1	Supporting information
2	Facile Fabrication of Hollow Tubular Covalent Organic
3	Frameworks Using Decomposable Monomer as Building
4	Block
5	Ya Li ^{a, b} , Chang Wang ^a , Shujuan Ma ^a , Junwen Xu ^{a, c} , Xiaowei Li ^{a, c} , Yinmao Wei ^b ,
6	Junjie Ou ^{a, c*}
7	
8	^a CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian
9	Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
10	^b Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry
11	of Education, College of Chemistry and Materials Science, Northwest University,
12	Xi'an 710127, China
13	^c University of Chinese Academy of Sciences, Beijing, 100049, China
14	
15	
16	* To whom correspondence should be addressed:
17	Prof. Junjie Ou
18	Tel: +86-411-84379576
19	Fax: +86-411-84379620
20	E-mail: junjieou@dicp.ac.cn
21	
22	
23	
24	

25 Materials

Hydrazine hydrate (Azine), acetic acid (HAc), 1,2-dichlorobenzene (o-DCB), N,N-26 dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N,N-dimethylacetamide 27 (DMAc), chloroform-D (CDCl₃) and dimethyl sulfoxide-d6 (DMSO-d6) were from 28 J&K Scientific Ltd. (Beijing, China). Benzaldehyde (BA), salicylaldehyde (SA), FH 29 and TFB were obtained from Sigma (St Louis, USA). Tp was obtained from Huawei-30 Ruike (Beijing, China). 1,4-Dioxane, mesitylene and tetrahydrofuran (THF) were 31 supplied by Tianjin Kermel Plant of Chemical Reagent (Tianjin, China). Water was 32 purified with a Milli-Q system from Millipore (Milford, USA). Standard pH buffer 33 solutions purchased from Beijing Solarbio Science & Technology were used to 34 control the pH values as 4.01, 7.01 and 10.01. Standard HCl (0.1 M) and NaOH (0.1 35 M) solutions were prepared for pH=1 and pH=13, respectively. 36

37 Synthesis of reference compounds

A model compound, *N*,*N*^{*}-hydrazinebis(salicylideneimine) (SAAzine), was obtained by the reaction between SA and Azine. Solution of SA (1.3 mL, 12.5 μ mol) was dissolved in dioxane/mesitylene (1:1, 2 mL) with vigorous stirring over 30 min. In addition, 1 mL Azine (373 μ L, 6.25 μ mol) was prepared, and then slowly added into SA solution. After sonication for 30 min, 0.3 mL of aqueous HAc (6 M) was added. The mixture solution was refluxed for 3 d. After cooling to room temperature, the product was isolated and dried under reduced pressure.

A reference compound, 1,2-di(benzylidene)hydrazine (BAAzine), was obtained by the reaction between BA and Azine. Solution of BA (1.25 mL, 12.5 μ mol) was dissolved in 2 mL dioxane/mesitylene at 25 °C with ultrasonic dispersion over 30 min. In addition, 1 mL Azine dioxane/mesitylene solution (373 μ L, 6.25 μ mol) was prepared, and then slowly added into the solution of BA. The mixture solution was refluxed for 3 d. After cooling to room temperature, the product was isolated and dried under reduced pressure.

N'-(2-Hydroxybenzylidene)formohydrazide (SAFH) synthesized was with salicylaldehyde and formic hydrazide, while 2-(benzylidene)-1-methylhydrazide (BAFH) was synthesized with benzaldehyde and formic hydrazide using the same reaction conditions as the hydrazine-series COFs. SAFH was achieved with SA (130 μL, 1.25 μmol) and FH (0.035 g, 0.625 μmol). BAFH was achieved with BA (125 μL, 1.25 µmol) and FH (0.035 g, 0.625 µmol).

Fig. S4. ¹H NMR spectra of monomers (a) FH, (b) SA, (c) BA and the products of (d)
SA reacts with Azine, (e) BA reacts with Azine, (f) SA reacts with FH and (g) BA
reacts with FH.

Fig. S5. ¹³C NMR spectra of monomers (a) FH, (b) SA, (c) BA and the products of
(d) SA reacts with Azine, (e) BA reacts with Azine, (f) SA reacts with FH and (g) BA
reacts with FH.

Fig. S6. The proposed reaction mechanism in formation of FH-based COFs.

160	a b b b b b b b b b b b b b b b b b b b
161	Fig. S8. HIM images of (a) TpAzine and (b) TFBAzine showing flower like
162	morphology.
163	I CS
164	
165	
166	
167	
168	
169	
170	
171	
172	
174	
174	
176	
177	
178	
179	
180	
181	
182	
183	
184	
185	
186	
187	
188	
109	
191	
171	

Fig. S11. N₂ adsorption isotherm of TFBFH fabricated with different solvents.

