Manuscript ID: RA-ART-02-2021-001594 (Revised version)

Electronic Supplementary Information

Dual utility of a single diphosphine-ruthenium complex: a precursor for new complexes and, a pre-catalyst for transfer-hydrogenation and Oppenauer oxidation

Aparajita Mukherjee and Samaresh Bhattacharya*

Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata - 700 032, India. E-mail: samaresh b@yahoo.com; Fax: 91-33-24146223

Bond lengths (Å)							
Ru1-Cl1	2.430(7)	C7-O1	1.09(2)				
Ru1-Cl2	2.418(6)	P1-C1	1.843(18)				
Ru1-P1	2.323(6)	C1-C6	1.35(2)				
Ru1-P2	2.311(6)	P2-C2	1.811(17)				
Ru1-C7	1.878(19)	S1-C8	1.85(2)				
Ru1-S1	2.374(6)	S1-C9	1.74(2)				
		S1-O2	1.465(16)				
	Bond an	igles (°)					
C7-Ru1-Cl2	176.9(7)	P1-Ru1-P2	82.75(17)				
P1-Ru1-S1	178.1(2)	Ru1-C7-O1	177.6(18)				
P2-Ru1-Cl1	173.21(17)						

Table S1Selected bond lengths (Å) and bond angles (°) for
[Ru(dppbz)(CO)(dmso)Cl2]

Fig. S1 DFT-optimized structures of the *cis* and *trans* isomers of the [Ru(dppbz)(CO)(CH₃CN)Cl₂], and the energy difference between them.

Fig. S2 DFT-optimized structures of the *cis* and *trans* isomers of the [Ru(dppbz)(CO)(4-picoline)Cl₂], and the energy difference between them.

Fig. S3 DFT-optimized structure of [Ru(dppbz)(CO)(CH₃CN)Cl₂].

Fig. S4 DFT-optimized structure of [Ru(dppbz)(CO)(4-picoline)Cl₂].

Table S2Selected bond lengths (Å) and bond angels (°) for the DFT-optimized
structures of [Ru(dppbz)(CO)(CH_3CN)Cl_2] and [Ru(dppbz)(CO)(4-
picoline)Cl_2] complexes.

[Ru(dppbz)(CO)(CH ₃ CN)Cl ₂]	[Ru(dppbz)(CO)(4-picoline)Cl ₂]				
Bond lengths (Å)						
Ru1-Cl1	2.475	2.475 Ru1-Cl1 2.43				
Ru1-Cl2	2.506	Ru1-Cl2	2.512			
Ru1-P1	2.362	Ru1-P1	2.367			
Ru1-P2	2.494	Ru1-P2	2.523			
Ru1-N1	2.103	Ru1-N1	2.237			
Ru1-C7	1.904	Ru1-C7	1.892			
C7-O1	1.152	C7-O1	1.153			
C8-N1	1.155					
C8-C9	1.458					
	Bond	angles (°)				
Cl1-Ru1-Cl2	172.72	Cl1-Ru1-Cl2	175.61			
P1-Ru1-N1	172.52	P1-Ru1-N1	173.23			
P2-Ru1-C7	174.87	P2-Ru1-C7	174.31			
P1-Ru1-P2	80.67	P1-Ru1-P2	79.75			
Ru1-C7-O1	179.16	Ru1-C7-O1	179.22			
Ru1-N1-C8	178.27					
N1-C8-C9	179.36					

Bond lengths (Å)								
Ru1-Cl1	1.821(3)							
Ru1-P1	2.3944(6)	C1-C2	1.394(4)					
Ru1-P2	2.4042(6)	C2-P2a	1.825(3)					
	Bond angles (°)							
Cl1-Ru1-Cl1a	180.00	P2-Ru1-P2a	180.00					
P1-Ru1-P1a	180.00	P1-Ru1-P2	79.36(2)					

Table S3Selected bond lengths (Å) and bond angles (°) for $[Ru(dppbz)_2Cl_2]$.

Bond lengths (Å)							
Ru1-P1	2.2499(13)	P1-C1	1.822(5)				
Ru1-P2	2.2479(13)	C1-C2	1.384(6)				
Ru1-O1	2.099(3)	C2-P2	1.842(5)				
Ru1-O2	2.080(3)	C13-O1	1.319(6)				
Ru1-N1	2.102(4)	C22-O2	1.327(7)				
Ru1-N2	2.107(5)						
	Bond an	igles (°)					
P1-Ru1-N1	179.34(10)	P1-Ru1-P2	83.95(5)				
P2-Ru1-N2	172.27(13)	O1-Ru1-N1	79.52(13)				
01-Ru1-O2	167.65(13)	O2-Ru1-N2	79.87(16)				

Table S4Selected bond lengths (Å) and bond angles (°) for $[Ru(dppbz)(q)_2]$.

