Supporting Information

Bimetallic Zeolite-imidazole framework-based heterostructure with enhanced photocatalytic hydrogen production activity

Nayab Arif, Ye-Zhan Lin, Kai Wang, Yi-Chuan Dou, Yu Zhang, Kui Li, * Shiquan Liu*

and Fu-Tian Liu

School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.

Email: mse_lik@ujn.edu.cn; vctrliu@hotmail.com

4. Supporting Figures

Fig. S1. PXRD patterns of the g-C₃N₄-MoS₂, ZnM-ZIFs and g-C₃N₄-MoS₂-ZnM-ZIFs heterostructures

Fig. S2. The (a) FTIR analysis of the ZnNi-ZIF and its heterostructure, (b) ZIF-8, ZnCo-ZIF and their heterostructures.

Fig. S3. The SEM images (Scale bar of 500 nm) of (a) ZIF-8, (b) ZnCo-ZIF, (c) ZnNi-ZIF, (d) g- C_3N_4 -ZIF-8, (e) g- C_3N_4 -ZnCo-ZIF, (f) g- C_3N_4 -ZnNi-ZIF, (g) g- C_3N_4 -MoS₂-ZIF-8, (h) g- C_3N_4 -MoS₂-ZnCo-ZIF and (i) g- C_3N_4 -MoS₂-ZnNi-ZIF.

Fig. S4. The elemental mapping of the $g-C_3N_4$ -MoS₂-ZnNi-ZIF.

Fig. S5. The UV-vis diffuse reflection spectra of g-C₃N₄ and g-C₃N₄-ZnM-ZIF heterostructures.

Fig. S6. The UV-vis diffuse reflection spectra of $g-C_3N_4$ -MoS₂ heterostructures.

Fig. S7. The photocatalytic H_2 -production activities of g-C₃N₄-ZnNi-ZIF with different content of ZnNi-ZIF UV-visible light irradiation.

Fig. S8. Time dependent of photocatalytic hydrogen production activity of $g-C_3N_4-MoS_2$ heterostructures.

Fig. S9. Effect of the adoption of MoS_2 and $g-C_3N_4$ on the photocatalytic activity of ZnM-ZIFs under (a) UV-visible and (b) visible light irradiation.

Fig. S10. The comparison results sum photocatalytic activity of $g-C_3N_4$ -ZIFs and $g-C_3N_4$ -MoS₂ with that of ternary $g-C_3N_4$ -MoS₂-ZnM-ZIFs under UV-vis light irradiation.

Fig. S11. The FTIR analysis of the (a) ZnNi-ZIF-based and (b) ZIF-8 as well as ZnCo-ZIF-based heterostructures after the photocatalytic hydrogen production reaction.

Fig. S12. The room temperature photoluminescence (PL) spectra of $g-C_3N_4$, $g-C_3N_4$ -MoS₂ and $g-C_3N_4$ -ZnM-ZIF heterostructures.

Fig. S13. The transient photocurrent responses of g-C₃N₄ and g-C₃N₄-ZnM-ZIF heterostructures.

Fig. S14. The electrochemical impedance spectroscopy (EIS) spectra of $g-C_3N_4$, ZnM-ZIF, and $g-C_3N_4$ -ZnM-ZIF heterostructures.

5. Supporting Table

Wavelength (nm)	H ₂ Evolved (µmol)	Light Intensity (mW)	AQEs (%)
420	18.18	13.1	22.0
475	9.22	18.4	7.9
550	2.76	20.3	1.6
650	1.42	16.5	0.9

Table S1. Calculated apparent quantum efficiency (AQE) of g-C₃N₄-MoS₂-ZnNi-ZIF at different wavelengths.

λ=420 nm

$$N = \frac{E\lambda}{hc} = \frac{13.1 \times 10^{-3} \times 3600 \times 420 \times 10^{-9}}{6.626 \times 10^{-34} \times 3 \times 10^8} = 9.96 \times 10^{19}$$

$$AQE = \frac{the number of reacted electrons}{the number of incident photons} \times 100\%$$

$$= \frac{2 \times the number of evolved H_2 molecules}{N} \times 100\%$$

$$= \frac{2 \times 6.02 \times 10^{23} \times 18.18 \times 10^{-6}}{9.96 \times 10^{19}} = 22.0\%$$

λ=475 nm

$$N = \frac{E\lambda}{hc} = \frac{18.4 \times 10^{-3} \times 3600 \times 475 \times 10^{-9}}{6.626 \times 10^{-34} \times 3 \times 10^8} = 1.58 \times 10^{20}$$
$$AQE = \frac{the number of reacted electrons}{the number of incident photons} \times 100\%$$
$$= \frac{2 \times the number of evolved H_2 molecules}{N} \times 100\%$$
$$= \frac{2 \times 6.02 \times 10^{23} \times 9.22 \times 10^{-6}}{1.58 \times 10^{20}} = 7.9\%$$

λ=550 nm

$$N = \frac{E\lambda}{hc} = \frac{20.3 \times 10^{-3} \times 3600 \times 550 \times 10^{-9}}{6.626 \times 10^{-34} \times 3 \times 10^8} = 2.02 \times 10^{20}$$

 $AQE = \frac{the \ number \ of \ reacted \ electrons}{the \ number \ of \ incident \ photons} \times 100\%$

$$=\frac{2 \times the number of evolved H_2 molecules}{N} \times 100\%$$

$$=\frac{2\times6.02\times10^{23}\times2.76\times10^{-6}}{2.02\times10^{20}}=1.6\%$$

λ=650 nm

$$N = \frac{E\lambda}{hc} = \frac{16.5 \times 10^{-3} \times 3600 \times 650 \times 10^{-9}}{6.626 \times 10^{-34} \times 3 \times 10^8} = 1.94 \times 10^{20}$$
$$AQE = \frac{the number of reacted electrons}{the number of incident photons} \times 100\%$$
$$= \frac{2 \times the number of evolved H_2 molecules}{N} \times 100\%$$

$$=\frac{2\times6.02\times10^{23}\times1.42\times10^{-6}}{1.94\times10^{20}}=0.9\%$$