Factor analysis of the influence of environmental conditions on

VOCs emissions from medium density fibreboard and the

correlation of the factors with fitting parameters

Huiqi Shao,^a Yifan Ren,^a Yan Zhang,^b Chuandong Wu,^a Wenhui Li^a and Jiemin Liu,^{*a}

^a School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.

^b School of Science, Beijing University of Civil Engineering and Architecture, Beijing

100044, China

* Corresponding author, Jiemin Liu, email: liujm@ustb.edu.cn

Table S1 Determinatior	n conditions	of TD-GCMS
------------------------	--------------	------------

Instruments	Parameters	Values
TD	Tube desorption	280 °C
	temperature	
	Tube desorption time	10 min
	Cold trap temperature	Low: 20 °C; high: 280 °C
	Cold trap desorption time	3 min
	Cold trap sorbent	Tenax TA
	Transfer line temperature	200 °C
	Split ratio	30:1
GC	Injector temperature	280 °C
	Column	DB-5MS, 60 m × 0.25 mm × 0.25 μm
	Carrier gas	He, constant flow, 1.2 mL·min ⁻¹
	Temperature program	The initial temperature was held at 50 °C
		for 2 min, then heated at the rate of 5
		°C·min ⁻¹ to 225 °C and held for 2 min.
MS	lon source	EI, 70 eV
	Ion source temperature	230 °C
	Quadrupole temperature	150 °C
	Mass range	Scan mode, 40-350 m/z
	Transfer line temperature	280 °C

Compounds	Exponential fitting		Linear fitting		Logarithmic fitting		Polynomial fitting		Power fitting	
	Formula	R²	Formula	R²	Formula	R²	Formula	R²	Formula	R²
n-Butyl acetate	y=2.1361	0.9905	y=2.2268x	0.9978	y=0.8879ln(x)	0.9856	y=-0.7564x ² +	1	y=3.9228	0.9951
	e ^{0.7473x}		+2.0189		+3.8229		2.9101x+1.893		x ^{0.3005}	
Ethylbenzene	y=0.1163	0.9796	y=0.218x	0.9959	y=0.0872ln(x)	0.9895	y=-0.1006x ² +	0.9997	y=0.2935	0.9994
	e ^{1.1341x}		+0.1002		+0.2771		0.3089x+0.0835		x ^{0.4596}	
PGMEA	y=0.6876	0.9314	y=1.0998x	0.9401	y=0.4435ln(x)	0.9499	y=-1.3048x ² +	0.9643	y=1.5862	0.9529
	e ^{1.0233x}		+0.6169		+1.5126		2.2786x+0.3997		x ^{0.4152}	
p/m-Xylene	y=0.4873	0.8700	y=1.7428x	0.9447	y=0.7168ln(x)	0.9927	y=-2.7938x ² +	0.9891	y=2.0569	0.9554
	e ^{1.7329x}		+0.3389		+1.7718		4.2667x-0.1261		x ^{0.7285}	
o-Xylene	y=1.1052	0.9732	y=1.154x	0.9879	y=0.4643ln(x)	0.9935	y=-0.7562x ² +	0.9957	y=2.0421	0.9975
	e ^{0.7513x}		+1.0467		+1.9856		1.8372x+0.9208		x ^{0.3052}	
Isopropyl	y=0.0755	0.9712	y=0.2369x	0.9861	y=0.0936ln(x)	0.9574	y=0.0527x ² +	0.9870	y=0.2677	0.9845
benzene	e ^{1.5537x}		+0.0522		+0.2433		0.1893x+0.0609		x ^{0.6276}	
1, 2, 4-	y=0.0858	0.9658	y=0.1878x	0.9909	y=0.0755ln(x)	0.9945	y=-0.1234x ² +	0.9988	y=0.2407	0.9991
Trimethylbenzene	e ^{1.2591x}		+0.0712		+0.2238		0.2992x+0.0506		x ^{0.5138}	