Bond lengths (Å)								
Ru1-P1	2.2505(14)	P1-C1	1.828(6)					
Ru1-P2	2.2600(14)	C1-C2	1.386(8)					
Ru1-O1	2.087(4)	C2-P2	1.829(6)					
Ru1-O3	2.083(4)	C12-O1	1.290(8)					
Ru1-N1	2.111(4)	C12-O2	1.237(9)					
Ru1-N2	2.101(4)	C18-O3	1.294(9)					
		C18-O4	1.253(8)					
	Bond an	gles (°)						
O1-Ru1-O3	167.32(14)	P1-Ru1-P2	83.83(5)					
P1-Ru1-N1	171.21(16)	O1-Ru1-N1	79.35(19)					
P2-Ru1-N2	176.19(13)	O3-Ru1-N2	78.77(17)					

Table S5Selected bond lengths (Å) and bond angles (°) for $[Ru(dppbz)(pic)_2]$.

Excited	Composition	CI value	E(eV)	Oscillator	λthan	Assignment	λ
state	Composition			strength	(nm)	i issigninent	(nm)
state				(f)	(1111)		
1	$H-18 \rightarrow L$	0.10734	3.7598	0.0217	329.76	ILCT/LLCT/MLCT	340
	_					/LMCT	
	$H-5 \rightarrow L$	0.15772				ILCT/MLCT	
						/LMCT	
	$H-3 \rightarrow L$	0.23743				LLCT/LMCT	
	$H-2 \rightarrow L$	0.49455				ILCT/LLCT/MLCT	
						/LMCT	
	$H \rightarrow L$	0.20547				LLCT/MLCT	
						/LMCT	
	$H \rightarrow L+2$	0.20566				LLCT/MLCT	
2	$H-10 \rightarrow L$	0.11599	4.2144	0.0350	294.19	ILCT/LMCT	302
	$H-4 \rightarrow L$	0.58068				ILCT/LLCT/MLCT	
						/LMCT	
	$H-3 \rightarrow L$	0.24127				LLCT/LMCT	
	$H-2 \rightarrow L$	0.15822				ILCT/LLCT/MLCT	
						/LMCT	
	$H-2 \rightarrow L+2$	0.11493				ILCT/LLCT/MLCT	
	$H \rightarrow L$	0.10291				LLCT/MLCT	
						/LMCT	
3	$H-7 \rightarrow L$	0.16237	4.6237	0.0279	268.15	ILCT/LMCT	270
	$H-4 \rightarrow L+1$	0.13737				ILCT/LLCT/MLCT	
	$H-4 \rightarrow L+2$	0.42329				ILCT/LLCT/MLCT	
	$H-3 \rightarrow L+2$	0.30880				LLCT	
	$H-2 \rightarrow L+2$	0.25224				ILCT/LLCT/MLCT	
	$H \rightarrow L+2$	0.13803				LLCT/MLCT	
	$H \rightarrow L+3$	0.15924				LLCT/MLCT/	
						LMCT	

Table S6Computed parameters from TDDFT calculations on
[Ru(dppbz)(CO)(dmso)Cl2] for electronic spectral properties in
dichloromethane solution.

Molecular	% Contribution of fragments						
orbital	Ru	dppbz	СО	dmso	Cl		
HOMO(H)	32	4	4	1	59		
H-2	16	13	2	10	59		
H-3	4	8	1	1	86		
H-4	14	56	1	20	9		
H-5	11	73	1	6	9		
H-7	6	86	0	5	3		
H-10	2	94	0	3	1		
H-18	30	39	4	4	23		
LUMO(L)	27	61	1	5	6		
L+1	7	90	0	1	2		
L+2	2	97	0	0	1		
L+3	38	41	8	5	8		

Table S7Compositions of the molecular orbitals of [Ru(dppbz)(CO)(dmso)Cl2]
associated with the electronic spectral transitions.

Fig. S5 Contour plots of selected molecular orbitals of [Ru(dppbz)(CO)(dmso)Cl₂].

