Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Supporting Information

for

Insights into antimicrobial agent sulfacetamide transformation during chlorination disinfection process in aquaculture water

Yaoguang Guo^a, Zhiyuan Liu^{a, b}, Xiaoyi Lou*^b, Changling Fang^b, Pu Wang^a, Genying Wu^c, Jie

Guan*a

^a School of Environmental and Materials Engineering, Shanghai Polytechnic University, Shanghai

201209, China

^b Laboratory of Quality Safety and Processing for Aquatic Product, East China Sea Fisheries

Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China

^c Longquan Branch of Lishui Municipal Ecological Environment Bureau, Longquan 323700,

China

*Corresponding Authors

E-mail: huoxingmayi@126.com (X. Lou); guanjie@sspu.edu.cn (J. Guan)

1 Table

1 Text

20 Figures

CAS number	Formula	Chemical structure	Molecule	Solubility		
			weight	in water	pKa ₁	pKa ₂
			(g/mol)	(mg/L)		
144-80-9	$C_8H_{10}N_2SO_3$	H ₂ N- - - - - H ₂ N- - H ₂ N- - - H ₂ N- - - H ₂ N- - - H ₂ N- - - H ₂ N- - - - H ₂ N- - - - H ₂ N- - - - - - - - - -		< 0.01		
			214.24200	g/100 mL	1.76±0.04	5.22±0.01
				at 16 °C		

Table S1 Physical/chemical properties of SFA

Text S1

The organic intermediates formed during the SFA degradation were identified with the samples pretreated by liquid-liquid extraction (using CH₂Cl₂ solvent) to extract and concentrate compounds of different polarity and volatility. Spectra were obtained with a gas chromatography-mass spectrometry (Shimadzu GCMS-QP2010 plus), equipped with DB-5 column (30 m×0.32 mm×0.25 µm), interfaced directly to the mass spectrometer used as a detector. The injections were made in the splitless mode using an injection temperature of 250 °C and the injection volume was 1 uL. Helium was used as carrier gas. The GC column was operated in a temperature programmed mode with an initial temperature of 40 °C held for 5 min, ramp first to 100 °C with a 15 °C/min rate, then to 200 °C with 5 °C/min rate, and then to 270 °C with 20 °C/min rate and held at that temperature for 5 min. Mass spectra were recorded in electron ionization (EI) mode at an ion source temperature of 230 °C and an electron energy of 70 eV. The mass range scanned was 30-400 m/z. The substance analysis was undertaken with reference to the NIST05 mass spectral library database.

Fig. S1 The HPLC chromatogram map of SFA. Experimental conditions: $[SFA]_0 = 5 \text{ mg/L}, pH_{ini} = 5.$

Fig. S2 Effect of [Cl₂] dose. Experimental conditions: [SFA]₀ = 5 μ M, pH_{ini} = 5, T = 20 °C.

Fig. S3 Oxidation of SFA by $[Cl_2]$ at different pH values. Experimental conditions: $[SFA]_0 = 5 \mu M$, $[Cl_2]_0 = 50 \mu M$,

T=20 °C.

Fig. S5 Effect of water temperature. Experimental conditions: $[SFA]_0 = 5 \ \mu M$, $[Cl_2]_0 = 50 \ \mu M$, $pH_{ini} = 5$.

Fig. S6 Effects of concentrations of (a) NH_4^+ , (b) HCO_3^- , and (c) HA on the oxidation of SFA by [Cl₂]. Experimental conditions: [SFA]₀ = 5 μ M, [Cl₂]₀ = 50 μ M, pH_{ini} = 5, T = 20 °C.

Fig. S7 Effects of (a) different water bodies and (b) Br⁻ concentration on SFA degradation. Experimental

conditions: $[SFA]_0 = 5 \ \mu M$, $[Cl_2]_0 = 50 \ \mu M$, $pH_{ini} = 5$, T=20 °C.

Fig. S8 GC chromatogram of the reaction products after methyl esterification pretreatment in the simulated

seawater. Note: Chromatogram of HAAs corresponding to methylated products.

Fig. S9 The total ion chromatogram of the sample after SFA degradation for 2 min in NaClO system.

 $100^{(10,000)}$

Fig. S10 The total ion chromatogram of the sample after SFA degradation for 90 min in NaClO system.

Fig.S11 The GC-MS spectrum of P-aminophenol.

Fig.S12 The GC-MS spectrum of 2-hydroxyaniline.

Fig.S13 The GC-MS spectrum of 2-amino-4-chlorophenol.

Fig.S14 The GC-MS spectrum of CH₂SO₂Cl₂

Fig.S15 The GC-MS spectrum of 4-chlorophenol.

Fig.S16 The GC-MS spectrum of 2,4-dichlorophenol.

Fig.S20 The GC-MS spectrum of 2,4-dichloroaniline.