Catalytic Enantioselective Bromohydroxylation of Cinnamyl

Alcohols

Jing Li^a and Yian Shi^{*,a,b}

^aInstitute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, P. R. China. ^bDepartment of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.

Supporting Information

Table of Contents

Experimental procedures and characterization data	S-2
X-Ray structures of compounds 2a, 2e, and 12	S-17
Data for determination of enantiomeric excesses	S-48
NMR spectra	S-62

General Methods. All commercially available reagents were used without further purification unless otherwise noted. All dry solvents were purified with solvent purification system before use. Acetone AR and acetonitrile AR were used directly. Column chromatography was performed on silica gel (300-400 mesh). ¹H NMR spectra were recorded on a 400 MHz NMR spectrometer and ¹³C NMR spectra were recorded on a 100 MHz NMR spectrometer. IR spectra were recorded on a FT-IR spectrometer. Melting points were uncorrected. Cinnamyl alcohol **1h** was purchased from commercial suppliers. Cinnamyl alcohols **1a**, **1c** and **1e** were prepared by reacting the corresponding cinnamyl aldehydes with NaBH₄.¹ Cinnamyl alcohol **1b** was prepared by the reduction of (*E*)-methyl 3-(4-chlorophenyl)acrylate with DIBAL-H.¹ Cinnamyl alcohols **1d**, **1f-g**, **1i-1r** were prepared by the olefination of corresponding benzaldehydes/ketone with ethyl 2-(diethoxyphosphoryl)acetate and the subsequent reduction with DIBAL-H.¹ Olefin **1r** was prepared from the corresponding alcohol (**1a**) by the methylation with NaH and Mel.²

- 1 X. Huo, R. He, J. Fu, J. Zhang, G. Yang and W. Zhang, Stereoselective and site-specific allylic alkylation of amino acids and small peptides via a Pd/Cu dual catalysis, *J. Am. Chem. Soc.*, 2017, **139**, 9819.
- 2 C. Kelly, J. Ovian, R. Cywar, T. Gosselin, R. Wiles and N. Leadbeater, Oxidative cleavage of allyl ethers by an oxoammonium salt, *Org. Biomol. Chem.*, 2015, 13, 4255.

Representative procedure for asymmetric bromohydroxylation of cinnamyl alcohol (Table 2, entry 13). A mixture of $(DHQD)_2PHAL$ (0.0389 g, 0.050 mmol), (-)-CSA (0.0116 g, 0.050 mmol), and *N*-bromobenzamide¹ (0.120 g, 0.60 mmol) in CH₃CN (5.0 mL) and H₂O (0.5 mL) was stirred at -30 °C for 15 min. Cinnamyl alcohol (1m) (0.1136 g, 0.50 mmol) was subsequently added. Upon stirring at -30 °C for 72 h, the reaction mixture was quenched with saturated aqueous Na₂S₂O₃ (10 mL) at -30 °C, extracted with EtOAc (3x10 mL), dried over Na₂SO₄, filtered, concentrated, and purified by flash chromatography (silica gel, eluent: petroleum ether:ethyl acetate = 2:1) to afford bromohydrin 2m as colorless oil (0.1168 g, 72% yield, 95% ee).

1 S. Fujisaki, S. Hamura, H. Eguchi and A. Nishida, A facile synthesis of N-bromo imides

and amides using sodium bromate and hydrobromic acid (or sodium bromide) in the presence of sulfuric acid, *Bull. Chem. Soc. Jpn.*, 1993, **66**, 2426.

Procedure for gram scale asymmetric bromohydroxylation (Scheme 4). A mixture of $(DHQD)_2PHAL$ (0.3895 g, 0.50 mmol), (-)-CSA (0.1162 g, 0.50 mmol), and *N*-bromobenzamide (1.20 g, 6.0 mmol) in CH₃CN (50.0 mL) and H₂O (5.0 mL) was stirred at -30 °C for 15 min. Cinnamyl alcohol (**1m**) (1.1355 g, 5.0 mmol) was subsequently added. Upon stirring at -30 °C for 72 h, the reaction mixture was quenched with saturated aqueous Na₂S₂O₃ (50 mL) at -30 °C, extracted with EtOAc (3x50 mL), washed with saturated NaCl, dried over Na₂SO₄, filtered, concentrated, and purified by flash chromatography (silica gel, eluent: petroleum ether:ethyl acetate = 2:1) to afford bromohydrin **2m** as colorless oil (1.1341 g, 70% yield, 95% ee).

Table 2, entry 1

(X-ray structure)

White solid; mp. 68-69 °C; $[\alpha]_D^{20} = +19.2$ (*c* 0.99, CHCl₃) (83% ee); IR (film) 3383, 1577, 1010 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.55-7.48 (m, 2H), 7.32-7.27 (m, 2H), 5.02 (dd, *J* = 6.0, 4.4 Hz, 1H), 4.25 (dt, *J* = 6.0, 4.8 Hz, 1H), 4.02 (ddd, *J* = 12.4, 6.4, 4.8 Hz, 1H), 3.88 (ddd, *J* = 12.4, 6.8, 4.8 Hz, 1H), 3.00 (d, *J* = 4.4 Hz, 1H), 2.37 (dd, *J* = 6.8, 6.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 139.4, 131.9, 128.5, 122.6, 76.3, 64.3, 59.4; HRMS Calcd for C₉H₁₄Br₂NO₂ (M+NH₄)⁺: 325.9386; Found: 325.9386.