Excited	Composition	CI value	E(eV)	Oscillator	λ_{theo}	Assignment	λ_{exp}
state				strength	(nm)		(nm)
				(f)			
1	$H \rightarrow L+1$	0.49036	3.6494	0.0017	339.74	LLCT/ILCT/MLCT	356
						/LMCT	
	$H \rightarrow L+2$	0.32423				LLCT/MLCT	
	$H \rightarrow L+3$	0.30759				LLCT/MLCT	
	$H \rightarrow L+13$	0.11015				LLCT/MLCT	
2	$H \rightarrow L+1$	0.11661	4.1561	0.0074	298.32	LLCT/ILCT/MLCT	316
						/LMCT	
	$H \rightarrow L+2$	0.35991				LLCT/MLCT	
	$H \rightarrow L+3$	0.52997				LLCT/MLCT	
	$H \rightarrow L+6$	0.11029				LLCT/MLCT	
	$H \rightarrow L+9$	0.11197				LLCT/MLCT	
3	$H-12 \rightarrow L$	0.10568	4.6578	0.0145	266.18	LLCT/ILCT	268
	$H-8 \rightarrow L$	0.17308				LLCT/ILCT/MLCT	
	$H-7 \rightarrow L$	0.18918				ILCT/MLCT	
	$H-5 \rightarrow L$	0.38601				LLCT/ILCT	
	$H-4 \rightarrow L$	0 37512				ILCT/MLCT	
	$H-2 \rightarrow L$	0 19336				LLCT/ILCT	
	$H \rightarrow L+5$	0.11095				LLCT/MLCT	
	1	1	1	1		1	1

Table S8Computed parameters from TDDFT calculations on
[Ru(dppbz)(CO)(CH_3CN)Cl_2] for electronic spectral properties in
dichloromethane solution.

Molecular		% Contribution of fragments							
orbital	Ru	dppbz	СО	CH ₃ CN	Cl				
HOMO(H)	47	3	0	2	48				
H-2	8	25	4	1	62				
H-4	14	78	2	2	4				
H-5	8	80	1	1	10				
H-7	19	73	2	2	4				
H-8	23	62	2	2	11				
H-12	3	84	0	1	12				
LUMO(L)	5	92	1	1	1				
L+1	43	33	1	3	20				
L+2	8	87	3	1	1				
L+3	9	87	2	1	1				
L+5	2	96	1	1	0				
L+6	4	92	2	1	1				
L+9	8	65	16	11	0				
L+13	2	12	4	82	0				

Table S9Compositions of the molecular orbitals of [Ru(dppbz)(CO)(CH₃CN)Cl₂]
associated with the electronic spectral transitions.

Fig. S6 Contour plots of selected molecular orbitals of [Ru(dppbz)(CO)(CH₃CN)Cl₂].

Excited state	Composition	CI value	E(eV)	Oscillator strength	λ_{theo} (nm)	Assignment	λ_{exp} (nm)
				(f)			
1	$H \rightarrow L+1$	0.57979	3.5210	0.0010	352.13	LLCT/MLCT	363
						/LMCT	
	$H \rightarrow L+3$	0.24482				LLCTMLCT	
	$H \rightarrow L+4$	0.18434				LLCT/MLCT	
	$H \rightarrow L+5$	0.10941				LLCT/MLCT	
	$H \rightarrow L+15$	0.12413				LLCT/MLCT	
						/LMCT	
2	$H \rightarrow L+1$	0.17324	3.9611	0.0224	313.01	LLCT/MLCT	307
						/LMCT	
	$H \rightarrow L+2$	0.65465				LLCT/MLCT	
						/LMCT	
3	$H-11 \rightarrow L$	0.15677	4.7158	0.0529	262.91	LLCT/ILCT	269
	$H-10 \rightarrow L$	0.11479				LLCT/ILCT	
	$H-8 \rightarrow L$	0.19813				LLCT/ILCT	
	$H-4 \rightarrow L+1$	0.10486				LLCT/ILCT/MLCT/	
						LMCT	
	$H-3 \rightarrow L$	0.15915				LLCT/ILCT	
	$H-2 \rightarrow L+1$	0.31018				LLCT/ILCT/MLCT/	
						LMCT	
	$H-2 \rightarrow L+3$	0.10239				LLCT/ILCT/MLCT/	
						LMCT	
	$H-1 \rightarrow L+5$	0.13393				LLCT/MLCT	
						/LMCT	
	$H-1 \rightarrow L+6$	0.28398				LLCT/MLCT	
	$H-1 \rightarrow L+7$	0.13640				LLCT/MLCT	
	$H-1 \rightarrow L+9$	0.10839				LLCT/MLCT	
	$H-1 \rightarrow L+12$	0.13624				LLCT/MLCT	
	$H \rightarrow L+8$	0 10219				LLCT/MLCT	

Table S10Computed parameters from TDDFT calculations on
[Ru(dppbz)(CO)(4-picoline)Cl2] for electronic spectral properties in
dichloromethane solution.

