Supplementary Information

A diamino-functionalized silsesquioxane pillared graphene oxide for CO₂ capture

Eleni Thomou,^{ab} Viktoria Sakavitsi,^a Giasemi K. Angeli,^c Konstantinos Spyrou,^a Konstantinos G. Froudas,^c Evmorfia K. Diamanti,^a George E. Romanos,^d Georgios N. Karanikolos,^{e,f} Pantelis N. Trikalitis,^c Dimitrios Gournis*^a and Petra Rudolf*^b

^a Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece

^b Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands

^c Department of Chemistry, University of Crete, Heraklion, Greece

^d Institute of Physical Chemistry, N.C.S.R. Demokritos, Ag. Paraskevi Attikis, Greece

^e Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates

 $^{\rm f}$ Research and Innovation Center on CO $_2$ and H $_2$ (RICH), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates

Figure S1. N₂ adsorption (full symbols)-desorption (empty symbols) isotherms at 77 K for graphene oxide (air dried and freeze-dried) and for all silsesquioxane-pillared GO structures prepared with different loadings and both ways of drying.

Figure S2. CO₂ adsorption (full symbols)-desorption (empty symbols) isotherms at 273 K and 298 K up to 1 bar for graphene oxide (air dried and freeze-dried) and for all silsesquioxanepillared GO structures prepared with different loadings and both ways of drying.