Supporting Information

Heteropolyacid ionic liquids heterogeneously catalyzed syntheseis of isochromans

via Oxa-Pictete-Spengler cyclization in dimethyl carbonate

Guoping Yang, ^a Ke Li, ^a Kai Zeng, ^a Yijin Li, ^a Tao Yu *^b and Yufeng Liu *^a

- ^{a.} East China University of Technology, Jiangxi Province Key Laboratory of Synthetic Chemistry, Nanchang 330013, China. E-mail: yfliu@ecut.edu.cn
- ^{b.} East China University of Technology, School of Nuclear Science and Engineering, Nanchang, 330013, China. E-mail: <u>tyu@ecut.edu.cn</u>

Table of Contents

1	General Information	S2
2	POMs-based Ionic Liquids	S2
2.1	Synthesis of POM-based Ionic Liquids	S2
2.2	FT-IR data of the catalysts	S3
2.3	Typical procedure for direct Oxa-Pictet-Spengler reaction of arylethanols with aldehys	S3
3	Optimization of the reaction conditions	S4
4	Characterization of Substrates and Products	S7
5	NMR Spectra	.S17
6	Notes and references	.\$38

1 General Information

The starting materials were commercially available and were used without further purification. The products were isolated by column chromatography on silica gel (200-300 mesh) using petroleum ether (60-90°C) and ethyl acetate. All compounds were characterized by ¹H NMR, ¹³C NMR and mass spectroscopy, which were consistent with those reported in related literatures. NMR spectra were determined on Bruker Ascend 500 in CDCl₃. ¹H NMR chemical shifts were referenced to residual solvent as determined relative to CDCl₃ (7.26 ppm). The ¹³C NMR chemical shifts were reported in ppm relative to the carbon resonance of CDCl₃ (central peak is 77.0 ppm). ¹H NMR peaks were labelled as singlet (s), doublet (d), triplet (t), and multiplet (m). The coupling constants, *J*, are reported in Hertz (Hz). EI-MS data were performed on Agilent 7000C. GC analyses were performed on an Agilent 7890B equipped with a capillary column (HP-5, 30 m × 0.25 µm) using a flame ionization detector.

2 POMs-based Ionic Liquids

2.1 Synthesis of POM-based Ionic Liquids^[1, 2]

3-Ethyl-5-(2-Hydroxyethyl)-4-methylthiazol-3-ium (HEMT) (1 mmol) was charged into a 250 mL flask, followed by the dropwise addition of aqueous solution of 12-Phosphomolybdic acid (1 mmol), then it was further stirred at ambient temperature for 12 h. Afterwards, the solvent was removed by rotary evaporator and the residue solid was dried under vacuum at 80 °C for 12 h to obtain the final product [HEMTH]H₂[PMo₁₂O₄₀]. [HEMTH]₃[PMo₁₂O₄₀] and [HEMTH]₂H[PMo₁₂O₄₀], were prepared by similar procedures with their respective stoichiometric compositions. i.e., 3 mmol, and 2 mmol of HEMT, respectively. Accordingly, [HBMTH]H₂[PMo₁₂O₄₀] and [HMTH]H₂[PMo₁₂O₄₀] were prepared using 3-Benzyl-5-(2-Hydroxyethyl)-4-methylthiazol-3-ium (HBMT), 5-(2-Hydroxyethyl)-4-methylthiazole (HMT) and 12-Phosphomolybdic acid as the raw materials with the similar procedure. All of the ionic liquids were characterized and consistent with those reported in the literature.

2.2 FT-IR data of the catalysts

2.3 Typical procedure for direct Oxa-Pictet-Spengler reaction of arylethanols with aldehys.

To a 4 mL reaction vial, 2-(3,4-dimethoxyphenyl)ethan-1-ol (0.6 mmol), benzaldehyde (0.66 mmol), [HEMTH]H₂[PMo₁₂O₄₀] (4 mol%) and DMC (3 mL) were added. Then the reaction was carried out in screw cap vials with a Teflon seal at 70 °C for desired time. After cooling to room temperature, the mixture was further purified by column chromatography (petroleum ether/EtOAc) to afford the desired products.

catalyst activation method: after each cycle, the product was extracted by ethyl ether for several times. Subsequently, the catalyst layer was dried under vacuum for 3 h at 50 °C for next run.