Molecular		% Contribution of fragments						
orbital	Ru	dppbz	СО	4-picoline	Cl			
HOMO(H)	54	3	0	2	41			
H-1	43	3	3	0	51			
H-2	18	37	5	3	37			
H-3	10	30	1	3	56			
H-4	23	63	2	6	6			
H-8	1	86	0	1	12			
H-10	8	82	0	1	9			
H-11	4	79	0	1	16			
LUMO(L)	8	55	1	36	0			
L+1	21	29	1	41	8			
L+2	23	49	1	18	9			
L+3	12	70	5	9	4			
L+4	5	86	2	7	0			
L+5	12	80	4	1	3			
L+6	2	62	1	35	0			
L+7	1	52	0	47	0			
L+8	4	94	1	0	1			
L+9	6	90	1	2	1			
L+12	4	83	12	1	0			
L+15	20	41	38	1	0			

Table S11Compositions of the molecular orbitals of [Ru(dppbz)(CO)(4-picoline)Cl2]
associated with the electronic spectral transitions.

Fig. S7 Contour plots of selected molecular orbitals of [Ru(dppbz)(CO)(4-picoline)Cl₂].

Excited	Composition	CI value	E(eV)	Oscillator	λ_{theo}	Assignment	λ_{exp}
state	1			strength	(nm)	E .	(nm)
				(f)			
1	$H \rightarrow L+2$	0.70500	3.6379	0.0016	340.81	MLCT/LLCT	370
2	$H-2 \rightarrow L+1$	0.67116	4.1330	0.1517	299.99	ILCT/LMCT/LLCT	313
	$H-2 \rightarrow L+4$	0.12039				ILCT/LLCT	
3	$H-5 \rightarrow L$	0.10891	4.4365	0.2226	279.47	ILCT/LMCT	276
	$H-4 \rightarrow L$	0.68388				LLCT/ILCT/LMCT	

Table S12Computed parameters from TDDFT calculations on [Ru(dppbz)₂Cl₂] for
electronic spectral properties in dichloromethane solution.

Table S13Compositions of the molecular orbitals of [Ru(dppbz)₂Cl₂] associated
with the electronic spectral transitions.

to	% Contribution of fragments				
	Ru	dppbz	Cl		
HOMO(H)	61	5	34		
H-2	2	62	36		
H-3	81	19	0		
H-4	1	32	67		
H-5	6	88	6		
LUMO(L)	22	78	0		
L+1	21	71	8		
L+2	1	99	0		
L+4	2	98	0		

Fig. S8 Contour plots of selected molecular orbitals of [Ru(dppbz)₂Cl₂].

Excited	Composition	CI value	E(eV)	Oscillator	λ_{theo}	Assignment	λ_{exp}
state				strength	(nm)		(nm)
				(f)			
1	$H-2 \rightarrow L$	0.13894	2.6380	0.0382	669.99	ILCT/MLCT	686
	$H \rightarrow L$	0.66941				ILCT/MLCT	
2	$H \rightarrow L+1$	0.68746	2.6806	0.0616	462.53	ILCT/MLCT	475
3	$H-2 \rightarrow L$	0.55180	3.4049	0.0824	364.13	MLCT/ILCT	366
	$H-1 \rightarrow L+3$	0.39384				LLCT/MLCT	
	$H-1 \rightarrow L+4$	0.13598				ILCT/LLCT/MLCT	
						/LMCT	
4	$H-15 \rightarrow L$	0.28846	5.0175	0.1134	247.11	ILCT/LLCT/MLCT	248
	$H-12 \rightarrow L+1$	0.15798				LLCT	
	$H-11 \rightarrow L$	0.19934				LLCT	
	$H-9 \rightarrow L+1$	0.18309				LLCT	
	$H-8 \rightarrow L$	0.24883				ILCT/LLCT	
	$H-7 \rightarrow L+1$	0.36831				ILCT/LLCT	
	$H-3 \rightarrow L+10$	0.14209				LLCT/MLCT	
	$H \rightarrow L+16$	0.13248				ILCT/MLCT	

Table S14Computed parameters from TDDFT calculations on [Ru(dppbz)(q)2] for
electronic spectral properties in dichloromethane solution.