Table 2, entry 2

Light yellow oil; $[\alpha]_D{}^{20} = +22.3 \ (c \ 1.1, CHCl_3) \ (80\% \ ee);$ IR (film) 3362, 1491, 1014 cm⁻¹; ¹H NMR (400 MHz, CDCl_3) δ 7.39-7.32 (m, 4H), 5.04 (dd, J = 6.4, 4.0 Hz, 1H), 4.26 (dt, J = 6.4, 4.8 Hz, 1H), 4.02 (ddd, J = 12.4, 6.4, 4.8 Hz, 1H), 3.88 (ddd, J = 12.4, 6.8, 4.8 Hz, 1H), 2.98 (d, J = 4.0 Hz, 1H), 2.36 (dd, J = 6.8, 6.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl_3) δ 139.0, 134.4, 128.9, 128.2, 76.2, 64.3, 59.2; HRMS Calcd for C₉H₁₄BrClNO₂ (M+NH₄)⁺: 281.9891; Found: 281.9889.

Table 2, entry 3

Yellow oil; $[\alpha]_D^{20} = +20.6 (c \ 0.89, CHCl_3) (76\% \text{ ee});$ IR (film) 3383, 1510, 1220 cm⁻¹; ¹H NMR (400 MHz, CDCl_3) δ 7.42-7.35 (m, 2H), 7.11-7.04 (m, 2H), 5.04 (dd, J = 6.4, 4.0Hz, 1H), 4.26 (dt, J = 6.4, 4.8 Hz, 1H), 4.03 (ddd, J = 12.4, 6.4, 4.8 Hz, 1H), 3.89 (ddd, J = 12.4, 6.4, 4.8 Hz, 1H), 3.01 (d, J = 4.0 Hz, 1H), 2.44 (dd, J = 6.8, 6.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl_3) δ 162.8 (d, J = 245.6 Hz), 136.3 (d, J = 3.2 Hz), 128.5 (d, J = 8.3 Hz), 115.7 (d, J = 21.5 Hz), 76.3, 64.4, 59.6; HRMS Calcd for C₉H₁₄BrFNO₂ (M+NH₄)⁺: 266.0186; Found: 266.0186.

Table 2, entry 4

White solid; mp. 83-84 °C; $[\alpha]_D^{20} = +19.2$ (*c* 1.1, CHCl₃) (90% ee); IR (film) 3389, 1540, 1081 cm⁻¹; ¹H NMR (400 MHz, CD₃CN) δ 7.69-7.61 (m, 4H), 7.52-7.43 (m, 4H), 7.41-7.33 (m, 1H), 4.98 (dd, J = 6.4, 4.8 Hz, 1H), 4.35 (q, J = 5.6 Hz, 1H), 4.00 (d, J = 4.8 Hz, 1H), 3.91 (ddd, J = 12.4, 6.0, 4.8 Hz, 1H), 3.82 (ddd, J = 12.4, 6.4, 4.8 Hz, 1H), 3.30 (t, J = 6.0 Hz, 1H); ¹³C NMR (100 MHz, CD₃CN) δ 141.8, 141.4, 141.3, 129.9, 128.7, 128.5, 127.9, 127.6, 75.4, 64.4, 61.4; HRMS Calcd for C₁₅H₁₉BrNO₂ (M+NH₄)⁺: 324.0594; Found: 324.0593.

Table 2, entry 5

(X-ray structure)

White solid; mp. 57-58 °C; $[\alpha]_D^{20} = +26.2$ (*c* 0.93, CHCl₃) (82% ee); IR (film) 3374, 1578, 1063 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, *J* = 8.0 Hz, 2H), 7.20 (d, *J* = 8.0 Hz, 2H), 5.03 (dd, *J* = 6.0, 4.0 Hz, 1H), 4.31 (dt, *J* = 6.4, 4.8 Hz, 1H), 4.02 (ddd, *J* = 12.4, 6.4, 4.8 Hz, 1H), 3.90 (ddd, *J* = 12.4, 6.4, 4.8 Hz, 1H), 2.77 (d, *J* = 4.0 Hz, 1H), 2.39 (t, *J* = 6.4 Hz, 1H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.6, 137.5, 129.5, 126.6, 77.0, 64.5, 60.1, 21.4; HRMS Calcd for C₁₀H₁₇BrNO₂ (M+NH₄)⁺: 262.0437; Found: 262.0437.

Table 2, entry 6

Colorless oil; $[\alpha]_D^{20} = +13.7 (c \ 1.0, CHCl_3) (62\% \text{ ee});$ IR (film) 3447, 1637, 1219 cm⁻¹; ¹H NMR (400 MHz, CDCl_3) δ 7.27 (t, $J = 7.6 \ Hz$, 1H), 7.21 (s, 1H), 7.19 (d, $J = 7.6 \ Hz$, 1H), 7.15 (d, $J = 7.6 \ Hz$, 1H), 5.03 (d, $J = 5.6 \ Hz$, 1H), 4.32 (dt, $J = 5.6, 5.2 \ Hz$, 1H), 4.02 (dd, $J = 12.4, 4.8 \ Hz$, 1H), 3.89 (dd, $J = 12.4, 4.8 \ Hz$, 1H), 2.92 (br s, 1H), 2.46 (br s, 1H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl_3) δ 140.4, 138.5, 129.4, 128.7, 127.3, 123.8, 77.0, 64.4, 59.7, 21.7; HRMS Calcd for C₁₀H₁₇BrNO₂ (M+NH₄)⁺: 262.0437; Found: 262.0434.

