Electronic and Optical Properties of Orthorhombic $\left(\mathbf{C H}_{3} \mathbf{N H}_{3}\right) \mathbf{B X}_{3}$ ($\mathrm{B}=\mathrm{Sn}, \mathrm{Pb} ; \mathbf{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ Perovskites: a First-Principles Investigation

Sean Nations ${ }^{1,2}$, Ting Jia ${ }^{1}$, Shengnian Wang ${ }^{2}$, Yuhua Duan ${ }^{1 *}$
${ }^{1}$ National Energy Technology Laboratory, United States Department of Energy, Pittsburgh, Pennsylvania 15236, USA
${ }^{2}$ Chemical Engineering Department, Louisiana Tech University, Ruston, Louisiana 71272, USA

Supplementary Materials

Contents

Tables S1-S7. The optimized atomic coordinates of (MA) $\mathrm{BX}_{3}(\mathrm{~B}=\mathrm{Sn}, \mathrm{Pb} ; \mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I})$
Table S8. The optimized atomic coordinates and energies of AX and $\mathrm{BX} \mathrm{X}_{2}(\mathrm{~B}=\mathrm{Sn}, \mathrm{Pb} ; \mathrm{X}=$
F, Cl, Br, I)
Fig. S2-9. The calculated electronic structural properties for (MA)BX ${ }_{3}$. Figure S95-9 includes non- SOC calculations for (MA) PbX 3 for comparison.
Theory of Optical Properties Calculations 9-10
Fig. S10. The calculated dielectric matrix of (MA) PbX_{3} perovskites (halogen 11

comparisons)

Fig. S11. The calculated dielectric matrix (without SOC) of (MA) SnX_{3} perovskites by

Fig. S12. The calculated absorption coefficient (α) of (MA) $\mathrm{PbX}_{3}(\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ versus frequency in wavelength (halogen comparisons)
Fig. S13. The calculated optical conductivities for $P b$ and $S n$ perovskites (halogen comparisons)
Fig. S14. The calculated index of refraction (n) and extinction coefficient (k) for Pb and Sn perovskites (halogen comparisons)
Fig. S15. The calculated reflectivity for $P b$ and $S n$ perovskites (halogen comparisons)13

Fig. S16. The calculated absorption coefficient (α) of (MA) $\mathrm{PbX}_{3}(\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ versus 14
frequency in wavelength (metal comparisons)
Fig. S17. The calculated optical conductivities for Pb and Sn perovskites (halogen comparisons)
Fig. S18. The calculated index of refraction and extinction coefficient for $P b$ and Sn perovskites (metal comparisons)
Fig. S19. The calculated reflectivity for $P b$ and Sn perovskites (metal comparisons)
Reference

[^0]
A Fractional Coordinates

Table S1: Fractional coordinates for $\left(\mathrm{CH}_{3} \mathrm{NH}_{3}\right) \mathrm{SnF}_{3}$ with Pnma symmetry.

Elements	Fractional Coordinates $(\AA \AA)$		
	x	y	z
H	0.064	0.388	0.847
H	0.963	0.343	0.159
H	0.837	0.250	0.882
H	0.204	0.250	0.127
C	0.034	0.250	0.102
N	0.996	0.250	0.906
F	0.278	0.971	0.274
F	0.044	0.250	0.513
$S n$	1.000	0.000	0.500

Table S2: Fractional coordinates for $\left(\mathrm{CH}_{3} \mathrm{NH}_{3}\right) \mathrm{SnCl}_{3}$ with Pnma symmetry.

Elements	Fractional Coordinates (\AA)		
	x	y	Z
H	0.524	0.324	0.851
H	0.481	0.329	0.137
H	0.339	0.250	0.902
H	0.678	0.250	0.083
C	0.533	0.250	0.079
N	0.476	0.250	0.910
$C l$	0.787	0.975	0.281
$C l$	0.540	0.250	0.496
$S n$	0.500	0.000	0.500

Table S3: Fractional coordinates for $\left(\mathrm{CH}_{3} \mathrm{NH}_{3}\right) \mathrm{SnBr}_{3}$ with Pnma symmetry.