Table S2 The fitting results of a_1 with relative humidity

Table S3 The fitting results of a_1 with the air change rate

Compounds	Exponential fitting		Linear fitting		Logarithmic fitting		Polynomial fitting		Power fitting	
	Formula	R²	Formula	R²	Formula	R²	Formula	R²	Formula	R²
n-Butyl acetate	y=0.5833	0.7069	y=-0.1823x	0.5661	y=-0.297ln(x)	0.7580	y=0.1728x ² -	0.7987	y=0.2824	0.8508
	e ^{-0.604x}		+0.5827		+0.3679		0.7902x+0.9547		x ^{-0.931}	
PGMEA	y=0.6651	0.6461	y=-0.1662x	0.5682	y=-0.269ln(x)	0.7519	y=0.1471x ² -	0.7718	y=0.4241	0.7991
	e ^{-0.376x}		+0.6739		+0.4777		0.6834x+0.9904		x ^{-0.589}	
p/m-Xylene	y=0.2923	0.7223	y=-0.0855x	0.5848	y=-0.137ln(x)	0.7640	y=0.0721x ² -	0.7749	y=0.1456	0.8367
	e ^{-0.576x}		+0.2837		+0.1824		0.3392x+0.4389		x ^{-0.872}	
o-Xylene	y=0.5942	0.7568	y=-0.1671x	0.6119	y=-0.267ln(x)	0.7888	y=0.1358x ² -	0.7967	y=0.3037	0.8680
	e ^{-0.554x}		+0.5678		+0.3695		0.6447x+0.8601		x ^{-0.834}	
1, 2, 4-	y=0.0501	0.6651	y=-0.0142x	0.5646	y=-0.023ln(x)	0.7378	y=0.0115x ² -	0.7357	y=0.0272	0.7796
Trimethylbenzene	e ^{-0.506x}		+0.0498		+0.033		0.0548x+0.0746		x ^{-0.77}	

Compounds	Exponential fitting		Linear fitting		Logarithmic fitting		Polynomial fitting		Power fitting	
	Formula	R²	Formula	R²	Formula	R²	Formula	R²	Formula	R²
n-Butyl acetate	y=0.0118	0.8857	y=0.0113x	0.8820	y=0.0044ln(x)	0.8312	y=0.0138x ² -	0.9062	y=0.0205	0.8544
	e ^{0.6913x}		+0.0112		+0.0202		0.0012x+0.0135		x ^{0.2724}	
Ethylbenzene	y=0.0147	0.8856	y=0.0274x	0.9091	y=0.0109ln(x)	0.8952	y=0.0062x ² +	0.9100	y=0.0369	0.9072
	e ^{1.1269x}		+0.0127		+0.0348		0.0217x+0.0137		x ^{0.4576}	
PGMEA	y=0.0038	0.9340	y=0.0089x	0.9647	y=0.0036ln(x)	0.9588	y=-0.0016x ² +	0.9653	y=0.0111	0.9661
	e ^{1.3007x}		+0.0031		+0.0103		0.0104x+0.0029		x ^{0.5307}	
p/m-Xylene	y=0.0085	0.7590	y=0.0135x	0.7772	y=0.0048ln(x)	0.6271	y=0.0498x ² -	0.9716	y=0.018	0.6112
	e ^{0.9625x}		+0.0074		+0.0178		0.0315x+0.0157		x ^{0.3465}	
o-Xylene	y=0.0086	0.6108	y=0.0102x	0.6267	y=0.004ln(x)	0.6142	y=0.0107x ² +	0.6394	y=0.0167	0.6205
	e ^{0.8186x}		+0.0081		+0.0163		0.0005x+0.0099		x ^{0.331}	
Isopropyl	y=0.0129	0.4683	y=0.0199x	0.4782	y=0.008ln(x)	0.4760	y=0.0228x ² -	0.4896	y=0.0293	0.4877
benzene	e ^{1.0012x}		+0.012		+0.0282		0.0006x+0.0158		x ^{0.4099}	
1, 2, 4-	y=0.0087	0.7973	y=0.0234x	0.8225	y=0.0092ln(x)	0.7955	y=0.0199x ² +	0.8335	y=0.0276	0.8147
Trimethylbenzene	e ^{1.4167x}		+0.0066		+0.0255		0.0054x+0.0099		x ^{0.5745}	