Table 2, entry 7

Light yellow oil; $[\alpha]_D{}^{20} = +14.8 (c \ 1.1, CHCl_3) (70\% ee);$ IR (film) 3441, 1577, 1383 cm⁻¹; ¹H NMR (400 MHz, CDCl_3) δ 7.52 (dd, J = 7.2, 1.6 Hz, 1H), 7.30-7.21 (m, 2H), 7.18 (dd, J = 7.2, 1.6 Hz, 1H), 5.32 (dd, J = 5.6, 4.0 Hz, 1H), 4.32 (dt, J = 5.6, 4.8 Hz, 1H), 4.08 (ddd, J = 12.4, 6.4, 4.8 Hz, 1H), 3.94 (ddd, J = 12.4, 6.8, 4.4 Hz, 1H), 2.81 (d, J = 4.0 Hz, 1H), 2.44 (dd, J = 6.8, 6.4 Hz, 1H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl_3) δ 138.8, 135.4, 130.9, 128.4, 126.7, 125.8, 73.8, 64.4, 58.6, 19.5; HRMS Calcd for C₁₀H₁₇BrNO₂ (M+NH₄)⁺: 262.0437; Found: 262.0434.

Table 2, entry 8

Colorless oil; $[\alpha]_D{}^{20} = +13.0 (c \ 1.0, CHCl_3) (55\% \text{ ee});$ IR (film) 3439, 1635, 1122 cm⁻¹; ¹H NMR (400 MHz, CDCl_3) δ 7.43-7.31 (m, 5H), 5.06 (dd, J = 6.0, 4.0 Hz, 1H), 4.32 (dt, J = 6.0, 4.8 Hz, 1H), 4.02 (ddd, J = 12.4, 6.4, 5.2 Hz, 1H), 3.89 (ddd, J = 12.4, 6.8, 4.8 Hz, 1H), 2.95 (d, J = 4.0 Hz, 1H), 2.44 (dd, J = 6.8, 6.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 140.4, 128.8, 128.7, 126.7, 77.1, 64.4, 60.1; HRMS Calcd for C₉H₁₅BrNO₂ (M+NH₄)⁺: 248.0281; Found: 248.0280.

- 1 A. K. Macharla, R. C. Nappunni and N. Nama, Regio- and stereoselective hydroxybromination and dibromination of olefins using ammonium bromide and oxone, *Tetrahedron Lett.*, 2012, **53**, 1401.
- 2 A. J. Burckle, B. Gál, F. J. Seidl, V. H. Vasilev and N. Z. Burns, Enantiospecific solvolytic functionalization of bromochlorides, *J. Am. Chem. Soc.*, 2017, **139**, 13562.

Table 2, entry 9

Colorless oil; $[\alpha]_D{}^{20} = +11.9$ (*c* 0.99, CHCl₃) (80% ee); IR (film) 3417, 1480, 1049 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 8.0 Hz, 1H), 7.27 (d, *J* = 1.6 Hz, 1H),

7.09 (dd, J = 8.0, 1.6 Hz, 1H), 5.00 (dd, J = 5.6, 4.0 Hz, 1H), 4.27 (dt, J = 5.6, 4.8 Hz, 1H), 4.02 (dt, J = 12.4, 6.4 Hz, 1H), 3.88 (ddd, J = 12.0, 6.4, 4.8 Hz, 1H), 2.91 (d, J = 4.0 Hz, 1H), 2.42 (s, 3H), 2.33 (t, J = 6.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 139.7, 138.4, 132.7, 129.1, 125.7, 125.0, 76.4, 64.3, 59.4, 23.2; HRMS Calcd for C₁₀H₁₆Br₂NO₂ (M+NH₄)⁺: 339.9542; Found: 339.9542.

Table 2, entry 10

Colorless oil; $[\alpha]_D{}^{20} = +19.4$ (*c* 0.96, CHCl₃) (80% ee); IR (film) 3454, 1580, 1124 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, *J* = 8.0 Hz, 1H), 7.27 (d, *J* = 2.0 Hz, 1H), 7.16 (dd, *J* = 8.0, 2.0 Hz, 1H), 5.00 (dd, *J* = 6.0, 3.6 Hz, 1H), 4.27 (dt *J* = 6.0, 4.8 Hz, 1H), 4.02 (dt, *J* = 12.4, 4.8 Hz, 1H), 3.88 (dt, *J* = 12.4, 4.8 Hz, 1H), 2.94 (d, *J* = 3.6 Hz, 1H), 2.39 (s, 3H), 2.37 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 139.3, 136.9, 134.8, 129.7, 129.5, 125.8, 76.7, 64.7, 59.6, 20.7; HRMS Calcd for C₁₀H₁₆BrClNO₂ (M+NH₄)⁺: 296.0047; Found: 296.0046.

Table 2, entry 11

Colorless oil; $[\alpha]_D{}^{20} = +21.9 (c \ 1.0, CHCl_3) (80\% \text{ ee});$ IR (film) 3444, 1636, 1120 cm⁻¹; ¹H NMR (400 MHz, CDCl_3) δ 7.22 (dd, J = 7.2, 2.0 Hz, 1H), 7.17 (ddd, J = 8.4, 4.8, 2.0 Hz, 1H), 7.00 (dd, J = 9.2, 8.8 Hz, 1H), 4.99 (dd, J = 6.0, 2.4 Hz, 1H), 4.25 (dt, J = 6.4, 4.8 Hz, 1H), 4.02 (dt, J = 12.4, 4.8 Hz, 1H), 3.89 (dt, J = 12.4, 4.8 Hz, 1H), 3.02 (d, J = 3.6 Hz, 1H), 2.50 (t, J = 6.4 Hz, 1H), 2.29 (d, J = 1.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.3 (d, J = 244.2 Hz), 136.0 (d, J = 3.5 Hz), 129.8 (d, J = 5.4 Hz), 125.7 (d, J = 8.2 Hz), 125.2 (d, J = 17.5 Hz), 115.2 (d, J = 22.4 Hz), 76.3, 64.4, 59.3, 14.8 (d, J = 3.5 Hz) Hz); HRMS Calcd for $C_{10}H_{16}BrFNO_2$ (M+NH₄)⁺: 280.0343; Found: 280.0342.