Table 15Compositions of the molecular orbitals of $[Ru(dppbz)(q)_2]$ associated with
the electronic spectral transitions.

Molecular	% Contribution of fragments				
orbital	Ru	dppbz	q		
HOMO(H)	28	2	70		
H-1	25	2	73		
H-2	68	7	25		
H-3	48	6	46		
H-7	0	9	91		
H-8	5	73	22		
H-9	0	99	1		
H-11	0	94	6		
H-12	0	96	4		
H-15	11	18	71		
LUMO(L)	3	5	92		
L+1	1	1	98		
L+3	1	98	1		
L+4	13	82	5		
L+10	1	92	7		
L+16	3	2	95		

Fig. S9 Contour plots of selected molecular orbitals of $[Ru(dppbz)(q)_2]$.

Excited state	Composition	CI value	E(eV)	Oscillator strength (f)	λ_{theo} (nm)	Assignment	λ_{exp} (nm)
1	$H-1 \rightarrow L$	0.10339	2.9754	0.0121	416.70	MLCT/ILCT	432
	$H \rightarrow L$	0.65840				MLCT/ILCT	
2	$H-2 \rightarrow L+1$	0.59390	3.6217	0.1081	342.34	MLCT/ILCT/LLCT	343
	$H-1 \rightarrow L+2$	0.12226				LLCT/MLCT	
	$H-1 \rightarrow L+3$	0.13900				ILCT/LLCT/MLCT	
	$H \rightarrow L+2$	0.11525				LLCT/MLCT	
	$H \rightarrow L+4$	0.24835				ILCT/LLCT/MLCT	
3	$H-4 \rightarrow L+3$	0.10634	4.8828	0.0265	253.92	ILCT/LLCT	259
	$H-3 \rightarrow L+2$	0.44126				LLCT	
	$H-3 \rightarrow L+3$	0.19380				ILCT/LLCT	
	$H-2 \rightarrow L+8$	0.12962				ILCT/LLCT/MLCT	
	$H-2 \rightarrow L+14$	0.11793				ILCT/LLCT/MLCT	
						/LMCT	
	$H-1 \rightarrow L+13$	0.23401				LLCT/MLCT	
	$H-1 \rightarrow L+15$	0.20847				ILCT/LLCT/MLCT	
						/LMCT	
	$H \rightarrow L+15$	0.12474				ILCT/LLCT/MLCT	
						/LMCT	

Table S16Computed parameters from TDDFT calculations on [Ru(dppbz)(pic)2] for
electronic spectral properties in dichloromethane solution.

Table S17	Compositions of the molecular orbitals of [Ru(dppbz)(pic) ₂] associated with
	the electronic spectral transitions.

Molecular	% Contribution of fragments				
orbital	Ru	dppbz	pic		
HOMO(H)	72	4	24		
H-1	69	6	25		
H-2	74	12	14		
H-3	2	4	94		
H-4	3	3	94		
LUMO(L)	1	0	99		
L+1	4	4	92		
L+2	2	97	1		
L+3	1	83	16		
L+4	1	17	82		
L+8	8	88	4		
L+13	1	99	0		
L+14	55	27	18		
L+15	36	54	10		

Fig. S10 Contour plots of selected molecular orbitals of [Ru(dppbz)(pic)₂].

Entry	Solvent	Mole %	Base	Temperature,	Time,	Yeild ^c
		of catalyst		°C	h	%
1	1-propanol	0.02	KO ^t Bu	95	6	99
2	1-propanol	0.01	KO ^t Bu	95	6	68
3	1-propanol	0.01	KO ^t Bu	95	10	62
4	1-propanol	0.02	KO ^t Bu	95	5	89
5	1-propanol	-	KO ^t Bu	95	6	NO ^d
6	1-propanol	0.02	-	95	6	NO ^d
7	1-propanol	0.02	КОН	95	6	16
8	1-propanol	0.02	K ₃ PO ₄	95	6	NO ^d
9	1-propanol	0.02	KO ^t Bu	50	6	32
10	2-propanol	0.02	KO ^t Bu	80	6	85
11	ethanol	0.02	KO ^t Bu	75	6	63

Table S18. Screening of experimental conditions.^a

catalyst^b solvent, base

► Cl-

-СНО

Cŀ

-CH₂OH

^{*a*} Reaction conditions: 4-chlorobenzaldehyde (1.0 mmol), base (0.2 mol%), solvent (4.0 mL).

^b Catalyst: [Ru(dppbz)(CO)₂Cl₂].