3 Optimization of the reaction conditions

0 0 1 0.2 r	A CH	Catalyst, 3 mol%	O O Ph 3a
Entry	Catalyst	Conv.(%)	Yield (%) ^[a]
1		45	0
2	$H_3PW_{12}O_{40}$	99	54
3	$H_4SiW_{12}O_{40}$	99	43
4	H ₃ PMo ₁₂ O ₄₀	99	80

Table S1. Examination of the catalysts.

[a] The conversions and yields were determined by GC with biphenyl as the internal standard

0 0 1a 0.2 mm	OH + 2a ol 0.22 mmol	<u>H₃PMo₁₂O₄₀, 3 mol%</u> solvent, 50 ^o C, 10 min	O O Ph 3a
Entry	Solvent (1 mL)	Conv. (%)	Yield (%) ^[a]
1	H ₂ O	99	0
2	PC	99	54
3	EC	99	35
4	СРМЕ	99	82
5	DMC	99	89
6	Ph-Cl	99	80
7	DCE	99	80
8	Toluene	99	82
9	CH ₃ CN	99	87
10	CH_3NO_2	99	86

Table S2. Examination of solvents.

[a] The conversions and yields were determined by GC with biphenyl as the internal standard

0.2	OH + Catalyst, 3 DMC, 50 °C 1a 2a emmol 0.22 mmol	3 mol% C, 10 min	Ph 3a	
Entry	ILs-Catalyst	Conv. (%)	Yield (%) ^[a]	
1	H ₃ PMo ₁₂ O ₄₀	99	89	
2	[HMTH]H ₂ PMo ₁₂ O ₄₀	99	61	
3	[HEMTH]H ₂ PMo ₁₂ O ₄₀	99	65	
4	[HBMTH]H ₂ PMo ₁₂ O ₄₀	88	13	
5	[HEMTH] ₂ HPMo ₁₂ O ₄₀	84	0	
6	[HEMTH] ₃ PMo ₁₂ O ₄₀	75	0	
[a] The conversions and yields were determined by GC with biphenyl as the internal standard				

Table S3. Examination of the $ILs-H_3PMo_{12}O_{40}$.

Table S4. The investigation of the reaction temperature.

	OH +	[HEMTH]H₂PMo ₁₂ O ₄₀ , 3 mol% DMC, Temp ^o C, 10 min	O O Ph
1a 0.2 mmol	2a 0.22 mmol		3a
Entry	T (°C)	Conv. (%)	Yield (%) ^[a]
1	30	99	48
2	40	99	59
3	50	99	65
4	55	99	72
5	60	99	78
6	65	99	81
7	70	99	85
8	80	99	85

[a] The conversions and yields were determined by GC with biphenyl as the internal standard

	OH +	[HEMTH]H ₂ PMo ₁₂ O ₄₀ , 3 mol% DMC, 70 °C, time	O O Ph
1a 0.2 mmol	2a 0.22 mmol		3a
Entry	Time (min)	Conv. (%)	Yield (%) ^[a]
1	1	99	62
2	3	99	71
3	5	99	78
4	7	99	80
5	10	99	85
6	15	99	88
7	20	99	91
8	25	99	91

Table S5. The investigation of the reaction time.

[a] The conversions and yields were determined by GC with biphenyl as the internal standard

1a 0.2 mmol	OH + <u>L</u> 2a 0.22 mmol	MTH]H₂PMo ₁₂ O ₄₀ , x mol% DMC, 70 °C, 20 min	O O Ph 3a
Entry	loading (mol%)	Conv. (%)	Yield (%) ^[a]
1	1	99	59
2	1.5	99	71
3	2	99	77
4	2.5	99	86
5	3	99	91
6	3.5	99	93
7	4	99	95
8	4.5	99	95

 Table S6. Optimization of catalyst loading.

