Determination of biogenic amines in alcoholic beverages using a

novel fluorogenic compound as derivatizing reagent

Fangfang Zhu,^{#a} Honglong Liu,^{#a} Wenqing Zhang,^a Chuanyuan Du,^a Hao Zhu,^a Xiaodi Du,^a Xiaosong Hu,^{*a} and Yawei Lin^{*a}

[#]These authors contributed equally.

*Email: <u>xhu@whut.edu.cn</u> (X. Hu), <u>linyawei2012@whut.edu.cn</u> (Y. Lin)

^a Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 430070 Wuhan, China

Fig. S2 ¹³C NMR of compound **1** (126 MHz, CDCl₃).

Fig. S3 compound 1 high resolution mass spectrometry. Calculated: m/z = 416.8843, found: m/z =

Fig. S4 1 H NMR of compound 2 (500 MHz, CDCl₃).

Fig. S5 ¹³C NMR of compound 2 (126 MHz, CDCl₃).

Fig. S6 compound 2 high resolution mass spectrometry. Calculated: m/z = 430.8999, found: m/z = 1000

430.9007, [M+H]⁺.

Fig. S7 ¹H NMR of compound 3 (500 MHz, DMSO-*d*6).

Fig. S9 compound 3 high resolution mass spectrometry. Calculated: m/z = 383.2006, found: m/z = m/z = 383.2006

383.2032, [M+H] ⁺.

Fig. S10 ¹H NMR of compound **4** (500 MHz, DMSO-*d*6).

Fig. S11 ¹³C NMR of compound 4 (126 MHz, DMSO-d6).

Fig. S12 compound 4 high resolution mass spectrometry. Calculated: m/z =469.2010, found: m/z= 469.2020, [M+H]⁺.

Fig. S15 BSMAD high resolution mass spectrometry. Calculated: m/z = 573.1764, found: m/z =

573.1764, [M+H] +.

Fig. S16 fluorescence excitation and emission spectra of derivative products (HIM-BSMAD, TYM-BSMAD, PUT-BSMAD, CAD-BSMAD, PEA-BSMAD), λ ex = 310nm, λ Em = 405nm.

Fig. S17 HIM-BSMAD high resolution mass spectrometry Calculated: m/z = 636.2527, found: m/z = 636.2505, $[M+H]^+$.

Fig. S18 TYM-BSMAD high resolution mass spectrometry. Calculated: m/z = 662.2571, found: m/z = 662.2571, [M+H]⁺.

Fig. S19 PUT-BSMAD high resolution mass spectrometry. Calculated: m/z = 613.2571, found: m/z = 613.2571, $[M+H]^+$.

Fig. S20 CAD-BSMAD high resolution mass spectrometry. Calculated: m/z = 627.2887, found: m/z

= 627.2885, [M+H]⁺.

Fig. S21 TRM-BSMAD high resolution mass spectrometry. Calculated: m/z = 685.2731, found: m/z = 685.2731, [M+H]⁺.

Fig. S22 PEA-BSMAD high resolution mass spectrometry. Calculated: m/z = 646.2622, found: m/z= 646.2621, [M+H]⁺.

Fig. S23 Stability of amine derivatives