



Fig. S1. XRD patterns of the NFe<sub>3</sub>O<sub>4</sub>Starch-Glu-NFe<sub>3</sub>O<sub>4</sub>ED nanocomposite.



Fig. S2. TGA thermogram of the NFe<sub>3</sub>O<sub>4</sub>Starch-Glu-NFe<sub>3</sub>O<sub>4</sub>ED nanocomposite.



**Fig. S3.** Effect of initial solution pH on Cr(VI) ions removal percentage (%R) by the NFe<sub>3</sub>O<sub>4</sub>Starch-Glu-NFe<sub>3</sub>O<sub>4</sub>ED nanocomposite. (Sample volume = 10.0 mL; nanosorbent dose =  $10.0 \pm 1.0$  mg; Cr(VI) initial concentrations = 10.0, 25.0, and 50.0 mg/L; pH value = 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, and 7.0; shaking time = 60.0 min; temperature =  $25.0^{\circ}$ C; shaking speed = 250.0 rpm).



**Fig. S4. (a)** *Pseudo*-first order, **(b)** *Pseudo*-second order, **(c)** Intra-particle diffusion, and **(d)** Elovich kinetic models, for Cr(VI) ions (concentration = 10.0, 25.0, and 50.0mg/L) adsorption onto the NFe<sub>3</sub>O<sub>4</sub>Starch-Glu-NFe<sub>3</sub>O<sub>4</sub>ED nanocomposite at 25.0°C.



**Fig. S5.** Effect of dosage on Cr(VI) ions removal percentage (%R) by the NFe<sub>3</sub>O<sub>4</sub>Starch-Glu-NFe<sub>3</sub>O<sub>4</sub>ED nanocomposite. (Sample volume = 10.0 mL; nanosorbent dose = 2.0, 5.0, 10.0, 15.0, 20.0, 30.0, 40.0, 50.0, 75.0, and 100.0±1 mg; Cr(VI) initial concentrations = 10.0, 25.0, and 50.0 mg/L; pH value = 2.0; shaking time = 60.0 min; temperature = 25.0°C; shaking speed = 250.0 rpm).



**Fig. S6. (a)** Langmiur, **(b)** Freundlich, **(c)** Temkin, and **(d)** D-R isotherm models for Cr(VI) ions (concentration = 10.0, 25.0, and 50.0mg/L) adsorption onto the NFe<sub>3</sub>O<sub>4</sub>Starch-Glu-NFe<sub>3</sub>O<sub>4</sub>ED nanocomposite at 25.0°C.



**Fig. S7.** Effect of reaction temperature on Cr(VI) ions removal percentage (%R) by the NFe<sub>3</sub>O<sub>4</sub>Starch-Glu-NFe<sub>3</sub>O<sub>4</sub>ED nanocomposite. (Sample volume = 10.0 mL; nanosorbent dose = 10.0 ±1 mg; Cr(VI) initial concentrations = 10.0, 25.0 and 50.0 mg/L; pH value = 2.0; shaking time = 60.0 min; temperature = 293.0, 303.0, 313.0, 323.0, and 333.0 K; shaking speed = 250.0 rpm).