Elements	Fractional Coordinates (\AA)		
	x	y	z
H	0.010	0.321	0.851
H	0.984	0.326	0.127
H	0.837	0.250	0.907
H	0.169	0.250	0.067
C	0.031	0.250	0.070
N	0.967	0.250	0.909
$B r$	0.291	0.976	0.284

$B r$	0.037	0.250	0.490
$S n$	1.000	0.000	0.500

Table S4: Fractional coordinates for $\left(\mathrm{CH}_{3} \mathrm{NH}_{3}\right) \mathrm{SnI}_{3}$ with Pnma symmetry.

Elements	Fractional Coordinates (\AA)		
	x	y	z
H	0.998	0.316	0.855
H	0.989	0.321	0.119
H	0.839	0.250	0.916
H	0.158	0.250	0.053
C	0.029	0.250	0.062
N	0.961	0.250	0.912
I	0.298	0.978	0.292
I	0.034	0.250	0.485
$S n$	1.000	0.000	0.500

Table S5: Fractional coordinates for $\left(\mathrm{CH}_{3} \mathrm{NH}_{3}\right) \mathrm{PbF}_{3}$ with Pnma symmetry.

Elements	Fractional Coordinates $\left({ }^{\circ} \mathrm{A}\right)$		
	x	y	z
H	0.058	0.336	0.847
H	0.971	0.341	0.158
H	0.832	0.250	0.890
H	0.209	0.250	0.118
C	0.040	0.250	0.099
N	0.993	0.250	0.907
F	0.290	0.970	0.280
F	0.052	0.250	0.512
$P b$	1.000	0.000	0.500

Table S6: Fractional coordinates for $\left(\mathrm{CH}_{3} \mathrm{NH}_{3}\right) \mathrm{PbBr}_{3}$ with Pnma symmetry.

Elements	Fractional Coordinates $(\AA) x$		
	y		
H	0.509	0.320	0.854
H	0.484	0.324	0.127
H	0.336	0.250	0.911
H	0.667	0.250	0.067
C	0.530	0.250	0.070
N	0.466	0.250	0.912

$B r$	0.801	0.973	0.292
$B r$	0.542	0.250	0.489
$P b$	0.500	0.000	0.500

Table S7: Fractional coordinates for $\left(\mathrm{CH}_{3} \mathrm{NH}_{3}\right) \mathrm{PbI}_{3}$ with Pnma symmetry.

Elements	Fractional Coordinates (\AA)		
	x	y	z
H	0.998	0.315	0.858
H	0.991	0.320	0.119
H	0.840	0.250	0.920
H	0.158	0.250	0.053
C	0.030	0.250	0.062
N	0.961	0.250	0.915
I	0.310	0.975	0.301
I	0.040	0.250	0.485
$P b$	1.000	0.000	0.500

Table S8: The optimized atomic coordinates and energies of AX and $\mathrm{BX}_{2}(\mathrm{~B}=\mathrm{Sn}, \mathrm{Pb} ; \mathrm{X}=\mathrm{F}$, Cl, Br, I),

Material	Spacegroup	Lattice Constant (\AA)			$\begin{aligned} & \hline \text { Volume (} \\ & \left.\AA^{3}\right) \end{aligned}$	$\begin{aligned} & \hline \hline \text { Energy } \\ & \left(\frac{\mathrm{eV}}{\text { formulation }}\right) \end{aligned}$
		A	B			
(MA)F	Pb cm	4.5839	4.6717	6.9091	145.4501	-45.03644
(MA)Cl	Pbcm	5.4988	5.3658	7.7566	227.3162	-43.53056
(MA)Br	Pbcm	5.7145	5.5862	8.0935	256.785	-42.96261
(MA)I	Pb cm	6.0111	5.9031	8.5252	301.5837	-42.33157
SnF_{2}	Pnma	4.5356	4.9523	11.0505	248.2138	-14.22044
SnCl_{2}	Pnma	5.6740	5.8095	13.3720	440.7834	-10.51250
SnBr_{2}	Pnma	5.9604	5.9668	13.2283	470.4643	-9.44487
SnI_{2}	Pnma	6.3696	6.3693	13.4606	546.0927	-8.36619
PbF_{2}	Pnma	4.7428	4.6413	12.0883	266.0966	-14.18718
PbCl_{2}	Pnma	5.7308	5.7328	13.8380	454.6211	-10.68565
PbBr_{2}	Pnma	6.0520	6.0544	13.9399	510.7766	-9.60245
PbI_{2}	Pnma	6.4909	6.4943	13.9981	590.0778	-8.46915

B Bulk-Modulus

Figure S1: Energy versus volume for $\left(\mathrm{CH}_{3} \mathrm{NH}_{3}\right) \mathrm{SnX}_{3}(\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ perovskites.

