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A Fractional Coordinates

Table S1: Fractional coordinates for (CH3NH3)SnF3 with Pnma symmetry.

Elements
Fractional Coordinates (Å) 

x y z

H 0.064 0.388 0.847
H 0.963 0.343 0.159
H 0.837 0.250 0.882
H 0.204 0.250 0.127
C 0.034 0.250 0.102
N 0.996 0.250 0.906
F 0.278 0.971 0.274
F 0.044 0.250 0.513

Sn 1.000 0.000 0.500

Table S2: Fractional coordinates for (CH3NH3)SnCl3 with Pnma symmetry.

Elements
Fractional Coordinates (Å) 

x y z

H 0.524 0.324 0.851
H 0.481 0.329 0.137
H 0.339 0.250 0.902
H 0.678 0.250 0.083
C 0.533 0.250 0.079
N 0.476 0.250 0.910
Cl 0.787 0.975 0.281
Cl 0.540 0.250 0.496
Sn 0.500 0.000 0.500

Table S3: Fractional coordinates for (CH3NH3)SnBr3 with Pnma symmetry.

Elements
Fractional Coordinates (Å)

 x y z

H 0.010 0.321 0.851
H 0.984 0.326 0.127
H 0.837 0.250 0.907
H 0.169 0.250 0.067
C 0.031 0.250 0.070
N 0.967 0.250 0.909

Br 0.291 0.976 0.284

2



Br 0.037 0.250 0.490
Sn 1.000 0.000 0.500

Table S4: Fractional coordinates for (CH3NH3)SnI3 with Pnma symmetry.

Elements
Fractional Coordinates (Å) 

x y z

H 0.998 0.316 0.855
H 0.989 0.321 0.119
H 0.839 0.250 0.916
H 0.158 0.250 0.053
C 0.029 0.250 0.062
N 0.961 0.250 0.912
I 0.298 0.978 0.292
I 0.034 0.250 0.485

Sn 1.000 0.000 0.500

Table S5: Fractional coordinates for (CH3NH3)PbF3 with Pnma symmetry.

Elements
Fractional Coordinates (˚A) 

x y z

H 0.058 0.336 0.847
H 0.971 0.341 0.158
H 0.832 0.250 0.890
H 0.209 0.250 0.118
C 0.040 0.250 0.099
N 0.993 0.250 0.907
F 0.290 0.970 0.280
F 0.052 0.250 0.512

Pb 1.000 0.000 0.500

Table S6: Fractional coordinates for (CH3NH3)PbBr3 with Pnma symmetry.

Elements
Fractional Coordinates (Å) x

y z

H 0.509 0.320 0.854
H 0.484 0.324 0.127
H 0.336 0.250 0.911
H 0.667 0.250 0.067
C 0.530 0.250 0.070
N 0.466 0.250 0.912
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Br 0.801 0.973 0.292
Br 0.542 0.250 0.489
Pb 0.500 0.000 0.500

Table S7: Fractional coordinates for (CH3NH3)PbI3 with Pnma symmetry.

Elements
Fractional Coordinates (Å)

x y z

H 0.998 0.315 0.858
H 0.991 0.320 0.119
H 0.840 0.250 0.920
H 0.158 0.250 0.053
C 0.030 0.250 0.062
N 0.961 0.250 0.915
I 0.310 0.975 0.301
I 0.040 0.250 0.485

Pb 1.000 0.000 0.500

Table S8: The optimized atomic coordinates and energies of AX and BX2 (B=Sn, Pb; X= F, 
Cl, Br, I),.

