**Electronic Supplementary Information** 

## Carbazole sulfonamide-based macrocyclic receptors capable

### of selective complexation of fluoride ion

Na Luo,<sup>a</sup> Junhong Li,<sup>a</sup> Tao Sun,<sup>b</sup> Suran Wan,<sup>a</sup> Peijia Li,<sup>a</sup> Nan Wu,<sup>a</sup> Ya Yan,<sup>a</sup> Xiaoping Bao<sup>\*,a</sup>

<sup>a</sup>State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China.

\*Corresponding author: baoxp\_1980@aliyun.com

<sup>b</sup>College of Chemistry and Chemical Engineering, Guizhou Key Laboratory of High Performance Computational Chemistry, Guizhou University, Guiyang 550025, China.

### **Table of Contents**

| 1. | Crystal data ·····                             | ·S2 |
|----|------------------------------------------------|-----|
| 2. | <sup>1</sup> H NMR titration studies           | ·S3 |
| 3. | UV-vis titration studies                       | 523 |
| 4. | Cartesian coordinates                          | 525 |
| 5. | Original spectral files of macrocycles 1 and 2 | S27 |

# 1. Crystal data

|                                           | macrocycle 1               | [ <b>1</b> ]₂·TBAF         | macrocycle 2               |
|-------------------------------------------|----------------------------|----------------------------|----------------------------|
| CCDC number                               | 1976672                    | 1976667                    | 2021529                    |
| Empirical formula                         | $C_{28}H_{33}N_3O_4S_2\\$  | $C_{72}H_{102}FN_7O_8S_4$  | $C_{27}H_{32}N_4O_4S_2\\$  |
| Formula weight                            | 539.69                     | 1340.84                    | 540.68                     |
| Temperature/K                             | 150.03                     | 273.15                     | 273.00                     |
| Wavelength/Å                              | 1.54178                    | 1.54178                    | 0.71073                    |
| Crystal system                            | orthorhombic               | orthorhombic               | monoclinic                 |
| Space group                               | $P2_{1}2_{1}2_{1}$         | $P2_{1}2_{1}2_{1}$         | $P2_1/n$                   |
| $a/\text{\AA}$                            | 18.5696(4)                 | 16.4040(17)                | 30.948(4)                  |
| $b/{ m \AA}$                              | 26.4247(6)                 | 16.5999(19)                | 6.6912(8)                  |
| $c/{ m \AA}$                              | 6.5248(1)                  | 29.9980(4)                 | 30.949(4)                  |
| $\alpha / ^{\circ}$                       | 90                         | 90                         | 90                         |
| $eta/^{\circ}$                            | 90                         | 90                         | 119.496(4)                 |
| γ/°                                       | 90                         | 90                         | 90                         |
| $V/Å^3$                                   | 3201.69(11)                | 8168.7(16)                 | 5578.3(12)                 |
| Z                                         | 4                          | 4                          | 8                          |
| $D_{\rm calc}/{ m g~cm^{-3}}$             | 1.120                      | 1.090                      | 1.288                      |
| Absorption coefficient/mm <sup>-1</sup>   | 1.776                      | 1.496                      | 0.230                      |
| <i>F</i> (000)                            | 1144.0                     | 2880.0                     | 2288.0                     |
| Crustal size/mm3                          | 0.24 	imes 0.22 	imes      | 0.38 	imes 0.31 	imes      | 0.15 	imes 0.15 	imes      |
| Crystar size/mm <sup>2</sup>              | 0.19                       | 0.12                       | 0.12                       |
| Dediction 1/8                             | CuKα                       | CuKa                       | ΜοΚα                       |
| Kadiation, A/A                            | $(\lambda = 1.54178)$      | $(\lambda = 1.54178)$      | $(\lambda = 0.71073)$      |
| $2\Theta$ range /°                        | 5.816 to 144.236           | 5.892 to 134.036           | 1.512 to 56.67             |
|                                           | $-22 \le h \le 22$ ,       | $-19 \le h \le 19$ ,       | $-41 \le h \le 41$ ,       |
| Index ranges                              | $-32 \leq k \leq 32,$      | $-19 \le k \le 19$ ,       | $-8 \le k \le 8,$          |
|                                           | $-7 \le l \le 6$           | $-35 \le l \le 35$         | $-41 \le l \le 41$         |
| Reflections collected                     | 21398                      | 100660                     | 172216                     |
|                                           | 6171                       | 14480                      | 13837                      |
| Independent reflections                   | $[R_{\rm int} = 0.0355,$   | $[R_{\rm int} = 0.1695,$   | $[R_{\rm int} = 0.0934,$   |
|                                           | $R_{\rm sigma} = 0.0297$ ] | $R_{\rm sigma} = 0.1056$ ] | $R_{\rm sigma} = 0.0397$ ] |
| Data/restraints/parameters                | 6171/135/371               | 14480/134/906              | 13837/156/731              |
| Goodness-of-fit on $F^2$                  | 1.081                      | 1.018                      | 1.069                      |
| Einal $P$ indexes $[I > 2 - (D)]$         | $R_1 = 0.0834,$            | $R_1 = 0.0803,$            | $R_1 = 0.0568,$            |
| Final K indexes $[I \ge 20 (I)]$          | $wR_2 = 0.2191$            | $wR_2 = 0.2048$            | $wR_2 = 0.1334$            |
| Final R indexes [all data]                | $R_1 = 0.0879,$            | $R_1 = 0.1309,$            | $R_1 = 0.0771,$            |
| r mai n muexes [an uata]                  | $wR_2 = 0.2240$            | $wR_2 = 0.2396$            | $wR_2 = 0.1452$            |
| Largest diff. peak/hole/e Å <sup>-3</sup> | 0.61/-0.36                 | 0.30/-0.55                 | 0.61/-0.35                 |