C Band-structure and Density of States

Fig. S2: The calculated electronic structural properties for (MA)SnF ${ }_{3}$: (a) band structure; (b) total and partial density of states.

Fig. S3: The calculated electronic structural properties for (MA) SnCl_{3} : (a) band structure; (b) total and partial density of states.

Fig. S4: The calculated electronic structural properties for (MA) SnBr_{3} : (a) band structure; (b) total and partial density of states.

Fig. S5: The calculated electronic structural properties for (MA) SnI_{3} : (a) band structure; (b) total and partial density of states.

Fig. S6: The calculated electronic structural properties for $(\mathrm{MA}) \mathrm{PbF}_{3}$: (a) band structure; (b) total and partial density of states.

Fig. S7: The calculated electronic structural properties for (MA) PbBr_{3} : (a) band structure; (b) total and partial density of states.

Fig. S8: The calculated electronic structural properties for (MA) PbI_{3} : (a) band structure; (b) total and partial density of states.

Fig. S9: The calculated electronic structural properties for (MA) PbCl_{3} : (a) band structure; (b) total and partial density of states. Here, non-SOC calculations are presented for comparison with Figure 3 from the main document.

D Optics

D. 1 Theory

To study the optical properties, the frequency-dependent dielectric matrix in the long wavelength limit $(\mathrm{q} \rightarrow 0)$ can be calculated using the sum over states approach. ${ }^{1}$ The formula for the imaginary part of the dielectric constant is a 3×3 Cartesian tensor
$\varepsilon_{2}^{\alpha \beta}(\omega)=\frac{4 \pi^{2} e^{2}}{\Omega} \lim _{q \rightarrow 0} \frac{1}{q^{2}} \sum_{c, v, k} 2 \omega_{k} \delta\left(\epsilon_{c k}-\epsilon_{v k}-\omega\right) \times<u_{c k+e_{\alpha} q}\left|u_{v k}><u_{c k+e_{\beta} q}\right| u_{v k}>*$
where the indices c and v correspond to the conduction and valence band states, respectively and u_{ck} is the periodic part of the orbitals at the k-point κ. The vector \mathbf{e}_{α} are unit vectors for the three Cartesian directions. α and β refer to axis x, y, z. The real part of the dielectric constant tensor can be derived from the imaginary part using Kramers-Kronig relations:

$$
\begin{equation*}
\varepsilon_{1}^{\alpha \beta}(\omega)=1+\frac{2}{\pi} P \int_{0}^{\infty} \frac{\varepsilon_{2}^{\alpha \beta}\left(\omega^{\prime}\right) \omega^{\prime}}{\omega^{\prime 2}-\omega^{2}} d \omega^{\prime} \tag{2}
\end{equation*}
$$

where P denotes the principal value. The real part of the optical conductivity $(\sigma(\omega))$ is defined as

$$
\begin{equation*}
\sigma_{1}(\omega)=\operatorname{Re}[\sigma(\omega)]=\frac{\omega}{4 \pi} \varepsilon_{2}(\omega) \tag{3}
\end{equation*}
$$

where $\sigma(\omega)$ and ω are in the cgs unit of $\sec ^{-1}$. The cgs conductivity is 9×10^{11} times larger than the SI conductivity unit (Siemens/cm) which in the form of $\sigma_{1}(\omega)=\frac{\varepsilon_{2}(\omega) \cdot \omega}{60}$ where ω is in the unit of cm^{-1}. The corresponding imaginary part of $\sigma(\omega)$ in SI unit is ${ }^{2}$

$$
\begin{equation*}
\sigma_{2}(\omega)=-\frac{\omega\left(\varepsilon_{1}(\omega)-1\right)}{60} \tag{4}
\end{equation*}
$$

The complex dielectric constant can be expressed as:

$$
\begin{equation*}
\varepsilon(\omega)=\varepsilon_{1}(\omega)+i \varepsilon_{2}(\omega)=\frac{4 \pi i}{\omega} \sigma(\omega)=(\tilde{n}+i k)^{2} \tag{5}
\end{equation*}
$$

where \tilde{n} and \tilde{k} are the index of refraction and the extinction coefficient respectively, and can be evaluated by the calculated dielectric constants from equations (1) and (2).