## Table S1. Chemicals and their specifications

| Chemical Name                                                                     | Molecular<br>Formula (MF)                                     | Formula<br>weight (FW)<br>(g/mol) | Assay                          | CAS Reg. No. | Company                    |  |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------|--------------------------------|--------------|----------------------------|--|
| Starch (amylose 17.5%, amylopectin 82.5%, moisture content 12.0%, total ash 0.3%) | (C <sub>6</sub> H <sub>10</sub> O <sub>5</sub> ) <sub>n</sub> | 692.70                            | 99.0%                          | 9005-25-8    |                            |  |
| Ethylenediamine                                                                   | $C_2H_8N_2$                                                   | 60.10                             | 99.0%                          | 107-15-3     | Sigma Aldrich LISA         |  |
| Glutaraldehyde                                                                    | C <sub>5</sub> H <sub>8</sub> O <sub>2</sub>                  | 100.12                            | 50.0 wt. % in H <sub>2</sub> O | 111-30-8     |                            |  |
| Anhydrous ferric chloride                                                         | FeCl₃                                                         | 162.20                            | 99.9%                          | 7705-08-0    |                            |  |
| Ferrous chloride                                                                  | FeCl <sub>2</sub>                                             | 126.75                            | 99.9%                          | 7758-94-3    |                            |  |
| Hydrochloric acid                                                                 | HCI                                                           | 36.46                             | 37.0%                          | 7647-01-0    |                            |  |
| Potassium chloride                                                                | KCI                                                           | 74.55                             | 99.0-100.5%                    | 7447-40-7    |                            |  |
| Sodium hydroxide                                                                  | NaOH                                                          | 40.00                             | 99.0%                          | 1310-73-2    |                            |  |
| Ammonium chloride                                                                 | NH <sub>4</sub> Cl                                            | 53.49                             | 99.5%                          | 12125-02-9   |                            |  |
| Ethanol                                                                           | C₂H₅OH                                                        | 46.07                             | 99.8%                          | 64-17-5      | BDH, OK                    |  |
| 1,5-Diphenylcarbazide                                                             | $C_{13}H_{14}N_4O$                                            | 242.29                            | 99.0%                          | 140-22-7     |                            |  |
| Potassium dichromate                                                              | K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub>                 | 294.19                            | 99.8%                          | 7778-50-9    |                            |  |
| Sodium acetate anhydrous                                                          | CH₃COONa                                                      | 82.00                             | 99.0%                          | 127-09-3     | Merck, Germany             |  |
| Formaldehyde                                                                      | CH <sub>2</sub> O                                             | 30.03                             | 34.5%                          | 50-00-0      |                            |  |
| Sodium chloride                                                                   | NaCl                                                          | 58.44                             | 99.9%                          | 5-14-7647    |                            |  |
| Calcium chloride dihydrate                                                        | CaCl <sub>2</sub> .2H <sub>2</sub> O                          | 147.01                            | 99.0%                          | 10035-04-8   | Riedel de Haën,<br>Germany |  |
| Magnesium chloride hexahydrate                                                    | MgCl <sub>2</sub> .6H <sub>2</sub> O                          | 203.30                            | 99.0%                          | 6-18-7791    |                            |  |

 Table S2. Instruments and their specifications.

| Instrument Name                                                        | Model                                                                           | Data                                                          | Conditions                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fourier-transform infrared spectrophotometer <b>FT-IR</b>              | A BRUKER VERTEX 70                                                              | FT-IR spectrum                                                | 400–4000 cm <sup>-1</sup>                                                                                                                                                                                                                                          |
| <b>TGA</b> -7 thermobalance                                            | A Perkin-Elmer                                                                  | Thermogram                                                    | Pure atmospheric nitrogen, flow rate = 40<br>mL/min, heating rate = 10°C/min, sample mass in<br>the range of 5.0–6.0 mg,<br>heating temperature 25°C – 800°C                                                                                                       |
| X-ray diffraction <b>(XRD)</b>                                         | Shimadzu lab x 6100,<br>Kyoto, Japan                                            | XRD spectrum                                                  | The XRD generator works at 40 kV, 30 mA, $\lambda = 1$<br>Å, using target Cu-K $\alpha$ with secondary<br>Monochromatic X-ray, 2 $\theta$ from 10° to 80°,<br>recording steps of the diffraction data of 0.02°, at<br>a time of 0.6 s, at room temperature (25°C). |
| Scanning electron<br>microscope <b>(SEM)</b>                           | JSM-IT200, JEOL Ltd<br>Sputtering coating<br>(JEOL-JFC-1100E)                   | SEM images                                                    | Imaging mode                                                                                                                                                                                                                                                       |
| High-resolution<br>transmission electron<br>microscope <b>(HR-TEM)</b> | JEOL- JSM-1400 plus                                                             | HR-TEM image                                                  | Imaging mode                                                                                                                                                                                                                                                       |
| Brunauer–<br>Emmett–Teller <b>(BET)</b><br>surface area                | BELSORP-mini II,<br>BEL, Japan                                                  | Surface area,<br>pore volume and<br>pore size<br>distribution | The required data were determined by nitrogen<br>adsorption–desorption isotherm measurements<br>at adsorption temperature 77 K and saturated<br>vapor pressure of 102.48 kPa for 24 h.                                                                             |
| UV-Vis-<br>spectrophotometer                                           | UV-Vis-7200 single<br>beam                                                      | Absorbance                                                    | 1.0 cm cell, wave length 540 cm- <sup>1</sup><br>wavelength range 190–1100 nm                                                                                                                                                                                      |
| Microwave oven                                                         | KOG-1B5H, Korea                                                                 | Microwave<br>irradiation                                      | 1400-W, 2.45GHZ                                                                                                                                                                                                                                                    |
| pH meter                                                               | Orion pH meter model<br>420Afitted with an Orion<br>combined glass<br>electrode | pH-<br>measurement                                            | Calibrated using standard buffers of pH 4.01,<br>7.00, and 10.00                                                                                                                                                                                                   |