Table S1. Crystal data for macrocycle 1, its fluoride complex ( $[1]_2$ ·TBAF), and macrocycle 2.

### 2. <sup>1</sup>H NMR titration studies



**Figure S1.** Job's plot of macrocycle **1** with TBAF (monitoring the chemical shift of the proton  $H^c$ ) in CD<sub>3</sub>CN at 298 K with a total concentration of 1.0 mM (top) and the corresponding <sup>1</sup>H NMR spectra (bottom).



9.6 9.4 9.2 9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 ppm

Figure S2. Stack plot of <sup>1</sup>H NMR titration of macrocycle 1 (1.6 mM) with TBAPhCOO in  $CD_3CN$  at 298 K.



**Figure S3.** Fitting binding isotherms of macrocycle **1** with TBAPhCOO in CD<sub>3</sub>CN at 298 K, showing chemical shift changes of the proton H<sup>c</sup> based on a 1:1 binding model ( $K_a = 1013 \text{ M}^{-1}$ ).



Figure S4. Stack plot of <sup>1</sup>H NMR titration of 1 (1.6 mM) with TBACH<sub>3</sub>COO in CD<sub>3</sub>CN at 298 K.



**Figure S5.** Fitting binding isotherms of macrocycle **1** with TBACH<sub>3</sub>COO in CD<sub>3</sub>CN at 298 K, showing chemical shift changes of the proton H<sup>c</sup> based on a 1:1 binding model ( $K_a = 279 \text{ M}^{-1}$ ).



**Figure S6.** Stack plot of <sup>1</sup>H NMR titration of macrocycle **1** (1.6 mM) with TBACl in CD<sub>3</sub>CN at 298 K.



**Figure S7.** Fitting binding isotherms of macrocycle **1** with TBACl in CD<sub>3</sub>CN at 298 K, showing chemical shift changes of the proton H<sup>b</sup> based on a 1:1 binding model ( $K_a = 91 \text{ M}^{-1}$ ).



**Figure S8.** Stack plot of <sup>1</sup>H NMR titration of macrocycle **1** (1.6 mM) with TBABr in CD<sub>3</sub>CN at 298 K.



**Figure S9.** Fitting binding isotherms of macrocycle **1** with TBABr in CD<sub>3</sub>CN at 298 K, showing chemical shift changes of the proton H<sup>b</sup> based on a 1:1 binding model ( $K_a = 24 \text{ M}^{-1}$ ).



**Figure S10.** Stack plot of <sup>1</sup>H NMR titration of macrocycle **1** (1.6 mM) with TBAHSO<sub>4</sub> in CD<sub>3</sub>CN at 298 K ( $K_a < 10 \text{ M}^{-1}$ ).



**Figure S11.** Stack plot of <sup>1</sup>H NMR titration of macrocycle 1 (1.6 mM) with TBANO<sub>3</sub> in CD<sub>3</sub>CN at 298 K ( $K_a < 10 \text{ M}^{-1}$ ).



**Figure S12.** Stack plot of <sup>1</sup>H NMR titration of macrocycle **1** (1.6 mM) with TBAClO<sub>4</sub> in CD<sub>3</sub>CN at 298 K (no binding).



**Figure S13.** Stack plot of <sup>1</sup>H NMR titration of macrocycle **1** (1.6 mM) with TBAH<sub>2</sub>PO<sub>4</sub> in DMSO- $d_6$  at 298 K (very weak or no binding).