$$
\begin{gather*}
\tilde{n}=\frac{1}{\sqrt{2}}\left(\varepsilon_{1}+\left(\varepsilon_{1}^{2}+\varepsilon_{2}^{2}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}} \tag{6}\\
\tilde{\kappa}=\frac{1}{\sqrt{2}}\left(-\varepsilon_{1}+\left(\varepsilon_{1}^{2}+\varepsilon_{2}^{2}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}} \tag{7}
\end{gather*}
$$

In the case of normal incidence, the reflectivity R and the absorption coefficient α ($\mathrm{sec}^{-1} \mathrm{in} \mathrm{cgs}$ unit) in terms of \tilde{n} and k are defined as ${ }^{2}$

$$
\begin{align*}
& R=\frac{(\tilde{n}-1)^{2}+\mathfrak{k}}{(n+1)^{2}+\mathfrak{k}} \tag{8}\\
& \alpha=\frac{2 \omega k}{c} \tag{9}
\end{align*}
$$

In SI unit, ω and α are in $\mathrm{cm}^{-1}, \alpha=4 \pi \omega^{k}$. In all cases, both the low frequency region $\omega \tau \ll 1$ (τ is the relaxation time) and the high frequency region $\omega \tau \gg 1$ are extensively studied to analyze the exact ground state of the material as these two regions carry the signatures of two distinct mechanisms associated with optical conductivity within a solid. While the low frequency region is dominated by free carriers which are in abundance in a metal, the high frequency region is dominated by inter-band electronic transitions typical of a dielectric material. As in the limit $\omega \tau \ll 1$, both \tilde{n} and ${ }^{k}$ become sufficiently large, for example, in a metallic conductor,

$$
\begin{equation*}
R=1-\frac{2}{\tilde{n}} \rightarrow 1 \tag{10}
\end{equation*}
$$

which means that the conductor is characterized by its behavior as a perfect reflector with an exceedingly large absorption coefficient in the low frequency region.

D. 2 Halogen Comparisons

Figure S10: Real (a) and imaginary (b) dielectric constants for (CH3NH3) $\mathrm{PbX3}$ ($\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$) perovskites.

Figure S11. The calculated dielectric matrix (without SOC) of (MA) SnX_{3} perovskites by taking the average of diagonal elements $\left(\varepsilon^{x x}, \varepsilon^{y y}, \varepsilon^{z z}\right.$. (a) Real part ε_{1}, (b) Imaginary part ${ }^{\varepsilon_{2}}$. Here, non-SOC calculations are presented for comparison with Figure 5 from the main document.

Figure S12: Absorption coefficients for $\left(\mathrm{CH}_{3} \mathrm{NH}_{3}\right) \mathrm{PbX} 3$ ($\left.\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}\right)$ perovskites.

Fig. S13 The calculated optical conductivities of (a) (MA) PbX 3 ; (b) (MA) SnX_{3}.

Fig. S14 The calculated index of refraction (n) and the extinction coefficient (k) of (a) (MA) PbX_{3}; (b) (MA) SnX_{3}.

Fig. S15 The calculated reflectivity (R) of (a) (MA) PbX_{3}; (b) (MA) SnX_{3}.

D. 3 Metal Comparisons

(c)

Fig. S16 Comparison of Absorption coefficients of (a) (MA) BF_{3}; (b) (MA)BBr ${ }_{3}$; and (c) (MA)BI .

Fig.S17. Comparison of optical conductivity: (a) (MA) BF_{3}; (b) (MA) BCl_{3}; (c) (MA) BBr_{3}; (d) (MA)BI .

Fig.S18. Comparison of index of refraction (n) and the extinction coefficient (k) : (a) (MA) BF_{3}; (b) (MA) BCl_{3}; (c) (MA) BBr_{3}; (d) (MA) BI_{3}.

Fig.S19. Comparison of reflectivity (R): (a) (MA) BF_{3}; (b) (MA) BCl_{3}; (c) (MA) BBr_{3}; (d) (MA)BI ${ }_{3}$.

Reference:

1. M. Gajdos, K. Hummer, G. Kresse, J. Furthmuller and F. Bechstedt, Physical Review B, 2006, 73, 045112.
2. D. B. Tanner, in Optical Effects in Solids, Department of Physics, University of Florida, 2016.

[^0]: * Author to whom correspondence should be addressed. Tel. 412-386-5771, Fax 412-386-5990, E-mail: yuhua.duan@netl.doe.gov