[a] The conversions and yields were determined by GC with biphenyl as the internal standard

4 Characterization of Substrates and Products

6,7-dimethoxy-1-phenylisochromane (3a)^[3]

¹**H NMR** (500 MHz, CDCl₃): δ (ppm) 7.29-7.37 (m, 5H), 6.66 (s, 1H), 6.24 (s, 1H), 5.69 (s, 1H), 4.12-4.16 (m, 1H), 3.87-3.92 (m, 4H), 3.65 (s, 3H), 3.01-3.07 (m, 1H), 2.72-2.77 (m, 1H);

¹³C NMR (126 MHz, CDCl₃): δ (ppm) 147.84, 147.24, 142.20, 128.94, 128.46, 128.17, 126.09, 111.15, 109.68, 79.18, 63.60, 55.89, 28.38.

1-(4-fluorophenyl)-6,7-dimethoxyisochromane (3b)^[3]

¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.17-7.18 (m, 2H), 6.90-6.93 (m, 2H), 6.55 (s, 1H), 6.09 (s, 1H), 5.55 (s, 1H), 4.00-4.01 (m, 1H), 3.75-3.79 (m, 4H), 3.54-3.55 (s, 3H), 2.91-2.94 (m, 1H), 2.60-2.63 (m, 1H);

¹³C NMR (126 MHz, CDCl₃): δ (ppm) 162.54 (d, J = 246.96 Hz), 147.95, 147.30, 138.19 (d, J = 2.52 Hz), 130.65 (d, J = 8.82 Hz), 128.73, 126.10, 115.29 (d, J = 21.42 Hz), 111.20, 109.54, 78.44, 63.64, 55.86, 28.30.

1-(4-chlorophenyl)-6,7-dimethoxyisochromane (3c)^[3]

¹**H NMR** (500 MHz, CDCl₃): δ (ppm) 7.30-7.32 (m, 2H), 7.23-7.25 (m, 2H), 6.65 (s, 1H), 6.18 (s, 1H), 5.65 (s, 1H), 4.09-4.13 (m, 1H), 3.87-3.89 (m, 4H), 3.66 (s, 3H), 2.99-3.05 (m, 1H), 2.70-2.75 (m, 1H);

¹³C NMR (126 MHz, CDCl₃): δ (ppm) 148.02, 147.36, 140.80, 133.93, 130.30, 128.61, 128.38, 126.10, 111.25, 109.51, 78.40, 63.60, 55.90, 28.28.

1-(3-chlorophenyl)-6,7-dimethoxyisochromane (3d)^[3]

¹**H NMR** (500 MHz, CDCl₃): δ (ppm) 7.27-7.30 (m, 3H), 7.20-7.22 (m, 1H), 6.66 (s, 1H), 6.22 (s, 1H), 5.65 (s, 1H), 4.10-4.14 (m, 1H), 3.85-3.90 (m, 4H), 3.68 (s, 3H), 3.00-3.06 (m, 1H), 2.71-2.76 (m, 1H);

¹³C NMR (126 MHz, CDCl₃): δ (ppm) 148.04, 147.37, 144.31, 134.34, 129.70, 129.01, 128.35, 128.06, 127.11, 126.09, 111.27, 109.49, 78.47, 63.60, 55.95, 55.90, 28.25.

1-(2-chlorophenyl)-6,7-dimethoxyisochromane (3e)^[3]

¹**H NMR** (500 MHz, CDCl₃): δ (ppm) 7.32-7.34 (m, 1H), 7.06-7.17 (m, 3H), 6.57 (s, 1H), 6.16 (s, 1H), 6.11(s, 1H), 4.02-4.06 (m, 1H), 3.78-3.85 (m, 4H), 3.57 (s, 3H), 2.92-2.98 (m, 1H), 2.63-2.68 (m, 1H);

¹³C NMR (126 MHz, CDCl₃): δ (ppm) 147.94, 147.43, 139.80, 134.21, 130.69, 129.60, 129.30, 128.21, 126.95, 126.21, 111.21, 109.22, 74.98, 63.66, 55.89, 28.28.

