Supplementary Material

Characterization

The phase composition of the samples was investigated by X-ray diffraction (XRD) on a Shimadzu XRD-6000 X-ray powder diffractometer. A scanning electron microscopy (SEM, JSM-6390A), energy dispersive spectroscopy (EDS, JSM-6390A) and high resolution transmission electron microscopy (HRTEM, Tecnai G2F20S-TWIN) were employed to observe the morphology and elemental compositions of CdSe/C/TiO₂. The chemical status of the elements was identified with XPS (Kratos AXIS NOVA). The absorption spectra of the samples were obtained by a UV-vis spectrophotometer (UV-3600) with a wavelength range of 200-800 nm. The photoluminescence spectrum (PL) was measured by a fluorescence intensimeter (Hitachi-F7000) using an excitation wavelength of 220 nm.

Photoelectrochemical measurements

Photoelectrochemical performance of the prepared films was studied using the electrochemical workstation (CHI 660 E) under in a three electrode cell at room temperature. The measured samples, Pt foil and HgCl₂/Hg were used as the working, counter and reference electrodes, respectively. 0.5 M Na₂SO₄ aqueous solution was employed as the electrolyte for the MB degradation. The samples with 0.785 cm² surface area was irradiated using a 300 W Xe lamp. Before the reaction, the system kept in the dark for 30 minutes to reach the adsorption-desorption equilibrium. During the reaction, 3 mL of the solution was taken per 15 min to detect the degradation of MB through UV-Vis spectrophotometer at 664 nm.

Catalyst	Photoelectrocatalyst(PE C) or photocatalyst(PC)	Pollutant	Degradation performance	Ref.
CdSe/C/TiO ₂	PEC	MB	92.43% / 120min	This work
CdSe/TiO ₂ NTs	PEC	MB	About 60% / 240 min	1
TiO ₂ nanosheets@CdSe	РС	MB	90.5% / 5 h	2
TiO ₂ /CdSe/RGO film	РС	MB	About 95% / 180 min	3
CdSe/SiO ₂	PC	MB	90% / 180 min	4
Bi ₂ S ₃ -BiOBr / TiO ₂	PEC	RhB	93.68% / 120min	- 5
		МО	56.75% / 120min	
		MB	90.53% / 120min	
		Cr(VI)	67.12% / 120min	
GQDs/TiO ₂	PC	MO	About 95% / 120 min	6

Table S1 Related reports about TiO₂-based pollutant degradation in the literatures.

- P. Xue, Y. Yin, Y.o Wang, J. Wan, Y. Ma, E. Liu, X. Hu and J. Fan, Semicond. Sci. Technol., 2017, 32, 115007.
- 2. D. Xua, B. Liua, W. Zoua, H. Wang and C. Zhang, Appl. Surf. Sci., 2019, 487, 91–100.
- Q. Shen, Y. Wang, J. Xue, G. Gao, X. Liu, H. Jia, Q. Li and B. Xu, *Appl. Surf. Sci.*, 2019, 481, 1515-1523.
- 4. M. A. Ahmed, M. F. Abdel-Messih, E. H. J. Mater. Sci-Mater. El., 2019, 30, 17527-17539.
- D. Gao, L. Wang, Q. Wang, Z. Q, Y. Jia and C. Wang, *Spectrochimi. Acta A*, 2020, 229, 117936.
- D. Pan, J. Jiao, Z. Li, Y. Guo, C. Feng, Y. Liu, L. Wang and M. Wu, ACS Sustainable Chem. Eng. 2015, 3, 2405-2413.

Fig. S1 Raw data for MB degradation.