**Figure S14.** Stack plot of <sup>1</sup>H NMR titration of macrocycle **1** (1.6 mM) with TBAPhCOO in DMSO- $d_6$  at 298 K (very weak binding).



**Figure S15.** Stack plot of <sup>1</sup>H NMR titration of macrocycle **1** (1.6 mM) with TBACH<sub>3</sub>COO in DMSO- $d_6$  at 298 K (very weak or no binding).



**Figure S16.** Stack plot of <sup>1</sup>H NMR titration of macrocycle **1** (1.6 mM) with TBACl in DMSO- $d_6$  at 298 K (no binding).



**Figure S17.** Stack plot of <sup>1</sup>H NMR titration of macrocycle **1** (1.6 mM) with TBABr in DMSO- $d_6$  at 298 K (no binding).



**Figure S18.** Stack plot of <sup>1</sup>H NMR titration of macrocycle **1** (1.6 mM) with TBAHSO<sub>4</sub> in DMSO- $d_6$  at 298 K (no binding).



**Figure S19.** Stack plot of <sup>1</sup>H NMR titration of macrocycle **1** (1.6 mM) with TBANO<sub>3</sub> in DMSO- $d_6$  at 298 K (very weak binding).



**Figure S20.** Stack plot of <sup>1</sup>H NMR titration of macrocycle **1** (1.6 mM) with TBAClO<sub>4</sub> in DMSO- $d_6$  at 298 K (no binding).



**Figure S21.** Job's plot of macrocycle **1** with TBAF (monitoring the chemical shift of the proton  $H^c$ ) in DMSO- $d_6$  at 298 K with a total concentration of 1.0 mM (top) and the corresponding <sup>1</sup>H NMR spectra (bottom).



**Figure S22.** Stack plot of <sup>1</sup>H NMR titration of macrocycle 2 (1.6 mM) with TBAF in CD<sub>3</sub>CN at 298 K.



**Figure S23.** Chemical shift changes of two NH groups in macrocycle **2** in CD<sub>3</sub>CN upon addition of TBAF. An inflection point for the titration isotherm was seen at nearly 1.0 equiv of TBAF., indicative of a  $K_a > 10000 \text{ M}^{-1}$ .

| $[H_2PO_4^-]/[2] =$           |                 |         |                               | H <sup>d</sup> H <sup>c</sup> |
|-------------------------------|-----------------|---------|-------------------------------|-------------------------------|
| 5.55                          |                 |         |                               | <u> </u>                      |
| 5.39                          |                 |         |                               |                               |
| 4.65                          | -               |         |                               |                               |
| 3.62                          |                 |         |                               |                               |
| 2.69                          |                 |         |                               | 4 J                           |
| 1.94                          |                 |         |                               |                               |
| 1.50                          |                 |         |                               |                               |
| 1.01                          |                 |         |                               | l                             |
| 0.74                          |                 |         |                               | 1                             |
| 0.57                          |                 |         |                               |                               |
| 0.38                          |                 |         |                               | 1                             |
| 0.20                          |                 | ٨- ٨-   |                               | 0                             |
| 0                             |                 |         |                               |                               |
|                               | Ha              |         | H <sub>p</sub> H <sub>q</sub> | Hc                            |
| 12.0 11.6 11.2 10.8 10.4 10.0 | 9.6 9.2 8.8 ppm | 8.4 8.0 | 7.6 7.2 6.8                   | <b>6.4</b> 6.0                |

Figure S24. Stack plot of <sup>1</sup>H NMR titration of macrocycle 2 (1.6 mM) with  $TBAH_2PO_4$  in  $CD_3CN$  at 298 K.



**Figure S25.** Fitting binding isotherms of macrocycle **2** with TBAH<sub>2</sub>PO<sub>4</sub> in CD<sub>3</sub>CN at 298 K, showing chemical shift changes of the proton H<sup>a</sup> based on a 1:1 binding model ( $K_a = 2428 \text{ M}^{-1}$ ).



**Figure S26.** Stack plot of <sup>1</sup>H NMR titration of **2** (1.6 mM) with TBACH<sub>3</sub>COO in CD<sub>3</sub>CN at 298 K.



**Figure S27.** Fitting binding isotherms of macrocycle **2** with TBACH<sub>3</sub>COO in CD<sub>3</sub>CN at 298 K, showing chemical shift changes of the proton H<sup>c</sup> based on a 1:1 binding model ( $K_a = 939 \text{ M}^{-1}$ ).



Figure S28. Stack plot of <sup>1</sup>H NMR titration of 2 (1.6 mM) with TBAPhCOO in CD<sub>3</sub>CN at 298 K.