1-(4-bromophenyl)-6,7-dimethoxyisochromane (3f)^[6]

¹**H NMR** (500 MHz, CDCl₃): δ (ppm) 7.45-7.47 (m, 2H), 7.17-7.19 (m, 2H), 6.65 (s, 1H), 6.18 (s, 1H), 5.63 (s, 1H), 4.08-4.12 (m, 1H), 3.85-3.88 (m, 4H), 3.66 (s, 3H), 2.98-3.04 (m, 1H), 2.70-2.75 (m, 1H);

¹³C NMR (126 MHz, CDCl₃): δ (ppm) 148.00, 147.34, 141.30, 131.57, 130.66, 128.26, 126.08, 122.17, 111.23, 109.45, 78.43, 63.59, 55.93, 55.90, 28.28.

6,7-dimethoxy-1-(4-nitrophenyl)isochromane (3g)^[3]

¹**H NMR** (500 MHz, CDCl₃): δ (ppm) 8.16-8.20 (m, 2H), 7.46-7.50 (m, 2H), 6.63-6.67 (m, 1H), 6.11-6.14 (m, 1H), 5.71-5.75 (m, 1H), 4.08-4.13 (m, 1H), 3.85-3.90 (m, 4H), 3.61-3.64 (m, 3H), 3.00-3.07 (m, 1H), 2.71-2.76 (m, 1H);

¹³C NMR (126 MHz, CDCl₃): δ (ppm) 149.46, 148.28, 147.70, 147.53, 129.68, 127.35, 126.07, 123.68, 111.47, 109.23, 78.06, 63.83, 55.93, 28.18.

6,7-dimethoxy-1-(3-nitrophenyl)isochromane (3h)^[3]

¹**H NMR** (500 MHz, CDCl₃): δ (ppm) 8.15-8.18 (m, 2H), 7.64-7.66 (m, 1H), 7.50-7.53 (m, 1H), 6.67 (s, 1H), 6.15 (s, 1H), 5.76 (s, 1H), 4.09-4.13 (m, 1H), 3.87-3.91 (m, 4H), 3.64 (s, 3H), 3.02-3.08 (m, 1H), 2.72-2.77 (m, 1H);

¹³C NMR (126 MHz, CDCl₃): δ (ppm) 148.34, 148.32, 147.56, 144.52, 134.94, 129.42, 127.34, 126.23, 123.78, 123.19, 111.52, 109.34, 78.11, 63.85, 55.99, 55.92, 28.19.

6,7-dimethoxy-1-(2-nitrophenyl)isochromane (3i)^[3]

¹**H NMR** (500 MHz, CDCl₃): δ (ppm) 7.83-7.84 (m, 1H), 7.49-7.52 (m, 1H), 7.72-7.45 (m, 1H), 7.32-7.33 (m, 1H), 6.66 (s, 1H), 6.34 (s, 1H), 6.29 (s, 1H), 4.03-4.07 (m, 1H), 3.85-3.90 (m, 4H), 3.67 (s, 3H), 3.00-3.06 (m, 1H), 2.71-2.76 (m, 1H);

¹³C NMR (126 MHz, CDCl₃): δ (ppm) 149.90, 148.23, 147.50, 136.65, 132.62, 131.22, 128.85, 127.49, 126.20, 123.90, 111.36, 109.71, 73.27, 63.90, 55.97, 55.90, 28.08.

6,7-dimethoxy-1-(p-tolyl)isochromane (3j)^[4]

¹**H NMR** (500 MHz, CDCl₃): δ (ppm) 7.14-7.20 (m, 4H), 6.65 (s, 1H), 6.25 (s, 1H), 5.66 (s, 1H), 4.10-4.14 (m, 1H), 3.85-3.90 (m, 4H), 4.08-4.13 (m, 1H), 3.85-3.90 (m, 4H), 3.66 (s, 3H), 2.99-3.05 (m, 1H), 2.71-2.76 (m, 1H), 2.35 (s, 3H);

¹³C NMR (126 MHz, CDCl₃): δ (ppm) 147.83, 147.25, 139.25, 137.81, 129.10, 128.87, 126.14, 111.16, 109.78, 78.88, 63.36, 55.92, 55.89, 28.40, 21.23.