Material Spacegroup Lattice Constant (Å)
A B  C

Volume (
)Å3

Energy 

(
𝑒𝑉

𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛
)

(MA)F Pbcm 4.5839 4.6717 6.9091 145.4501 -45.03644
(MA)Cl Pbcm 5.4988 5.3658 7.7566 227.3162 -43.53056
(MA)Br Pbcm 5.7145 5.5862 8.0935 256.785 -42.96261

(MA)I Pbcm 6.0111 5.9031 8.5252 301.5837 -42.33157
SnF2 Pnma 4.5356 4.9523 11.0505 248.2138 -14.22044

SnCl2 Pnma 5.6740 5.8095 13.3720 440.7834 -10.51250
SnBr2 Pnma 5.9604 5.9668 13.2283 470.4643 -9.44487

SnI2 Pnma 6.3696 6.3693 13.4606 546.0927 -8.36619
PbF2 Pnma 4.7428 4.6413 12.0883 266.0966 -14.18718

PbCl2 Pnma 5.7308 5.7328 13.8380 454.6211 -10.68565
PbBr2 Pnma 6.0520 6.0544 13.9399 510.7766 -9.60245

PbI2 Pnma 6.4909 6.4943 13.9981 590.0778 -8.46915

B Bulk-Modulus
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Figure S1: Energy versus volume for (CH3NH3)SnX3 (X=F, Cl, Br, I) 
perovskites.

C Band-structure and Density of States

(a) (b)
Fig. S2: The calculated electronic structural properties for (MA)SnF3: (a) band structure; (b) total 
and partial density of states.
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(a) (b)
Fig. S3: The calculated electronic structural properties for (MA)SnCl3: (a) band structure; (b) total 
and partial density of states.

(a) (b)
Fig. S4: The calculated electronic structural properties for (MA)SnBr3: (a) band structure; (b) total 
and partial density of states.

6



(a)   
(b)

Fig. S5: The calculated electronic structural properties for (MA)SnI3: (a) band structure; (b) total 
and partial density of states.

(a) (b)
Fig. S6: The calculated electronic structural properties for (MA)PbF3: (a) band structure; (b) total 
and partial density of states.
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(a)   
(b)

Fig. S7: The calculated electronic structural properties for (MA)PbBr3: (a) band structure; (b) total 
and partial density of states.

(a)  
(b)

Fig. S8: The calculated electronic structural properties for (MA)PbI3: (a) band structure; (b) total 
and partial density of states.
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(a)  
(b)

Fig. S9: The calculated electronic structural properties for (MA)PbCl3: (a) band structure; (b) total 
and partial density of states.  Here, non-SOC calculations are presented for comparison with Figure 
3 from the main document.

D Optics

D.1 Theory
To study the optical properties, the frequency-dependent dielectric matrix in the long wavelength 

limit (q0) can be calculated using the sum over states approach.1 The formula for the imaginary part 

of the dielectric constant is a 3x3 Cartesian tensor

 (1)
𝜀𝛼𝛽

2 (𝜔) =
4𝜋2𝑒2

Ω
lim
𝑞→0

1

𝑞2∑
𝑐,𝑣,𝑘

2𝜔𝑘𝛿(𝜖𝑐𝑘 ‒ 𝜖𝑣𝑘 ‒ 𝜔) ×< 𝑢𝑐𝑘 + 𝑒𝛼𝑞|𝑢𝑣𝑘 >< 𝑢𝑐𝑘 + 𝑒𝛽𝑞|𝑢𝑣𝑘 > ∗

where the indices c and υ correspond to the conduction and valence band states, respectively and ucκ is 

the periodic part of the orbitals at the k-point κ. The vector eα are unit vectors for the three Cartesian 

directions. α and β refer to axis x, y, z. The real part of the dielectric constant tensor can be derived from 

the imaginary part using Kramers-Kronig relations:

(2)
𝜀𝛼𝛽

1 (𝜔) = 1 +
2
𝜋

𝑃
∞

∫
0

𝜀𝛼𝛽
2 (𝜔')𝜔'

𝜔'2 ‒ 𝜔2
𝑑𝜔'

where P denotes the principal value. The real part of the optical conductivity (σ(ω)) is defined as 

(3)
𝜎1(𝜔) = 𝑅𝑒[𝜎(𝜔)] =

𝜔
4𝜋

𝜀2(𝜔)
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where σ(ω) and ω are in the cgs unit of sec-1. The cgs conductivity is 9×1011 times larger than the SI 

conductivity unit (Siemens/cm) which in the form of  where ω is in the unit of cm-1. The 
𝜎1(𝜔) =

𝜀2(𝜔) ∙ 𝜔

60

corresponding imaginary part of σ(ω) in SI unit is 2

(4)
𝜎2(𝜔) =‒

𝜔(𝜀1(𝜔) ‒ 1)

60

The complex dielectric constant can be expressed as:

(5)
𝜀(𝜔) = 𝜀1(𝜔) + 𝑖𝜀2(𝜔) =

4𝜋𝑖
𝜔

𝜎(𝜔) = (�̃� + 𝑖�̃�)2

where  are the index of refraction and the extinction coefficient respectively, and can be evaluated �̃� 𝑎𝑛𝑑 �̃�

by the calculated dielectric constants from equations (1) and (2). 