**Figure S29.** Fitting binding isotherms of macrocycle **2** with TBAPhCOO in CD<sub>3</sub>CN at 298 K, showing chemical shift changes of the proton H<sup>c</sup> based on a 1:1 binding model ( $K_a = 2005 \text{ M}^{-1}$ ).



**Figure S30.** Stack plot of <sup>1</sup>H NMR titration of macrocycle **2** (1.6 mM) with TBAHSO<sub>4</sub> in CD<sub>3</sub>CN at 298 K.



**Figure S31.** Fitting binding isotherms of macrocycle **2** with TBAHSO<sub>4</sub> in CD<sub>3</sub>CN at 298 K, showing chemical shift changes of the proton H<sup>b</sup> based on a 1:1 binding model ( $K_a = 41 \text{ M}^{-1}$ ).



**Figure S32.** Stack plot of <sup>1</sup>H NMR titration of macrocycle **2** (1.6 mM) with TBACl in CD<sub>3</sub>CN at 298 K.



**Figure S33.** Fitting binding isotherms of macrocycle **2** with TBACl in CD<sub>3</sub>CN at 298 K, showing chemical shift changes of the proton H<sup>b</sup> based on a 1:1 binding model ( $K_a = 334 \text{ M}^{-1}$ ).



**Figure S34.** Stack plot of <sup>1</sup>H NMR titration of macrocycle **2** (1.6 mM) with TBABr in CD<sub>3</sub>CN at 298 K ( $K_a < 10 \text{ M}^{-1}$ ).



**Figure S35.** Fitting binding isotherms of macrocycle **2** with TBABr in CD<sub>3</sub>CN at 298 K, showing chemical shift changes of the proton H<sup>b</sup> based on a 1:1 binding model ( $K_a = 7 \text{ M}^{-1}$ ).



**Figure S36.** Stack plot of <sup>1</sup>H NMR titration of macrocycle **2** (1.6 mM) with TBANO<sub>3</sub> in CD<sub>3</sub>CN at 298 K ( $K_a < 10 \text{ M}^{-1}$ ).



**Figure S37.** Stack plot of <sup>1</sup>H NMR titration of macrocycle **2** (1.6 mM) with  $\text{TBAClO}_4$  in  $\text{CD}_3\text{CN}$  at 298 K (no binding).

# 3. UV-vis titration studies



Figure S38. UV-vis titration of macrocycle 1 (20  $\mu$ M) with strong base TBAOH (0~17.3 equiv) in CH<sub>3</sub>CN.



**Figure S39.** UV-vis spectral changes of macrocycle **2** (20  $\mu$ M) in CH<sub>3</sub>CN upon addition of TBAF (0~ 63 equiv).



**Figure S40.** A 1:1 non-linear curve fitting of the absorbance at 322 nm of macrocycle **2** against the added  $F^-$  ( $K_a = 12885 \text{ M}^{-1}$ ).

# 4. Cartesian coordinates

B3LYP/6-311++G(d,p) Energy: -347.934691 Hartree

Num. Imaginary Frequencies: 0

Cartesian Coordinates (Angstroms) for the Optimized Structures of the  $1/{\rm F}^{\rm -}$  Complex in Acetonitrile

| С | 3.232786  | -2.476024 | -0.218567 |
|---|-----------|-----------|-----------|
| С | 2.001376  | -3.116263 | -0.012446 |
| С | 0.809406  | -2.415527 | 0.200390  |
| С | 0.831854  | -1.015368 | 0.180691  |
| С | 2.078187  | -0.355270 | 0.002293  |
| С | 3.252635  | -1.076205 | -0.189907 |
| Ν | -0.184925 | -0.074612 | 0.272676  |
| С | 0.388796  | 1.181441  | 0.191466  |
| С | 1.795709  | 1.067476  | 0.061668  |
| С | -0.192709 | 2.458765  | 0.177533  |
| С | 0.643085  | 3.580591  | 0.173258  |
| С | 2.042979  | 3.480346  | 0.131767  |
| С | 2.603281  | 2.201323  | 0.028569  |
| С | 2.955631  | 4.721321  | 0.154678  |
| С | 3.903521  | 4.632392  | 1.373866  |
| С | 2.156843  | 6.032958  | 0.262789  |
| С | 3.794573  | 4.772230  | -1.143546 |
| С | 4.537114  | -3.259347 | -0.460639 |
| С | 5.129324  | -2.858568 | -1.832188 |
| С | 4.314345  | -4.782681 | -0.461368 |
| С | 5.554006  | -2.920798 | 0.654533  |
| S | -0.605891 | -3.437587 | 0.691721  |
| S | -1.883558 | 2.787235  | -0.355459 |
| С | -3.856954 | -1.754182 | -0.863602 |
| С | -5.153692 | -2.256727 | -0.745948 |
| С | -6.198219 | -1.391816 | -0.409987 |
| С | -5.941886 | -0.051120 | -0.119144 |
| С | -4.644594 | 0.461373  | -0.234260 |
| С | -3.637583 | -0.391056 | -0.672937 |
| С | -2.634168 | -2.635854 | -0.985925 |
| С | -4.317862 | 1.877844  | 0.214308  |
| Ν | -2.039618 | -2.700107 | 0.377345  |
| Ν | -2.929631 | 2.049513  | 0.716903  |
| 0 | -2.121254 | 4.239547  | -0.274260 |
| 0 | -2.018899 | 2.211854  | -1.712382 |
| 0 | -0.548586 | -4.663857 | -0.118062 |
| 0 | -0.531003 | -3.559228 | 2.156790  |
| Н | -2.634543 | -0.012363 | -0.797700 |