6,7-dimethoxy-1-(m-tolyl)isochromane (3k)^[7]

¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.21-7.25 (m, 1H),7.08-7.12 (m, 3H), 6.65 (s, 1H), 6.24 (s, 1H), 5.64 (s, 1H), 4.12-4.16 (m, 1H), 3.85-3.90 (m, 4H), 3.66 (s, 3H), 3.01-3.07 (m, 1H), 2.70-2.75 (m, 1H), 2.33 (s, 3H);

¹³C NMR (126 MHz, CDCl₃): δ (ppm) 147.86, 147.26, 142.09, 138.13, 129.53, 129.06, 128.94, 128.24, 126.11, 126.07, 111.18, 109.83, 79.25, 63.64, 55.95, 55.89, 28.41, 21.46.

6,7-dimethoxy-1-(o-tolyl)isochromane (3I)^[7]

¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.09-7.12 (m, 2H),7.09-7.12 (m, 1H), 6.96-6.97 (m,1H), 6.56 (s, 1H), 6.10 (s, 1H), 5.79 (s, 1H), 4.00-4.04 (m, 1H), 3.75-3.78 (m, 4H), 3.54 (s, 3H), 2.88-2.94 (m, 1H),2.63-2.67 (m, 1H), 2.29 (s, 3H);

¹³C NMR (126 MHz, CDCl₃): δ (ppm) 147.83, 147.41, 139.76, 137.51, 130.95, 129.86, 129.06, 128.09, 126.25, 125.66, 111.23, 109.31, 77.05, 63.52, 55.90, 28.36, 19.35.

6,7-dimethoxy-1-(4-methoxyphenyl)isochromane (3m)^[3]

¹**H NMR** (500 MHz, CDCl₃): δ (ppm) 7.21-7.22 (m, 2H), 6.85-6.87 (m, 2H), 6.64 (s, 1H), 6.23 (s, 1H), 5.64 (s, 1H), 4.09-4.13 (m, 1H), 3.83-3.88 (m, 4H), 3.78 (s, 3H), 3.65 (s, 3H), 2.98-3.04 (m, 1H), 2.70-2.74 (m, 1H);

¹³C NMR (126 MHz, CDCl₃): δ (ppm) 159.41, 147.79, 147.20, 134.48, 130.19, 129.22, 126.14, 113.74, 111.11, 109.70, 78.66, 63.42, 55.88, 55.26, 28.38.

1-(4-ethoxyphenyl)-6,7-dimethoxyisochromane (3n)^[7]

¹**H NMR** (500 MHz, CDCl₃): δ (ppm) 7.20 (d, J = 8.6 Hz, 2H), 6.86 (d, J = 8.6 Hz, 2H), 6.64 (s, 1H), 6.23 (s, 1H), 5.63 (s, 1H), 4.14 – 4.09 (m, 1H), 4.01 (q, J = 7.0 Hz, 2H), 3.87 (s, 4H), 3.65 (s, 3H), 3.05 – 2.91 (m, 1H), 2.72 (d, J = 16.1 Hz, 1H), 1.40 (t, J = 7.0 Hz, 3H);

¹³C NMR (126 MHz, CDCl₃): δ (ppm) 158.78, 147.76, 147.17, 134.30, 130.18, 129.24, 126.13, 114.29, 111.06, 109.69, 78.69, 63.44, 55.88, 28.38, 14.87.

4-(6,7-dimethoxyisochroman-1-yl)benzonitrile (3o)^[4]

¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.64 (d, J = 8 Hz, 2H), 7.43 (d, J = 8.5 Hz, 2H), 6.66 (s, 1H), 6.13 (s, 1H), 5.70 (s, 1H), 4.09-4.13 (m, 1H), 3.86-3.91 (m, 4H), 3.66 (s, 3H), 3.00-3.06 (m, 1H), 2.72-2.77 (m, 1H);

¹³C NMR (126 MHz, CDCl₃): δ (ppm) 148.21, 147.46, 132.34, 129.56, 127.38, 126.08, 118.77, 111.98, 111.36, 109.21, 78.36, 63.78, 55.94, 55.92, 28.18.

