Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Supplementary Material

Efficient extraction of bioactive flavonoids from *Celtis sinensis* leaves

using deep eutectic solvent as green media

Lei Wang^{a,c,1}, Xianying Fang^{a,c,1}, Yang Hu^a, Yiwei Zhang^a, Zhipeng Qi^a, Jie Li^a,

Linguo Zhaoa,b,c*

^a College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037,

China;

^b Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry

University, Nanjing 210037, China;

^c Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest

Resources, Nanjing Forestry University, Nanjing 210037, China.

¹ These authors contributed equally to this work

*Corresponding author: Linguo Zhao *

Tel.: +86-25-85427396

E-mail address: njfu2304@163.com

Fig. S1 Schematic representation of Celtis sinensis leaves.

Fig. S2 Content of isovitexin was calculated by a calibration curve established with the regression equation by HPLC. (X is concentration (mg/L) of isovitexin, Y is the peak area of isovitexin)

Fig. S3 Rutin was used as the standard substance to establish curve to measure total flavonoids. (X is absorbance of rutin, Y is the concentration (mg/mL) of rutin)

Fig. S4 HPLC-chromatogram for analysis of isovitexin extracted from *Celtis sinensis*.

(a) HPLC-chromatogram for analysis of isovitexin. (b) HPLC-chromatogram of DES26 extract.