Colorless oil; $[\alpha]_D{}^{20} = +18.4$ (*c* 0.96, CHCl₃) (82% ee); IR (film) 3450, 1580, 1216 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.16 (s, 1H), 7.15 (d, *J* = 8.0 Hz, 1H), 7.12 (dd, *J* = 8.0, 1.6 Hz, 1H), 4.99 (d, *J* = 6.4 Hz, 1H), 4.31 (dt, *J* = 6.0, 4.8 Hz, 1H), 4.02 (dd, *J* = 12.4, 4.8 Hz, 1H), 3.91 (dd, *J* = 12.4, 4.8 Hz, 1H), 2.49 (br s, 2H), 2.28 (s, 3H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.0, 137.08, 137.06, 130.0, 127.8, 124.1, 77.0, 64.5, 59.7, 20.1, 19.7; HRMS Calcd for C₁₁H₁₉BrNO₂ (M+NH₄)⁺: 276.0594; Found: 276.0590.

Table 2, entry 13

Colorless oil; $[\alpha]_D{}^{20} = +21.7 (c \ 1.2, CHCl_3) (95\% ee);$ IR (film) 3440, 1579, 1219 cm⁻¹; ¹H NMR (400 MHz, CDCl_3) δ 7.43-7.36 (m, 2H), 7.34 (s, 1H), 5.25 (dd, J = 6.0, 4.0 Hz, 1H), 4.25 (dt, J = 5.6, 4.8 Hz, 1H), 4.08 (ddd, J = 12.4, 6.8, 5.2 Hz, 1H), 3.93 (ddd, J = 12.4, 6.4, 4.8 Hz, 1H), 2.88 (d, J = 4.0 Hz, 1H), 2.38 (t, J = 6.4 Hz, 1H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl_3) δ 137.9, 137.7, 133.6, 129.7, 127.8, 122.3, 73.3, 64.4, 58.1, 19.3; HRMS Calcd for C₁₀H₁₆Br₂NO₂ (M+NH₄)⁺: 339.9542; Found: 339.9542.

Table 2, entry 14

Colorless oil; $[\alpha]_D^{20} = +25.8 (c \ 1.1, CHCl_3) (94\% \ ee);$ IR (film) 3387, 1597, 1060 cm⁻¹;

¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 8.4 Hz, 1H), 7.23 (dd, J = 8.4, 2.4 Hz, 1H), 7.16 (d, J = 2.4 Hz, 1H), 5.24 (d, J = 6.0 Hz, 1H), 4.23 (dt, J = 6.0, 4.8 Hz, 1H), 4.07 (dd, J = 12.4, 3.6 Hz, 1H), 3.91 (dd, J = 12.4, 3.6 Hz, 1H), 3.19 (br s, 1H), 2.63 (br s, 1H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.41, 137.37, 133.9, 130.6, 127.4, 126.7, 73.2, 64.4, 58.0, 19.4; HRMS Calcd for C₁₀H₁₂BrClNaO₂ (M+Na)⁺: 300.9601; Found: 300.9600.

Table 2, entry 15

Colorless oil; $[\alpha]_D{}^{20} = +28.7 (c \ 1.1, CHCl_3) (91\% ee);$ IR (film) 3387, 1590, 1059 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (dd, J = 8.4, 6.0 Hz, 1H), 6.95 (td, J = 8.4, 2.4 Hz, 1H), 6.88 (dd, J = 9.6, 2.4 Hz, 1H), 5.27 (dd, J = 6.0, 4.0 Hz, 1H), 4.27 (dt, J = 6.0, 4.8 Hz, 1H), 4.09 (ddd, J = 12.0, 6.4, 4.8 Hz, 1H), 3.94 (ddd, J = 12.0, 6.8, 4.8 Hz, 1H), 2.84 (d, J = 4.0Hz, 1H), 2.42 (t, J = 6.8 Hz, 1H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.4 (d, J = 245.3 Hz), 138.0 (d, J = 7.8 Hz), 134.7 (d, J = 3.4 Hz), 127.8 (d, J = 8.5 Hz), 117.4 (d, J = 21.0 Hz), 113.5 (d, J = 21.1 Hz), 73.3, 64.4, 58.5, 19.6 (d, J = 1.0 Hz); HRMS Calcd for C₁₀H₁₂BrFNaO₂ (M+Na)⁺: 284.9897; Found: 284.9890.

Table 2, entry 16

Colorless oil; $[\alpha]_D{}^{20} = +15.2$ (*c* 0.82, CHCl₃) (94% ee); IR (film) 3395, 1485, 1059 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.62-7.55 (m, 3H), 7.51-7.39 (m, 4H), 7.39-7.33 (m, 1H), 5.33 (dd, J = 6.0, 4.0 Hz, 1H), 4.33 (dt, J = 6.0, 4.8 Hz, 1H), 4.11 (dt, J = 12.4, 5.2 Hz, 1H), 3.96 (dt, J = 12.4, 6.0 Hz, 1H), 3.22 (d, J = 2.8 Hz, 1H), 2.76 (t, J = 6.4 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 141.3, 140.7, 137.7, 135.8, 129.7, 129.0, 127.7, 127.3, 126.4, 125.4, 73.8, 64.4, 58.7, 19.7; HRMS Calcd for C₁₆H₁₇BrNaO₂

 $(M+Na)^+$: 343.0304; Found: 343.0294.

Table 2, entry 17

Colorless oil; $[\alpha]_D^{20} = +24.3$ (*c* 1.0, CHCl₃) (90% ee); IR (film) 3394, 1614, 1061 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, *J* = 8.0 Hz, 1H), 7.08 (d, *J* = 8.0 Hz, 1H), 7.00 (s, 1H), 5.27 (dd, *J* = 6.0, 3.2 Hz, 1H), 4.30 (dt, *J* = 6.0, 4.8 Hz, 1H), 4.07 (dt, *J* = 12.4, 5.2 Hz, 1H), 3.95 (ddd, *J* = 12.4, 6.0, 4.8 Hz, 1H), 2.70 (d, *J* = 4.0 Hz, 1H), 2.46 (t, *J* = 6.4 Hz, 1H), 2.34 (s, 3H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.0, 135.6, 135.1, 131.5, 127.2, 125.5, 73.6, 64.3, 58.6, 21.1, 19.2; HRMS Calcd for C₁₁H₁₅BrNaO₂ (M+Na)⁺: 281.0148; Found: 281.0144.

