 | 13.82 | 661.3  | 29370 |  |
|                             | 20 | 12904 | 13.85 | 662.85 | 27731 |  |
|                             | 24 | 12937 | 13.87 | 663.98 | 27783 |  |
|                             | 28 | 15166 | 13.86 | 656.47 | 32761 |  |
|                             | 32 | 14196 | 13.93 | 666.03 | 30429 |  |
|                             | 36 | 16726 | 13.93 | 658.44 | 36067 |  |
|                             | 40 | 11610 | 13.88 | 658.92 | 25027 |  |
|                             | 44 | 9602  | 14.01 | 664.54 | 20605 |  |
|                             | 48 | 10331 | 14.04 | 664.33 | 22159 |  |
|                             | 52 | 16372 | 14.18 | 673    | 34875 |  |
|                             | 56 | 10747 | 14.17 | 661.9  | 23089 |  |
|                             | 60 | 10300 | 14.31 | 663.17 | 22111 |  |
|                             |    |       |       |        |       |  |

|                             | 64 | 9307  | 14.18 | 658.28 | 20056 |
|-----------------------------|----|-------|-------|--------|-------|
|                             | 68 | 9932  | 14.32 | 666.25 | 21270 |
|                             | 72 | 9112  | 14.01 | 664.58 | 19561 |
| Dissolved Control 2         | 76 | 2471  | 16.55 | 663.41 | 5289  |
| Control 3                   | 0  | 5825  | 14.18 | 668.61 | 12451 |
| (mass of sample = 6.94 mg)  | 4  | 3724  | 14.18 | 664.29 | 7988  |
|                             | 8  | 12183 | 13.81 | 659.57 | 26249 |
|                             | 12 | 15211 | 13.99 | 669.96 | 32493 |
|                             | 16 | 12812 | 13.95 | 662.59 | 27530 |
|                             | 20 | 4925  | 14.25 | 666.42 | 10543 |
|                             | 24 | 16051 | 13.95 | 664.6  | 34437 |
|                             | 28 | 15249 | 13.92 | 667.31 | 32643 |
|                             | 32 | 9595  | 13.92 | 662.5  | 20625 |
|                             | 36 | 18750 | 13.86 | 659.13 | 40414 |
|                             | 40 | 7106  | 14.1  | 666.03 | 15224 |
|                             | 44 | 11457 | 13.97 | 665.15 | 24567 |
|                             | 48 | 3422  | 14.1  | 659.27 | 7368  |
|                             | 52 | 12396 | 14.07 | 669.2  | 26493 |
|                             | 56 | 9470  | 14.09 | 660.77 | 20369 |
|                             | 60 | 8994  | 14.21 | 665.38 | 19269 |
|                             | 64 | 10779 | 14.15 | 661.16 | 23186 |
|                             | 68 | 10710 | 14.23 | 663.17 | 23002 |
|                             | 72 | 10016 | 14.27 | 656.45 | 21622 |
| Dissolved Control 3         | 76 | 2109  | 16.44 | 673.87 | 4476  |
|                             |    |       |       |        |       |
| 1 uL dilute tritiated water |    | 40000 | 40 70 | 007.00 | 04440 |
|                             |    | 43982 | 13.79 | 667.89 | 94142 |
| Blank 1 ( $H_2O$ )          |    | 19    | 45.14 | 659.79 | 38    |
| Blank 2 ( $H_2O$ )          |    | 74    | 30.2  | 667.78 | 153   |

CPM = Counts per minute (spectral window 1); DPM = Disintegrations per minute; SIS = Spectral index of the sample; tSIE = transformed Spectral Index