Table S3. Equations and parameters of kinetic models

|                             | Equation                                                                       |                                                                                                                                      |                                            |           | Cr(VI) Concentration (mg/L) |            |  |
|-----------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------|-----------------------------|------------|--|
| Kinetic Wodel               |                                                                                | Plot Kinetic Parameter                                                                                                               | 10                                         | 25        | 50                          |            |  |
|                             | Ln (q <sub>e</sub> -q <sub>t</sub> ) = Ln (q <sub>e</sub> ) – k <sub>1</sub> t | ln ( $q_e - q_t$ ) versus                                                                                                            | q <sub>e</sub> (mg/g) (exp)                | 7.9800    | 20.9800                     | 41.4900    |  |
|                             |                                                                                | $q_e$ and $q_t$ are the                                                                                                              | q <sub>e</sub> (mg/g) (calc)               | 3.3906    | 10.6867                     | 29.1659    |  |
| Pseudo-First                |                                                                                | sorption capacity at                                                                                                                 | K <sub>1</sub> (min <sup>-1</sup> )        | 0.1360    | 0.1660                      | 0.1790     |  |
| Order                       |                                                                                | time t (min),<br>respectively,<br>k <sub>1</sub> is the first order<br>rate constant                                                 | R <sup>2</sup>                             | 0.9280    | 0.8820                      | 0.8180     |  |
|                             | $t/q_t = 1/k_2 q_e^2 + t/q_e$                                                  |                                                                                                                                      | q <sub>e</sub> (mg/g) (exp)                | 7.9800    | 20.9800                     | 41.4900    |  |
| Pseudo-Second<br>Order      |                                                                                | t/q <sub>t</sub> versus time (t)                                                                                                     | q <sub>e</sub> (mg/g) (calc)               | 8.1967    | 21.7391                     | 42.6076    |  |
|                             |                                                                                | $K_2$ is the second order rate constant                                                                                              | K <sub>2</sub> (g/mg min)                  | 0.1146    | 0.0454                      | 0.0173     |  |
|                             |                                                                                |                                                                                                                                      | R <sup>2</sup> 0.9999                      | 0.9996    | 0.9998                      |            |  |
|                             |                                                                                | $q_t$ versus ( $t^{1/2}$ )                                                                                                           | K <sub>id</sub> (mg/g min <sup>1/2</sup> ) | 0.3460    | 0.8040                      | 1.8790     |  |
| Intra-particle<br>Diffusion | $q_t = k_{id} t^{1/2} + C$                                                     | the adsorption layer,                                                                                                                | С                                          | 5.7420    | 15.7200                     | 29.0700    |  |
|                             |                                                                                | K <sub>id</sub> is the intra-<br>particle order rate<br>constant                                                                     | R <sup>2</sup>                             | 0.8070    | 0.8700                      | 0.8940     |  |
|                             |                                                                                | $q_t$ versus ln t<br>$\alpha$ is the initial                                                                                         | α (mg/g min)                               | 2916.4027 | 50100.6158                  | 14539.1641 |  |
| Elovich                     | q <sub>t</sub> = 1/β Ln(αβ )+ 1/β Ln (t)                                       | adsorption rate,<br>$\beta$ is related to the<br>extent of surface<br>coverage and the<br>activation energy for<br>the chemisorption | β (mg/g)                                   | 1.5198    | 0.6789                      | 0.2945     |  |