Table 2, entry 18

Colorless oil; $[\alpha]_D{}^{20} = +48.0 \ (c \ 0.99, \text{CHCl}_3) \ (90\% \text{ ee});$ IR (film) 3438, 1590, 1088 cm⁻¹; ¹H NMR (400 MHz, CDCl_3) δ 7.38 (dd, J = 8.4, 2.0 Hz, 1H), 7.34 (d, J = 1.6 Hz, 1H), 7.24 (d, J = 8.4 Hz, 1H), 4.73 (d, J = 7.2 Hz, 1H), 4.15 (dt, J = 7.6, 4.8 Hz, 1H), 4.04 (ddd, J = 12.4, 7.2, 4.8 Hz, 1H), 3.94 (ddd, J = 12.4, 6.4, 4.8 Hz, 1H), 3.22 (s, 3H), 2.64 (dd, J = 7.2, 6.4 Hz, 1H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.1, 136.0, 133.6, 129.8, 128.4, 122.3, 82.2, 64.8, 57.6, 57.3, 19.5; HRMS Calcd for C₁₁H₁₈Br₂NO₂ (M+NH₄)⁺: 353.9699; Found: 353.9696.

Table 2, entry 19

Yellow oil; $[\alpha]_D^{20} = +14.1$ (c 0.98, CHCl₃) (80% ee); IR (film) 3447, 1577, 1219 cm⁻¹;

¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 9.2 Hz, 2H), 4.97 (d, J = 6.0 Hz, 1H), 4.26 (dt, J = 6.0, 5.2 Hz, 1H), 3.79 (dd, J = 10.4, 5.2 Hz, 1H), 3.63 (dd, J = 10.4, 6.0 Hz, 1H), 3.46 (br s, 1H), 3.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.5, 131.7, 128.7, 122.4, 76.2, 74.4, 59.4, 54.9; HRMS Calcd for C₁₀H₁₆Br₂NO₂ (M+NH₄)⁺: 339.9542; Found: 339.9543.

Determination of the absolute configuration of bromohydrin 2a (Scheme 3)

To a solution of bromohydrin **2a** (0.1081 g, 0.35 mmol) in acetone (4 mL) was added K₂CO₃ (0.2420 g, 1.75 mmol). Upon stirring at rt overnight, the reaction mixture was filtered through a silica gel plug (washed with CH₂Cl₂) and concentrated to give epoxide **4** as white solid (0.0563 g, 70%). mp. 57-58 °C. $[\alpha]_D^{20} = -24.6$ (*c* 0.80, CHCl₃) (82% ee) {lit.¹ $[\alpha]_D^{20} = -35.2$ (*c* 2.0, CHCl₃)}; IR (film) 3447, 1636, 1093 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 8.4 Hz, 2H), 7.16 (d, *J* = 8.4 Hz, 2H), 4.04 (ddd, *J* = 12.8, 5.2, 2.4 Hz, 1H), 3.90 (d, *J* = 2.0 Hz, 1H), 3.81 (ddd, *J* = 12.8, 8.0, 3.6 Hz, 1H), 3.17 (dt, *J* = 3.6, 2.0 Hz, 1H), 1.82 (dd, *J* = 8.0, 5.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 136.0, 131.9, 127.6, 122.4, 62.7, 61.2, 55.1. HRMS Calcd for C₉H₉BrNaO₂ (M+Na)⁺: 250.9678; Found: 250.9675.

1 Y. Gao, R. M. Hanson, J. M. Klunder, S. Y. Ko, H. Masamune and K. B. Sharpless, Catalytic asymmetric epoxidation and kinetic resolution modified procedures including in situ derivatization, *J. Am. Chem. Soc.*, 1987, **109**, 5765.

Synthetic transformations of bromohydrin 2m (Scheme 5)

Procedure for acetal 5. A mixture of bromohydrin **2m** (0.1168 g, 0.36 mmol), 2,2-dimethoxypropane (0.9 mL), and (+)-CSA (0.0167 g, 0.072 mmol) in acetone (0.9 mL) was stirred at rt for 2 h, concentrated, and purified by flash chromatography (silica gel, eluent: petroleum ether:ethyl acetate = 18:1) to give acetal **5** as colorless oil (0.1132 g, 86%). $[\alpha]_D{}^{20} = -9.5$ (*c* 1.2, CHCl₃) (94% ee); IR (film) 3439, 1593, 1089 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.40 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.35 (d, *J* = 1.6 Hz, 1H), 7.32 (d, *J* = 8.0 Hz, 1H), 5.16-5.07 (m, 1H), 4.20-4.10 (m, 3H), 2.44 (s, 3H), 1.65 (s, 3H), 1.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.1, 135.6, 133.5, 129.7, 128.9, 122.6, 100.2, 72.8, 65.9, 47.1, 29.5, 19.6, 18.8; HRMS Calcd for C₁₃H₂₀Br₂NO₂ (M+NH₄)⁺: 379.9855; Found: 379.9854.

S. Kiyooka, K. A. Shahid, Efficient enantio- and diastereoselective synthesis of enantiopure syn- α -bromo- β -hydroxy- α -methylpropionate esters and their cis- α , β -epoxy derivatives based on a chiral oxazaborolidinone-promoted asymmetric aldol reaction, *Tetrahedron: Asymmetry*, 2000, **11**, 1537.