| Sampling<br>time |       | Dehy  | Dehydrated UMON Samples (Bq) |       |         |       | Control samples activity (Bq) |       |       |         |       |
|------------------|-------|-------|------------------------------|-------|---------|-------|-------------------------------|-------|-------|---------|-------|
| point (min)      | 1     | 2     | 3                            | 4     | average | stdev | 1                             | 2     | 3     | Average | stdev |
| 0                | 2222  | 2280  | 3010                         | 7226  | 3684    | 2388  | 5783                          | 8384  | 6226  | 6797    | 1392  |
| 4                | 6857  | 1514  | 9292                         | 8153  | 6454    | 3440  | 11469                         | 8969  | 3861  | 8100    | 3878  |
| 8                | 8187  | 9703  | 26222                        | 15890 | 15001   | 8189  | 13116                         | 4445  | 12250 | 9937    | 4776  |
| 12               | 6217  | 32886 | 20799                        | 5040  | 16235   | 13213 | 14452                         | 12579 | 14622 | 13884   | 1134  |
| 16               | 21588 | 18825 | 13517                        | 14353 | 17071   | 3808  | 10304                         | 12727 | 11930 | 11654   | 1235  |
| 20               | 8690  | 28702 | 9768                         | 9531  | 14173   | 9697  | 8354                          | 11555 | 4393  | 8100    | 3588  |
| 24               | 8311  | 7954  | 10499                        | 10844 | 9402    | 1480  | 4080                          | 11113 | 13775 | 9656    | 5009  |
| 28               | 12280 | 8444  | 16681                        | 7625  | 11258   | 4146  | 6477                          | 12558 | 12513 | 10516   | 3498  |
| 32               | 8502  | 3557  | 14244                        | 12394 | 9674    | 4728  | 11703                         | 11157 | 7563  | 10141   | 2250  |
| 36               | 8430  | 9666  | 12555                        | 5498  | 9037    | 2925  | 7207                          | 12623 | 14145 | 11325   | 3647  |
| 40               | 11534 | 10636 | 15463                        | 7311  | 11236   | 3353  | 11580                         | 8342  | 5075  | 8332    | 3253  |
| 44               | 7146  | 5658  | 10243                        | 7918  | 7741    | 1913  | 7996                          | 6525  | 7780  | 7433    | 794   |
| 48               | 4555  | 6197  | 8632                         | 7798  | 6796    | 1803  | 8243                          | 6648  | 2210  | 5701    | 3126  |
| 52               | 3869  | 6179  | 11217                        | 7483  | 7187    | 3074  | 7802                          | 9881  | 7506  | 8397    | 1294  |
| 56               | 6643  | 6028  | 8392                         | 7497  | 7140    | 1029  | 8965                          | 6157  | 5432  | 6851    | 1866  |
| 60               | 5596  | 4849  | 4552                         | 6195  | 5298    | 742   | 9134                          | 5528  | 4817  | 6493    | 2314  |
| 64               | 3227  | 5183  | 7296                         | 6220  | 5481    | 1733  | 6083                          | 4680  | 5410  | 5391    | 702   |
| 68               | 3026  | 3951  | 4686                         | 6891  | 4639    | 1648  | 7662                          | 4609  | 4984  | 5751    | 1665  |
| 72               | 4353  | 3599  | 4645                         | 3755  | 4088    | 493   | 5653                          | 3912  | 4324  | 4630    | 910   |
| Dissolved        | 3076  | 3143  | 4179                         | 3771  | 3542    | 527   | 5191                          | 3614  | 3059  | 3955    | 1106  |
| Average          | 6468  | 6074  | 9520                         | 7229  | 7323    | 1541  | 7698                          | 7668  | 7042  | 7469    | 370   |
| Bq/mg            | 1286  | 943   | 803                          | 907   | 985     | 209   | 628                           | 839   | 1015  | 827     | 194   |

**Table S2**. Activity of tritiated UMON and control samples in Becquerel with activities corrected for total dilution factors (total aliquot volume or acid added for total dissolution of the solid material).

#### 9. H<sub>2</sub>O isotherm

The  $H_2O$  isotherm was collected by varying the relative humidity within the vapor absorption apparatus to collect  $H_2O$  uptake after reaching equilibrium values (90 minutes). The shape of the isotherm (Figure S27) suggests the formation of a Type IV isotherm as a result of multilayer adsorption followed by capillary condensation, but additional desorption data is necessary to confirm. Based upon this assessment, data was fit to the Brunauer-Emmet-Teller isotherm model:

$$m = \frac{a_w m_0 c}{(1 - a_w)[1 + a_w(c - 1)]}$$

where m = mass of  $H_2O(g)/100$  g material,  $a_w$  = water activity,  $m_o$  = monolayer value, and c = energy term. The c value was calculated based upon:

$$c = exp\left(\frac{Q_s}{RT}\right)$$

where Q is the energy of the surface interaction, R is the gas constant and T is temperature. The Q value was taken from previous experimental work<sup>17</sup> that determined the interaction between the interior walls of the nanochannels and the  $H_2O$  inside the pores was -7.8 kJ/mol.



Figure S27. Isotherm data for  $H_2O$  using the vapor sorption apparatus at 30, 45, 60, and 80% RH. The modeled values utilize the BET model.