A biocompatible polypyrrole membrane for biomedical applications

Shujun Cui, ^(D) ^{abc} Jifu Mao,^d Mahmoud Rouabhia, ^(D) ^a Saïd Elkoun^e and Ze Zhang ^(D) *^{bc}

^aResearch Group on Oral Ecology, Faculty of Dentistry, Université Laval, Québec (QC), Canada ^bDepartement of Surgery, Faculty of Medicine, Université Laval, Québec (QC), Canada ^cDivision of Regenerative Medicine, Research Center of CHU-Université Laval, Québec (QC), Canada ^dKey Laboratory of Textile Science & Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai, China

^eDepartment of Mechanical Engineering, Université de Sherbrooke, Sherbrooke (QC), Canada

E-mail: <u>Ze.Zhang@chg.ulaval.ca</u>; <u>Mahmoud.rouabhia@fmd.ulaval.ca</u>

Fig. S1. SEM of the original PPy membrane (A, B, C) and the reinforced PPy membrane (D, E, F). A: nanotube side; B: bubble side; C: cross section (C); D: the good attachment of the compliant PU fibers to the PPy; E: the straight PLLA fibers detached from the membrane; and F: the integration of the composite fibers to the PPy surface (F).

Fig. S2. Usability test of the PU/PLLA strengthened PPy membranes in comparison with the non-reinforced membranes, showing the intact reinforced membranes (2nd and 4th rows) and the broken non-reinforced membranes (1st and 3rd rows). A: Membranes assembled in the home-made cell culture device; B: Membranes disassembled from the cell culture device; C: Reverse side of the membranes. The white appearance of the 2 membranes in column C is because of the electrospun fibres.

Fig. S3. XPS survey spectrum of PPy membrane before (PPy) and after wash (wPPy).