Procedure for sulfide 6. A mixture of bromohydrin **2m** (0.0850 g, 0.26 mmol) and NaSPh (0.0687 g, 0.52 mmol) in DMF (3 mL) was stirred at 80 °C for 1 h, quenched with water (6 mL), extracted with ethyl acetate (2x8 mL), washed with water and brine, dried over Na₂SO₄, filtered, concentrated, and purified by flash chromatography (silica gel, eluent: petroleum ether:ethyl acetate = 2:1) to give sulfide **6** as colorless oil (0.0597 g, 65%). $[\alpha]_D^{20} = -93.6$ (*c* 0.87, CHCl₃) (95% ee); IR (film) 3409, 1479, 1088 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.19 (m, 8H), 4.48 (d, *J* = 8.0 Hz, 1H), 4.08-4.01 (m, 1H), 3.86 (ddd, *J* = 11.2, 6.4, 3.6 Hz, 1H), 3.75 (dt, *J* = 11.2, 5.6 Hz, 1H), 2.39 (d, *J* = 4.0 Hz, 1H), 2.24 (s, 3H), 2.03 (t, *J* = 6.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 139.2, 136.1,

133.5, 133.41, 133.36, 129.9, 129.7, 129.3, 128.3, 121.4, 73.7, 64.3, 51.2, 19.7; HRMS Calcd for C₁₆H₁₇BrNaO₂S (M+Na)⁺: 375.0025; Found: 375.0026.

D. Huang, X. Liu, L. Li, Y. Cai, W. Liu and Y. Shi, Enantioselective bromoaminocyclization of allyl *N*-tosylcarbamates catalyzed by a chiral phosphine-Sc(OTf)₃ complex, *J. Am. Chem. Soc.*, 2013, **135**, 8101.

Synthetic transformations of bromoether 2r (Scheme 6)

Procedure for azide 7. A mixture of bromoether **2r** (0.0843 g, 0.25 mmol) and NaN₃ (0.0650 g, 1.0 mmol) in DMF (2 mL) was stirred at 80 °C for 48 h, quenched with water (10 mL), extracted with ethyl acetate (3x10 mL), washed with water and brine, dried over Na₂SO₄, filtered, concentrated, and purified by flash chromatography (silica gel, eluent: petroleum ether:ethyl acetate = 8:1) to give azide **7** as colorless oil (0.0378 g, 50%). $[\alpha]_D^{20} = +97.2$ (*c* 1.3, CHCl₃) (90% ee); IR (film) 3438, 2104, 1590, 1098 cm⁻¹; ⁻¹H NMR (400 MHz, CDCl₃) δ 7.38 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.34 (d, *J* = 1.6 Hz, 1H), 7.26 (d, *J* = 8.4 Hz, 1H), 4.59 (d, *J* = 7.2 Hz, 1H), 3.64 (ddd, *J* = 7.2, 5.6, 4.0 Hz, 1H), 3.52 (ddd, *J* = 11.6, 6.0, 3.6 Hz, 1H), 3.34 (dt, *J* = 11.6, 6.0 Hz, 1H), 3.23 (s, 3H), 2.35 (s, 3H), 1.90 (t, *J* = 6.0 Hz, 1H), ⁻¹³C NMR (100 MHz, CDCl₃) δ 138.9, 135.3, 133.7, 129.9, 129.0, 122.3, 80.6, 67.8, 62.1, 56.9, 19.3; HRMS Calcd for C₁₁H₁₅BrN₃O₂ (M+H)⁺: 300.0342; Found: 300.0343.

D. Huang, X. Liu, L. Li, Y. Cai, W. Liu and Y. Shi, Enantioselective

bromoaminocyclization of allyl *N*-tosylcarbamates catalyzed by a chiral phosphine-Sc(OTf)₃ complex, *J. Am. Chem. Soc.*, 2013, **135**, 8101.

Procedure for chloride 8. A mixture of bromoether **2r** (0.1101 g, 0.325 mmol) and LiCl (0.0551 g, 1.3 mmol) in DMF (3 mL) was stirred at 80 °C for 120 h, quenched with water (10 mL), extracted with ethyl acetate (3x10 mL), washed with water and brine, dried over Na₂SO₄, filtered, concentrated, and purified by flash chromatography (silica gel, eluent: petroleum ether:ethyl acetate = 8:1) to give chloride **8** as colorless oil (0.0375 g, 39%). $[\alpha]_D^{20} = +43.8$ (*c* 0.86, CHCl₃) (90% ee); IR (film) 3439, 1591, 1099 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.38 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.34 (d, *J* = 2.0 Hz, 1H), 7.26 (d, *J* = 8.4 Hz, 1H), 4.68 (d, *J* = 6.4 Hz, 1H), 4.11 (dt, *J* = 6.0, 5.2 Hz, 1H), 3.77 (ddd, *J* = 11.6, 6.0 Hz, 1H), 3.25 (s, 3H), 2.36 (s, 3H), 2.15 (t, *J* = 6.4 Hz, 1H), ¹³C NMR (100 MHz, CDCl₃) δ 138.8, 135.1, 133.7, 129.7, 129.3, 122.4, 79.8, 66.2, 64.2, 57.3 19.2; HRMS Calcd for C₁₁H₁₅BrClO₂ (M+H)⁺: 292.9938; Found: 292.9937.

D. Huang, X. Liu, L. Li, Y. Cai, W. Liu and Y. Shi, Enantioselective bromoaminocyclization of allyl *N*-tosylcarbamates catalyzed by a chiral phosphine-Sc(OTf)₃ complex, *J. Am. Chem. Soc.*, 2013, **135**, 8101.