(6)
�̃� =

1
2

(𝜀1 + (𝜀2
1 + 𝜀2

2)
1
2)

1
2

(7)
�̃� =

1
2

( ‒ 𝜀1 + (𝜀2
1 + 𝜀2

2)
1
2)

1
2

In the case of normal incidence, the reflectivity R and the absorption coefficient α (sec-1 in cgs unit) in 

terms of  are defined as 2�̃� 𝑎𝑛𝑑 �̃�

(8)
𝑅 =

(�̃� ‒ 1)2 + �̃�

(�̃� + 1)2 + �̃�

(9)
𝛼 =

2𝜔�̃�
𝑐

In SI unit, ω and α are in cm-1, α=4πω . In all cases, both the low frequency region ωτ≪1 (τ is the �̃�

relaxation time) and the high frequency region ωτ≫1 are extensively studied to analyze the exact ground 

state of the material as these two regions carry the signatures of two distinct mechanisms associated 

with optical conductivity within a solid. While the low frequency region is dominated by free carriers 

which are in abundance in a metal, the high frequency region is dominated by inter-band electronic 

transitions typical of a dielectric material. As in the limit ωτ≪1, both  become sufficiently large, �̃� 𝑎𝑛𝑑 �̃�

for example, in a metallic conductor, 

(10)
𝑅 = 1 ‒

2
�̃�

→1

which means that the conductor is characterized by its behavior as a perfect reflector with an exceedingly 

large absorption coefficient in the low frequency region.
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D.2 Halogen Comparisons

(a)  
(b)

Figure S10: Real (a) and imaginary (b) dielectric constants for (CH3NH3)PbX3 ( X=F, Cl, Br, I) 
perovskites.

(a) (b)

Figure S11. The calculated dielectric matrix (without SOC) of (MA)SnX3 perovskites by taking the 

average of diagonal elements ( , , ). (a) Real part , (b) Imaginary part .  Here, non-SOC 𝜀𝑥𝑥
 𝜀𝑦𝑦

 𝜀𝑧𝑧
 𝜀1 𝜀2

calculations are presented for comparison with Figure 5 from the main document.
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Figure S12: Absorption coefficients for (CH3NH3)PbX3 (X=F, Cl, Br, I) 
perovskites.

(a) (b)
Fig. S13 The calculated optical conductivities of (a) (MA)PbX3; (b) (MA)SnX3.
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(a) (b)
Fig. S14 The calculated index of refraction (n) and the extinction coefficient (k) of (a) 

(MA)PbX3; (b) (MA)SnX3.

(a) (b)
Fig. S15 The calculated reflectivity (R) of (a) (MA)PbX3; (b) (MA)SnX3.
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D.3 Metal Comparisons

(a) (b)

(c)
Fig. S16 Comparison of Absorption coefficients of (a) (MA)BF3; (b) (MA)BBr3; and (c) (MA)BI3.
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(a) (b)

(c) (d)

Fig.S17. Comparison of optical conductivity: (a) (MA)BF3; (b) (MA)BCl3; (c) (MA)BBr3; (d) 
(MA)BI3.
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(a) (b)

(c) (d)

Fig.S18. Comparison of index of refraction (n) and the extinction coefficient (k): (a) (MA)BF3; 
(b) (MA)BCl3; (c) (MA)BBr3; (d) (MA)BI3.
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(a) (b)

(c) (d)

Fig.S19. Comparison of reflectivity (R): (a) (MA)BF3; (b) (MA)BCl3; (c) (MA)BBr3; (d) 
(MA)BI3.
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