Table S4 The fitting results of b_1 with relative humidity

Table S5 The fitting results of b_1 with the air change rate

Compounds	Exponential fitting		Linear fitting		Logarithmic fitting		Polynomial fitting		Power fitting	
	Formula	R²	Formula	R²	Formula	R²	Formula	R²	Formula	R²
n-Butyl acetate	y=0.0059	0.4113	y=0.0013x	0.4862	y=0.0014ln(x)	0.2919	y=0.0012x ² -	0.6780	y=0.0073	0.2356
	e ^{0.16x}		+0.0058		+0.0075		0.0028x+0.0083		x ^{0.1702}	
PGMEA	y=0.0033	0.5342	y=0.0009x	0.6211	y=0.001ln(x)	0.4216	y=0.0006x ² -	0.7570	y=0.0043	0.3489
	e ^{0.1873x}		+0.0032		+0.0044		0.0013x+0.0046		x ^{0.2128}	
p/m-Xylene	y=0.0044	0.4023	y=0.0006x	0.4429	y=0.0007ln(x)	0.3354	y=0.0001x ² +	0.4479	y=0.0051	0.2906
	e ^{0.1161x}		+0.0044		+0.0052		0.0003x+0.0046		x ^{0.1387}	
o-Xylene	y=0.0042	0.4015	y=0.0007x	0.4590	y=0.0009ln(x)	0.3315	y=0.0002x ² -8E-	0.4799	y=0.005	0.2749
	e ^{0.1413x}		+0.0042		+0.0051		05x+0.0047		x ^{0.1644}	
1, 2, 4-	y=0.0045	0.4484	y=0.0011x	0.5385	y=0.0013ln(x)	0.3743	y=0.0006x ² -	0.6049	y=0.0057	0.2952
Trimethylbenzene	e ^{0.1877x}		+0.0044		+0.0059		0.0009x+0.0057		x ^{0.214}	

Fig. S1 Fitting of TVOC emission rates with single exponential model at ACR 1.0 h⁻¹ and

different relative humidity: (a) 20%; (b) 30%; (c) 50%; (d) 70%.

Fig. S2 Fitting of acetic acid butyl ester emission rates with single exponential model at ACR 1.0 h⁻¹ and different relative humidity: (a) 20%; (b) 30%; (c) 50%; (d) 70%.

Fig. S3 Fitting of a PGMEA emission rates with single exponential model at ACR 1.0 $h^{\text{-1}}$ and

different relative humidity: (a) 20%; (b) 30%; (c) 50%; (d) 70%.

Fig. S4 Fitting of m/p-Xylene emission rates with single exponential model at ACR 1.0 h⁻¹ and

Fig. S5 Fitting of o-Xylene emission rates with single exponential model at ACR 1.0 h^{-1} and different relative humidity: (a) 20%; (b) 30%; (c) 50%; (d) 70%.

Fig. S6 Fitting of Ethylbenzene emission rates with single exponential model at ACR 1.0 h⁻¹ and

different relative humidity: (a) 20%; (b) 30%; (c) 50%; (d) 70%.

Fig. S7 Fitting of Isopropyl benzene emission rates with single exponential model at ACR 1.0

 $h^{\mbox{-}1}$ and different relative humidity: (a) 20%; (b) 30%; (c) 50%; (d) 70%.

Fig. S8 Fitting of 1,2,4-Trimethylbenzene emission rates with single exponential model at ACR 1.0 h⁻¹ and different relative humidity: (a) 20%; (b) 30%; (c) 50%; (d) 70%.

Fig. S9 Fitting of TVOC concentrations with single exponential model at RH 50% and different

ACR: (a) 0.5 h⁻¹; (b) 1.0 h⁻¹; (c) 2.0 h⁻¹; (d) 3.0 h⁻¹.

Fig. S10 Fitting of Acetic acid butyl ester concentrations with single exponential model at RH

50% and different ACR: (a) 0.5 h^{-1} ; (b) 1.0 h^{-1} ; (c) 2.0 h^{-1} ; (d) 3.0 h^{-1} .

Fig. S11 Fitting of PGMEA concentrations with single exponential model at RH 50% and different ACR: (a) $0.5 h^{-1}$; (b) $1.0 h^{-1}$; (c) $2.0 h^{-1}$; (d) $3.0 h^{-1}$.

Fig. S12 Fitting of p/m-Xylene concentrations with single exponential model at RH 50% and

different ACR: (a) 0.5 h^{-1} ; (b) 1.0 h^{-1} ; (c) 2.0 h^{-1} ; (d) 3.0 h^{-1} .

Fig. S13 Fitting of o-Xylene concentrations with single exponential model at RH 50% and

different ACR: (a) 0.5 h^{-1} ; (b) 1.0 h^{-1} ; (c) 2.0 h^{-1} ; (d) 3.0 h^{-1} .