^c Yields are determined by GCMS based on the quantity of substrate remaining after the reaction. Besides the substrate and the reported product, no other species was detected in any of the reactions.

^{*d*} Not observed.

Table S19. Screening of experimental conditions.^a

Entry	Solvent	Mole	Base	Temperature,	Time,	Yeild ^b ,
		% of		°C	h	%
		catalyst				
1	Toluene/Acetone	0.1	KO ^t Bu	100	6	91
2	Toluene/Acetone	-	KO ^t Bu	100	6	NO ^c
3	Toluene/Acetone	0.1	KO ^t Bu	100	4	69
4	Toluene/Acetone	0.05	KO ^t Bu	100	6	41
5	Toluene/Acetone	0.2	KO ^t Bu	100	6	94
6	Toluene/Acetone	0.1	KO ^t Bu	100	8	63
7	Toluene/Acetone	0.1	-	100	6	NO ^c
8	Toluene/Acetone	0.1	КОН	100	6	6
9	Toluene/Acetone	0.1	K ₃ PO ₄	100	6	NO ^c
10	Toluene/Acetone	0.1	CsCO ₃	100	6	5
11	Toluene/Acetone	0.1	KO ^t Bu	60	6	39
12	Toluene	0.1	KO ^t Bu	100	6	7
13	Acetone	0.1	KO ^t Bu	100	6	68

^{*a*} Reaction conditions: cyclohexanol (1.0 mmol), solvent (5.0 mL), base (0.25 mol%).

^b Yields are determined by GCMS based on the quantity of substrate remaining after the reaction. Besides the substrate and the reported product, no other species was detected in any of the reactions.

^c Not observed.

Table S20. Screening of experimental conditions.^a

^a Reaction conditions: Benzyl alcohol (1.0 mmol), solvent (5.0 mL), base (0.25 mol%).

^b Yields are determined by GCMS based on the quantity of substrate remaining after the reaction. Besides the substrate and the reported product(s), no other species was detected in any of the reactions.

^c Not observed.

	[Ru(dppbz)(CO)(dmso)	[Ru(dppbz) ₂ Cl ₂]	[Ru(dppbz)(q) ₂]	[Ru(dppbz)(pic) ₂]
	Cl ₂]			
empirical	$C_{33}H_{30}O_2P_2SCl_2$	$C_{60}H_{48}O_2P_4Cl_2$	$C_{48}H_{36}N_2O_2P_2$	$C_{42}H_{32}N_2O_4P_2$
formula	Ru	Ru	Ru	Ru·C ₇ H ₈
formula	724.55	1064.83	835.80	883.84
weight			1	
crystal system	triclinic	triclinic	monoclinic	triclinic
space group	Pī	Ρī	$P2_1/n$	Ρī
a (Å)	9.718(10)	10.5247(4)	11.5311(5)	10.0627(4)
<i>b</i> (Å)	10.552(12)	11.6210(4)	21.0156(8)	10.8128(4)
<i>c</i> (Å)	17.40(2)	12.8705(2)	16.2155(6)	20.1657(8)
α (°)	88.50(4)	86.888(2)	90	76.224(2)
β (°)	82.77(4)	77.258(2)	94.246(2)	79.050(3)
γ (°)	64.17(3)	80.961(2)	90	84.212(3)
$V(Å^3)$	1592(3)	1516.01(9)	3918.8(3)	2088.67(14)
Ζ	2	1	4	2
F (000)	736	546	1712	908
crystal size	0.14 × 0.14 ×	$0.12 \times 0.18 \times$	$0.22 \times 0.24 \times$	$0.20 \times 0.25 \times$
(mm)	0.20	0.22	0.28	0.30
<i>T</i> (K)	293	273	296	296
μ (mm ⁻¹)	0.856	0.485	0.525	0.500
R1 ^a	0.1183	0.0478	0.0597	0.0537
wR2 ^b	0.2980	0.1437	0.1997	0.1518
GOF ^c	0.94	1.03	1.13	0.94

Table S21. Crystallographic data and structure refinement parameters

^{*a*} R1 = $\Sigma ||F_o| - |F_c|| / \Sigma |F_o|$. ^{*b*} wR2 = $[\Sigma \{w(F_o^2 - F_c^2)^2\} / \Sigma \{w(F_o^2)\}]^{1/2}$. ^{*c*} GOF = $[\Sigma (w(F_o^2 - F_c^2)^2) / (M-N)]^{1/2}$, where M is the number of reflections and N is the number of parameters refined.