|  | process |  |  |
|--|---------|--|--|
|  |         |  |  |

| Isotherm<br>Model                 | Linear Equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Linear Plot                                          | Isotherm<br>Parameter     | Value of<br>Isotherm<br>Parameter |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------|-----------------------------------|
| Langmuir                          | $( -1/a - 1/a - K_{1} + C_{2}/a - 1/a - K_{2} + C_{2}$ | C <sub>e</sub> /q <sub>e</sub> versus C <sub>e</sub> | q <sub>max</sub> ( mg/g)  | 210.7410                          |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | slope = $1/q_m$ and                                  | K <sub>L</sub> (L/mg)     | 0.0274                            |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | intercept =1/(K <sub>L</sub> q <sub>max</sub> )      | RL                        | 0.2676-0.6463                     |
|                                   | $C_e / Q_e - 1 / Q_{max} / C_e / Q_{max}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $K_L$ is the Langmiur                                |                           |                                   |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | constant,                                            | R <sup>2</sup>            | 0.9501                            |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | q <sub>max</sub> is the maximum                      | IX III                    |                                   |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | adsorption capacity                                  |                           | 4 0007                            |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | In $q_e$ versus In $C_e$                             | n                         | 1.2007                            |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | slope = $1/n$ and                                    |                           | C 117C                            |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $Intercept = In K_F$                                 | K <sub>F</sub> (L/mg)     | 6.1176                            |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | constant related to the                              |                           |                                   |
| Freundlich                        | $\ln (q_{2}) = \ln(K_{1}) + 1/n \ln (C_{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | affinity of the                                      |                           |                                   |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | adsorbate to the                                     |                           | 0.9340                            |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | binding sites of the                                 | R <sup>2</sup>            |                                   |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | adsorbent,                                           |                           |                                   |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n is the intensity of the                            |                           |                                   |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | adsorbent                                            |                           |                                   |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | q <sub>e</sub> versus In C <sub>e</sub>              | a⊤(L/g)                   | 0.5810                            |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | slope = B and intercept                              | b <sub>T</sub> ( KJ/mol)  | 0.0914                            |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = B ln a <sub>T</sub>                                | В                         | 26.6384                           |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a <sub>T</sub> is Temkin isotherm                    |                           |                                   |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | equilibrium                                          |                           | 0.9927                            |
|                                   | q <sub>e</sub> =(RT/b <sub>T</sub> )Ln(a <sub>T</sub> )+( RT/ b <sub>T</sub> )ln (c <sub>e</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | corresponding to                                     |                           |                                   |
| Temkin                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the maximum binding                                  |                           |                                   |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | energy.                                              | R <sup>2</sup>            |                                   |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b <sub>⊤</sub> is the Temkin                         |                           |                                   |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | isotherm equilibrium                                 |                           |                                   |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | binding constant                                     |                           |                                   |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | related to the heat of                               |                           |                                   |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | adsorption                                           |                           |                                   |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ln q <sub>e</sub> versus ε <sup>2</sup>              | q₅ (mg/g)                 | 52.0090                           |
| Dubinin-<br>Radushkevich<br>(D–R) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | slope = $K_{ad}$ and<br>intercept = $\ln(\alpha)$    | K <sub>ad</sub> (mol²/J²) | 225.5934                          |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\epsilon$ is the <i>polanvi</i>                     | E <sub>s</sub> (KJ/mol)   | 0.0470                            |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | potential ( $\epsilon = RT \ln$                      |                           |                                   |
|                                   | $Ln(q_e) = Ln (q_s) - (K_{ad}\epsilon^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $(1+(1/C_e)),$                                       |                           | 0.8920                            |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $q_s$ is the theoretical                             |                           |                                   |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | saturation                                           | R <sup>2</sup>            |                                   |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | capacity,                                            |                           |                                   |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K <sub>ad</sub> is the D-R isotherm                  |                           |                                   |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | constant                                             |                           |                                   |

**Table S4.** Linear equations and their parameters for different adsorption isotherm models