1-(4-isopropylphenyl)-6,7-dimethoxyisochromane (3p)^[6]

¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.19-7.23 (m, 4H), 6.65 (s, 1H), 6.28 (s, 1H), 5.67 (s, 1H), 4.09-4.13 (m, 1H), 3.87-3.90 (m, 4H), 3.67 (s, 3H), 2.98-3.04 (m, 1H), 2.88-2.93 (m, 1H), 2.72-2.76 (m, 1H), 1.24 (d, *J* = 7 Hz, 6H);

¹³C NMR (126 MHz, CDCl₃): δ (ppm) 148.78, 147.79, 147.19, 139.52, 128.96, 128.90, 126.50, 126.19, 111.10, 109.79, 78.81, 63.33, 55.97, 55.88, 33.89, 28.41, 24.04, 23.98.

6-methoxy-1-phenylisochromane (3q)^[8]

¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.21-7.23 (m, 5H), 6.52-6.59 (m, 3H), 5.57 (s, 1H), 4.04-4.08 (m, 1H), 3.65-3.81 (m, 4H), 3.00-3.04 (m, 1H), 2.64-2.98 (m, 1H);

¹³C NMR (126 MHz, CDCl₃): δ (ppm) 158.21, 142.49, 135.21, 129.74, 128.90, 128.49, 128.15, 113.23, 112.37, 79.52, 63.89, 55.26, 29.24.

6,7-dimethoxy-1-propylisochromane (3r)^[4]

¹H NMR (500 MHz, CDCl₃): δ (ppm) 6.56 (d, J = 20 Hz, 2H), 4.67 (d, J = 10 Hz, 1H), 4.07-4.11 (m, 1H),
3.84 (s, 6H), 3.70-3.74 (m, 1H), 2.85-2.91 (m, 1H), 2.56-2.60 (m, 1H), 1.72-1.84 (m, 2H), 1.44-1.53 (m, 2H), 0.95 (t, J = 7.5 Hz, 15 Hz, 3H);

¹³C NMR (126 MHz, CDCl₃): δ (ppm) 147.37, 130.43, 125.97, 111.40, 107.83, 75.35, 63.15, 56.01, 55.84, 38.26, 28.69, 18.57, 14.20.

1-butyl-6,7-dimethoxyisochromane (3s)^[4]

¹H NMR (500 MHz, CDCl₃): δ (ppm) 6.55 (d, J = 20 Hz, 2H), 4.66 (d, J = 11 Hz, 1H), 4.07-4.11 (m, 1H),
3.83 (s, 6H), 3.69-3.73 (m, 1H), 2.85-2.91 (m, 1H), 2.55-2.59 (m, 1H), 1.72-1.87 (m, 2H), 1.29-1.44 (m, 4H), 0.90 (t, J = 7.0 Hz, 14 Hz, 3H);

¹³C NMR (126 MHz, CDCl₃): δ (ppm) 147.37, 130.41, 125.99, 111.39, 107.84, 75.56, 63.20, 55.99, 55.82, 35.80, 28.69, 27.46, 22.86, 14.16.

6,7-dimethoxy-1-pentylisochromane (3t)^[4]

¹H NMR (500 MHz, CDCl₃): δ (ppm) 6.56 (d, J = 20 Hz, 2H), 4.67 (d, J = 8 Hz, 1H), 4.08-4.12 (m, 1H), 3.84 (s, 6H), 3.70-3.75 (m, 1H), 2.86-2.91 (m, 1H), 2.57-2.61 (m, 1H), 1.72-1.86 (m, 2H), 1.27-1.47 (m, 4H), 0.88 (t, J = 7.5 Hz, 15 Hz, 3H);

¹³**C NMR** (126 MHz, CDCl₃): δ (ppm) 147.37, 130.43, 125.98, 111.39, 107.83, 75.60, 63.20, 56.00,

55.83, 36.08, 32.02, 28.69, 25.00, 22.71, 14.14.