| Н | 1.950590  | -4.195490 | -0.010121 |
|---|-----------|-----------|-----------|
| Н | 4.184552  | -0.539459 | -0.324749 |
| Н | -1.031944 | -0.223178 | 0.883528  |
| Н | 0.167461  | 4.549844  | 0.158958  |
| Н | 3.676325  | 2.081812  | -0.066738 |
| Н | 4.531442  | 3.738962  | 1.335508  |
| Н | 3.335486  | 4.605841  | 2.308128  |
| Н | 4.564113  | 5.504190  | 1.402017  |
| Н | 1.496007  | 6.181383  | -0.595655 |
| Н | 1.552073  | 6.068062  | 1.173217  |
| Н | 2.849959  | 6.877638  | 0.293919  |
| Н | 4.424879  | 3.886964  | -1.256640 |
| Н | 4.450119  | 5.648219  | -1.133604 |
| Н | 3.147956  | 4.841288  | -2.022858 |
| Н | 4.432143  | -3.093700 | -2.641436 |
| Н | 5.355295  | -1.790711 | -1.881015 |
| Н | 6.059403  | -3.405183 | -2.014979 |
| Н | 3.622126  | -5.093590 | -1.248790 |
| Н | 3.928385  | -5.139940 | 0.497317  |
| Н | 5.266810  | -5.287929 | -0.641429 |
| Н | 6.488020  | -3.466757 | 0.490789  |
| Н | 5.791481  | -1.854573 | 0.678646  |
| Н | 5.163311  | -3.202077 | 1.636562  |
| Н | -5.345734 | -3.315255 | -0.885349 |
| Н | -7.208249 | -1.776249 | -0.321970 |
| Н | -6.750032 | 0.588060  | 0.222524  |
| Н | -1.927246 | -2.213095 | -1.707849 |
| Н | -2.892118 | -3.645784 | -1.303799 |
| Н | -4.490730 | 2.596190  | -0.591611 |
| Н | -4.993922 | 2.160682  | 1.024332  |
| Н | -2.206376 | -1.883446 | 0.990880  |
| Н | -2.561708 | 1.199493  | 1.188788  |
| F | -2.157075 | -0.333536 | 1.894640  |

5. Original Spectral Files of Macrocyles 1 and 2



Figure S42. <sup>1</sup>H NMR spectrum of macrocycle 1 in CD<sub>3</sub>CN (D<sub>2</sub>O exchange) at 298 K.



**Figure S44.** <sup>1</sup>H NMR spectrum of macrocycle **1** in DMSO-*d*<sub>6</sub> (D<sub>2</sub>O exchange) at 298 K.



Figure S46. HRMS-ESI spectrum of macrocycle 1.



Figure S47. <sup>1</sup>H NMR spectrum of macrocycle 2 in CD<sub>3</sub>CN at 298 K.



Figure S48. <sup>1</sup>H NMR spectrum of macrocycle 2 in CD<sub>3</sub>CN (D<sub>2</sub>O exchange) at 298 K.



Figure S49. <sup>1</sup>H NMR spectrum of macrocycle 2 in DMSO-*d*<sub>6</sub> at 298 K.



**Figure S50.** <sup>1</sup>H NMR spectrum of compound **2** in DMSO-*d*<sub>6</sub> (D<sub>2</sub>O exchange) at 298 K.



**Figure S51.** <sup>13</sup>C NMR spectrum of macrocycle **2** in DMSO- $d_6$  at 298 K.



Figure S52. HRMS-ESI spectrum of macrocycle 2.