363 Fig. S19. Cu(II) sorption kinetics under the initial Cu(II) concentration of 32 mg L⁻¹.

TpFH in eclipsed (AA) model, (Space group- <i>P</i> 1)					
	a=15.39 Å, b=3.28Å, c=14.48 Å;				
	α=90°,	β=120°, γ=90°			
Atom x/a y/b z/c					
N1	0.48134	0.51644	0.45564		
C2	0.19877	0.51644	0.62360		
C3	0.38328	0.51644	0.75967		
C4	0.33184	0.51644	0.57101		
C5	0.46218	0.51644	0.86826		
H6	0.54377	0.51644	0.88800		
C7	0.09257	0.51644	0.59569		
H8	0.07227	0.51644	0.66138		
N9	0.02392	0.51644	0.50035		
C10	0.57458	0.51644	0.48078		
H11	0.63598	0.51644	0.56822		
N12	0.49612	0.51644	0.03264		
C13	0.65645	0.51644	0.23880		
O14	0.67606	0.51644	0.18086		
C15	0.70818	0.51644	0.42853		
C16	0.52263	0.51644	0.29170		
O17	0.44635	0.51644	0.27165		
O18	0.16887	0.51644	0.46457		
N19	0.45238	0.51644	0.51547		
C20	0.73495	0.51644	0.34750		
C21	0.55044	0.51644	0.21144		
C22	0.60188	0.51644	0.40010		
C23	0.47154	0.51644	0.10284		
H24	0.38995	0.51644	0.08310		
C25	0.84115	0.51644	0.37541		
H26	0.86145	0.51644	0.30972		
N27	0.90980	0.51644	0.47075		
C28	0.35914	0.51644	0.49033		
H29	0.29774	0.51644	0.40288		
N30	0.43760	0.51644	0.93846		
C31	0.27727	0.51644	0.73230		
O32	0.25766	0.51644	0.79025		
C33	0.22554	0.51644	0.54257		
C34	0.41109	0.51644	0.67941		
O35	0.48737	0.51644	0.69945		
O36	0.76485	0.51644	0.50653		
H37	0.49003	0.75804	0.56813		
H38	0.38575	0.74689	0.92565		

Table S1 Fractional atomic coordinates for the unit cell of TpFH.

H39	1.01663	0.72331	1.45691
H40	0.44369	0.75804	0.40297
H41	0.54797	0.74689	0.04545
H42	0.90059	0.30957	0.51984

TFBFH in eclipsed (AA) model, (Space group- <i>P</i> 1)			
a=15.27 Å, b=3.35Å, c=14.18 Å;			
	α=90°, β=	=120°, γ=90°	-
Atom	x/a	y/b	z/c
N1	0.50332	0.47986	0.48335
C2	0.21751	0.47986	0.65799
C3	0.40413	0.47986	0.79946
C4	0.35211	0.47986	0.60331
C5	0.48395	0.47986	0.91237
H6	0.56649	0.47986	0.93361
C7	0.11008	0.47986	0.62897
H8	0.08929	0.47986	0.69578
N9	0.04064	0.47986	0.52984
C10	0.59763	0.47986	0.50949
N11	0.51827	0.47986	0.04355
C12	0.68045	0.47986	0.25790
H13	0.70060	0.47986	0.19060
C14	0.73277	0.47986	0.45517
C15	0.54509	0.47986	0.31290
H16	0.46267	0.47986	0.29211
H17	0.18281	0.47986	0.48442
N18	0.47403	0.47986	0.54556
C19	0.75985	0.47986	0.37092
C20	0.57322	0.47986	0.22945
C21	0.62525	0.47986	0.42560
C22	0.49341	0.47986	0.11654
C23	0.86727	0.47986	0.39994
N24	0.93671	0.47986	0.49907
C25	0.37972	0.47986	0.51942
H26	0.31808	0.47986	0.43005
N27	0.45908	0.47986	0.98536
C28	0.29690	0.47986	0.77101
H29	0.27676	0.47986	0.83831
C30	0.24458	0.47986	0.57374
C31	0.43226	0.47986	0.71601
H32	0.51468	0.47986	0.73680
H33	0.79455	0.47986	0.54449
H34	0.88659	0.47986	0.33609
H35	0.65655	0.47985	0.59446
H36	0.41456	0.47986	0.09653

 Table S2 Fractional atomic coordinates for the unit cell of TFBFH.

394		analysis of the survey spectra.			
	Peak	Peak BE/eV	At. % (TpFH)	At. % (TpFH-Cu)	
	O 1S	532.51	21.38	20.56	
	C 1S	285.18	64.53	60.4	
	N 1S	399.81	14.09	15.71	
	Cu 2p3	934.26	0	2.14	
_	Cl 2P3	198.05	0	1.18	

Table S3 Elemental composition of the TpFH and TpFH-Cu sample based upon analysis of the survey spectra.