Procedure for epoxide 9. A mixture of bromoether **2r** (0.3101 g, 0.92 mmol) and NaOH (0.1840 g, 4.6 mmol) in dioxane (4 mL) and water (2 mL) was stirred at rt for 4 h. The reaction mixture was diluted with water (10 mL), extracted with ether (3x10 mL), washed with water and brine, dried over Na₂SO₄, filtered, concentrated, and purified by flash chromatography (silica gel, eluent: petroleum ether:ethyl acetate = 14:1) to give epoxide **9** as colorless oil (0.2047 g, 87%). $[\alpha]_D^{20} = +30.3$ (*c* 1.3, CHCl₃) (90% ee); IR (film) 3443, 1590, 1082 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.35 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.32 (d, *J* = 1.6 Hz, 1H), 7.25 (d, *J* = 8.0 Hz, 1H), 4.19 (d, *J* = 6.0 Hz, 1H), 3.30 (s, 3H), 3.21 (ddd, *J* = 6.0, 4.4, 2.8 Hz, 1H), 2.71 (dd, *J* = 4.8, 4.4 Hz, 1H), 2.54 (dd, *J* = 4.8, 2.8 Hz, 1H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.5, 135.1, 133.6, 129.6, 129.1, 122.1, 81.0, 57.2, 54.4, 44.2, 19.4; HRMS Calcd for C₁₁H₁₄BrO₂ (M+H)⁺:

257.0172; Found: 257.0171.

D. X. Hu, G. M. Shibuya and N. Z. Burns, Catalytic enantioselective dibromination of allylic alcohols, *J. Am. Chem. Soc.*, 2013, **135**, 12960.

Procedure for sulfide 10. A mixture of bromoether **2r** (0.1041 g, 0.31 mmol) and NaSPh (0.0819 g, 0.62 mmol) in DMF (3 mL) was stirred at 80 °C for 24 h, quenched with water (10 mL), extracted with ethyl acetate (3x10 mL), washed with water and brine, dried over Na₂SO₄, filtered, concentrated, and purified by flash chromatography (silica gel, eluent: petroleum ether:ethyl acetate = 8:1) to give sulfide **10** as colorless oil (0.0828 g, 73%). [α] $_{D}^{20}$ = +45.9 (*c* 0.99, CHCl₃) (90% ee); IR (film) 3439, 1589, 1100 cm⁻¹; ⁻¹H NMR (400 MHz, CDCl₃) δ 7.34 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.32 (d, *J* = 1.6 Hz, 1H), 7.26-7.21 (m, 4H), 7.20-7.13 (m, 2H), 4.51 (d, *J* = 5.6 Hz, 1H), 3.84-3.76 (m, 1H), 3.19 (s, 3H), 3.05 (dd, *J* = 13.6, 5.2 Hz, 1H), 2.94 (dd, *J* = 13.6, 6.8 Hz, 1H), 2.81 (d, *J* = 4.4 Hz, 1H), 2.28 (s, 3H); ⁻¹³C NMR (100 MHz, CDCl₃) δ 138.7, 135.8, 135.4, 133.6, 129.5, 129.3, 129.2, 129.0, 126.4, 121.9, 80.7, 73.3, 57.0, 36.6, 19.3; HRMS Calcd for C₁₇H₂₃BrNO₂S (M+NH₄)⁺: 384.0627; Found: 384.0626.

D. Huang, X. Liu, L. Li, Y. Cai, W. Liu and Y. Shi, Enantioselective bromoaminocyclization of allyl *N*-tosylcarbamates catalyzed by a chiral phosphine-Sc(OTf)₃ complex, *J. Am. Chem. Soc.*, 2013, **135**, 8101.

Synthetic transformations of epoxide 9 (Scheme 7)

Procedure for azide 11. A mixture of epoxide **9** (0.0514 g, 0.20 mmol), NaN₃ (0.0520 g, 0.80 mmol), and NH₄Cl (0.0134 g, 0.25 mmol) in EtOH (2 mL) was stirred at 80 °C for 16 h. The reaction mixture was concentrated, diluted with water (5 mL), extracted with ether (4x5 mL), washed with brine, dried over Na₂SO₄, filtered, concentrated, and purified by flash chromatography (silica gel, eluent: petroleum ether:ethyl acetate = 8:1) to give

azide **11** as colorless oil (0.0478 g, 80%). $[\alpha]_D^{20} = +8.3$ (*c* 1.1, CHCl₃) (90% ee); IR (film) 3438, 2101, 1590, 1088 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.32 (m, 2H), 7.17 (d, *J* = 8.0 Hz, 1H), 4.44 (d, *J* = 7.6 Hz, 1H), 3.90-3.82 (m, 1H), 3.32 (dd, *J* = 13.2, 4.0 Hz, 1H), 3.22 (s, 3H), 3.04 (d, *J* = 2.4 Hz, 1H), 2.98 (dd, *J* = 13.2, 5.2 Hz, 1H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.2, 134.8, 133.8, 129.8, 129.1, 122.3, 80.4, 74.6, 56.9, 52.1, 19.3; HRMS Calcd for C₁₁H₁₅BrN₃O₂ (M+H)⁺: 300.0342; Found: 300.0341.

J. H. Lee, S. Gupta, W. Jeong, Y. H. Rhee and J. Park, Characterization and utility of *N*-substituted imines synthesized from alkyl azides by Ruthenium catalysis, *Angew. Chem., Int. Ed.*, 2012, **51**, 10851.

