Supporting Information

Comparison of the photocatalytic activity of novel hybrid photocatalysts based on phthalocyanines, subphthalocyanines and porphyrins immobilized onto nanoporous gold

David Steinebrunner,^[a,b] Günter Schnurpfeil,^[c] Jan Thayssen,^[a,b,d] Jorge Adrian

Tapia Burgos,^[a,b] Andre Wichmann,^[a] Dieter Wöhrle,^{*[c]} and Arne Wittstock^{*[a,b]}

^a Institute of Applied and Physical Chemistry and Center for Environmental Research and Sustainable Technology, University Bremen, Leobener Str. UFT, 28359 Bremen, Germany.

^b MAPEX Center for Materials and Processes, University Bremen, Bibliothekstr. 1, 28359 Bremen, Germany.

^c Organic and Macromolecular Chemistry, University Bremen, Leobener Str. NW2, 28359 Bremen, Germany.

^d Institute for Organic and Analytical Chemistry, University Bremen, Leobener Str. UFT, 28359 Bremen, Germany.

ESI-1 Determination of immobilized photosensitizer on npAu:

For the determination of the quantity of immobilized photosensitizer, 10 mg of the as prepared hybrid material was dissolved in ultra pure *aqua regia* (2 mL) and subjected to ICP-MS measurements. The quantities of the immobilized photosensitzers were then calculated from the concentrations of the central ion (Zn or B, Table S1) determined by ICP-MS. From the obtained amounts, the fractions of irradiated photosensitizer were calculated according to a literature procedure based on the penetration depth of visible light into the npAu material of 300 nm (Table S1).^[1]

The amounts of irradiated photosensitzer were used for further quantification of the photocatalytic activites by calculation of the corresponding turnover numbers (TON, [converted DPF] (mol) / [irradiated photosensitizer] (mol)) and turnover frequencies (TOF, slope of the plot TON vs. reaction time (min⁻¹)).

Table. S1: Overview over the different hybrid systems prepared by immobilization of the photosensitizer onto npAu. Hybrid – abbreviation used in the text for the corresponding hybrid system, Sensitizer_{npAu} – immobilized sensitizer content given as $\mu g/g$ hybrid catalyst as determined by ICP-MS measurements, and Sensitizer_{Irr.} – determined photosensitizer amount immobilized on npAu and irradiated during the photocatalytic measurements.

Hybrid (Sensitizer on npAu):	H1 (ZnPc-3)	H2 (ZnPc-6)	H3 (ZnTPP-3)	H6 (ZnTPP-6)	H7 (BsubPc-3)	H8 (BsubPc-6)	H9 (BsubPc-11)
Sensitizer _{npAu} [µg/g]:	165.9	156.7	100.7	117.6	601.1	406.2	394.3
Sensitizer _{Irr.} [mol]:	1.5 x 10 ⁻¹⁰	1.4 x 10 ⁻¹⁰	1.0 x 10 ⁻¹⁰	1.1 x 10 ⁻¹⁰	5.5 x 10 ⁻¹⁰	3.7 x 10 ⁻¹⁰	3.6 x 10 ⁻¹⁰

ESI-2 Supplementary data for the photooxidation of DPF with ZnPc-3

Fig. S1: UV-Vis spectra for the photooxidation of DPF with (a) **H1** as hybrid photocatalyst or (b) the photosensitizer ZnPc-3 ($\mathbf{1}$, 1×10^{-10} mol) in solution.

ESI-3 Supplementary data for the photooxidation of DPF with ZnPc-6

Fig. S2: UV-Vis spectra for the photooxidation of DPF with (a) **H2** as hybrid photocatalyst or (b) the photosensitizer ZnPc-6 (2, 1x10⁻¹⁰ mol) in solution.

Fig. S3: UV-Vis spectra for the photooxidation of DPF with (a) **H3** as hybrid photocatalyst or (b) the photosensitizer ZnTPP-3 (**3**, $1x10^{-10}$ mol) in solution.

ESI-5 Supplementary data for the photooxidation of DPF with H₂TPP-6

Fig. S4: UV-Vis spectra for the photooxidation of DPF with (a) **H4** as hybrid photocatalyst or (b) the photosensitizer H_2 TPP-6 (**4**, 1x10⁻¹⁰ mol) in solution.

Fig. S5: UV-Vis spectra for the photooxidation of DPF with (a) **H5** as hybrid photocatalyst or (b) the photosensitizer MgTPP-6 (**5**, 1×10^{-10} mol) in solution.

ESI-7 Supplementary data for the photooxidation of DPF with ZnTPP-6

Fig. S6: UV-Vis spectra for the photooxidation of DPF with (a) **H6** as hybrid photocatalyst or (b) the photosensitizer ZnTPP-6 (**6**, 1×10^{-10} mol) in solution.

Fig. S7: UV-Vis spectra for the photooxidation of DPF with (a) **H7** as hybrid photocatalyst or (b) the photosensitizer BsubPc-3 (**7**, $1x10^{-10}$ mol) in solution.

ESI-9 Supplementary data for the photooxidation of DPF with BsubPc-6

Fig. S8: UV-Vis spectra for the photooxidation of DPF with (a) **H8** as hybrid photocatalyst or (b) the photosensitizer BsubPc-6 (**8**, $1x10^{-10}$ mol) in solution.

ESI-10 Supplementary data for the photooxidation of DPF with BsubPc-11

Fig. S9: UV-Vis spectra for the photooxidation of DPF with (a) **H9** as hybrid photocatalyst or (b) the photosensitizer BsubPc-11 (**9**, $1x10^{-10}$ mol) in solution.

References:

 D. Steinebrunner, G. Schnurpfeil, A. Wichmann, D. Wöhrle and A. Wittstock, Synergistic Effect in Zinc Phthalocyanine – Nanoporous Gold Hybrid Materials for Enhanced Photocatalytic Oxidations, *Catalysts*, 2019, 9, 555.