1-benzyl-6,7-dimethoxyisochromane (3u)^[5]

¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.17-7.21 (m, 4H), 7.10-7.13 (m, 1H), 6.48 (s, 1H), 6.37 (s, 1H), 4.85-4.88 (m, 1H), 3.99-4.03 (m, 1H), 3.74 (s, 3H), 3.61-3.65 (m, 4H), 2.96-3.07 (m, 2H), 2.69-2.75 (m, 1H), 2.49-2.54 (m, 1H);

¹³C NMR (126 MHz, CDCl₃): δ (ppm) 147.58, 147.17, 138.83, 129.64, 129.57, 128.32, 126.33, 126.19, 111.46, 108.30, 76.34, 62.83, 55.90, 42.83, 28.66.

5 NMR Spectra

1</t

7.32 7.33 7.4</

$\begin{array}{c} + & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & &$

7.83 7.84 7.84 7.84 7.83 8.7 7.84 8.7 7.84 8.7 8.7 8.8 8.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9

1</t

7.225 7.224 7.224 7.225 7.227 7.228 7.227 7.228 7.227 7.228 7.277 7.277 7.277 7.277 7.277 7.277 7.277 7.277 7.277 7.277 7.277 7.277 7.277 7.277 7.277 7.277 7.277 <t

7.23 7.21 7.21 7.22 6.56 6.55 6.55 6.55 6.55 7.23 7.24 7.25 7.25 7.267 7.27 7.28 7.29 7.29 7.20 7.20 7.21 7.22 7.23 7.24 7.25 7.26 7.27 7.28 7.29 7.20 7.20 7.21 7.22 7.25 7.26 7.27 7.28 7.29 7.29 7.20 7.20 7.21 7.21 7.21 7.21 7.21 7.21 7.21 7.21 7.22 7.21 7.21 7.22 7.22 7.22 7.22 7.22 7.22 7.22 7.22 7.23 7.24 </t

S35

2255333 2255333 2255333</td

6 Notes and references

[1] Zhang W, Leng Y, Zhao P, et al. Heteropolyacid salts of n-methyl-2-pyrrolidonium as highly efficient and reusable catalysts for prins reactions of styrenes with formalin. *Green chemistry*, 2011, 13(4): 832-834.

[2] Yang G-P, Wu X, Yu B, et al. Ionic liquid from vitamin b1 analogue and heteropolyacid: A recyclable heterogeneous catalyst for dehydrative coupling in organic carbonate. *ACS Sustainable Chemistry & Engineering*, 2019, 7(4): 3727-3732.

[3] Saeed A. Oxa-pictet–spengler reaction in water. Synthesis of some (±)-1-aryl-6, 7-dimethoxyisochromans. *Chinese Chemical Letters*, 2010, 21(3): 261-264.

[4] Zhou J, Wang C, Xue D, et al. Synthesis of isochromans via fe (otf) 2-catalyzed oxa-pictet–spengler cyclization. *Tetrahedron*, 2018, 74(49): 7040-7046.

[5] Saito A, Takayama M, Yamazaki A, et al. Synthesis of tetrahydroisoquinolines and isochromans via pictet–spengler reactions catalyzed by brønsted acid–surfactant-combined catalyst in aqueous media. *Tetrahedron*, 2007, 63(19): 4039-4047.

[6] Product class 5: seven-membered hetarenes with two or more heteroatoms. Science of Synthesis (2004), 17, 929-

977. Publisher: (Georg Thieme Verlag,) CODEN:SSCYJ9

[7] Peng Z, Wang Y, Yu Z, et al. Direct Arylation of Benzyl Ethers with Organozinc Reagents. *J. Org. Chem*, 2018, 83(15): 7900–7906.

[8] Wang Z, Mao Y, Guan H, et al Direct oxidative C(sp³)-H cyanation of secondary benzylic ethers. *Chinese Chemical Letters*, 2019, 30(6): 261–264.