Procedure for chloride 12. A mixture of epoxide **9** (0.0514 g, 0.20 mmol), LiCl (0.0339 g, 0.80 mmol), and NH₄Cl (0.0134 g, 0.25 mmol) in EtOH (2 mL) was stirred at 80 °C for 16 h. The reaction mixture was concentrated, diluted with water (5 mL), extracted with ether (4x5 mL), washed with brine, dried over Na₂SO₄, filtered, concentrated, and purified by flash chromatography (silica gel, eluent: petroleum ether:ethyl acetate = 8:1) to give chloride **12** as white solid (0.0456 g, 78%). mp. 61-62 °C. $[\alpha]_D^{20} = +34.7$ (*c* 0.87, CHCl₃) (90% ee); IR (film) 3443, 1590, 1088 cm⁻¹; ⁻¹H NMR (400 MHz, CDCl₃) δ 7.39-7.33 (m, 2H), 7.21 (d, *J* = 8.0 Hz, 1H), 4.56 (d, *J* = 5.6 Hz, 1H), 3.94-3.87 (m, 1H), 3.60 (dd, *J* = 11.2, 5.2 Hz, 1H), 3.36 (dd, *J* = 11.2, 5.2 Hz, 1H), 3.25 (s, 3H), 2.95 (d, *J* = 4.4 Hz, 1H), 2.37 (s, 3H); ⁻¹³C NMR (100 MHz, CDCl₃) δ 139.0, 134.8, 133.8, 129.7, 129.1, 122.2, 79.6, 74.3, 57.1, 45.1, 19.3; HRMS Calcd for C₁₁H₁₈BrClNO₂ (M+NH₄)⁺: 310.0204; Found: 310.0199.

The X-ray structure of compound ${\bf 2a}$

Table 1. Crystal data and structure refinement for	2a.		
Identification code	2a		
Empirical formula	$C_9H_{10}Br_2O_2$		
Formula weight	309.99		
Temperature	179.99(10) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P21		
Unit cell dimensions	a = 5.9149(2) Å	$\alpha = 90^{\circ}$.	
	b = 8.0004(2) Å	$\beta = 101.679(3)^{\circ}.$	
	c = 11.2008(3) Å	$\gamma = 90^{\circ}.$	
Volume	519.07(3) Å ³		
Z	2		
Density (calculated)	1.983 Mg/m ³		
Absorption coefficient	7.773 mm ⁻¹		
F(000)	300		
Crystal size	0.43 x 0.08 x 0.05 mm ³		
Theta range for data collection	3.152 to 27.481°.		
Index ranges	-7<=h<=7, -10<=k<=10, -14<=l<=14		
Reflections collected	11171		
Independent reflections	2382 [R(int) = 0.0436]		
Completeness to theta = 25.242°	99.9 %		
Absorption correction	Semi-empirical from equivalent	its	
Max. and min. transmission	1.00000 and 0.47158		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	2382 / 1 / 120		
Goodness-of-fit on F2	1.058		
Final R indices [I>2sigma(I)]	R1 = 0.0300, wR2 = 0.0693		
R indices (all data)	R1 = 0.0329, $wR2 = 0.0706$		
Absolute structure parameter	0.001(11)		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.735 and -0.492 e.Å ⁻³		

C. -1 J-1 1 1 1 -

	Х	У	Z	U(eq)
Br(1)	522(1)	8839(1)	5193(1)	40(1)
Br(2)	6064(1)	1164(1)	7144(1)	30(1)
O(1)	7843(5)	3799(5)	9235(3)	24(1)
O(2)	1448(6)	1610(5)	9407(3)	27(1)
C(1)	4271(9)	4942(7)	8026(5)	20(1)
C(2)	5227(10)	5434(7)	7034(5)	23(1)
C(3)	4175(10)	6594(7)	6218(5)	28(1)
C(4)	2083(9)	7289(7)	6350(5)	26(1)
C(5)	1104(9)	6843(7)	7332(5)	26(1)
C(6)	2210(9)	5691(7)	8158(5)	24(1)
C(7)	5387(8)	3646(7)	8936(4)	20(1)
C(8)	4831(8)	1839(7)	8562(5)	20(1)
C(9)	2263(9)	1432(8)	8295(5)	24(1)

Table 2. Atomic coordinates $(x10^4)$ and equivalent isotropic displacement parameters $(Å^2x10^3)$ for **2a**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Br(1)-C(4)	1.894(5)
Br(2)-C(8)	1.954(5)
O(1)-C(7)	1.429(5)
O(1)-H(1)	0.8200
O(2)-C(9)	1.431(6)
O(2)-H(2)	0.8200
C(1)-C(6)	1.393(7)
C(1)-C(2)	1.402(7)
C(1)-C(7)	1.509(7)
C(2)-C(3)	1.362(8)
C(2)-H(2A)	0.9300
C(3)-C(4)	1.392(8)
C(3)-H(3)	0.9300
C(4)-C(5)	1.389(8)
C(5)-C(6)	1.374(8)
C(5)-H(5)	0.9300
C(6)-H(6)	0.9300
C(7)-C(8)	1.522(7)
C(7)-H(7)	0.9800
C(8)-C(9)	1.523(7)
C(8)-H(8)	0.9800
C(9)-H(9A)	0.9700
C(9)-H(9B)	0.9700
C(7)-O(1)-H(1)	109.5
C(9)-O(2)-H(2)	109.5
C(6)-C(1)-C(2)	117.7(5)
C(6)-C(1)-C(7)	119.8(5)
C(2)-C(1)-C(7)	122.5(5)
C(3)-C(2)-C(1)	121.4(5)
C(3)-C(2)-H(2A)	119.3
C(1)-C(2)-H(2A)	119.3
C(2)-C(3)-C(4)	119.7(5)
C(2)-C(3)-H(3)	120.1
C(4)-C(3)-H(3)	120.1
C(5)-C(4)-C(3)	120.2(5)
C(5)-C(4)-Br(1)	119.1(4)

Table 3. Bond lengths [Å] and angles $[\circ]$ for **2a**.

C(3)-C(4)-Br(1)	120.6(4)
C(6)-C(5)-C(4)	119.2(5)
C(6)-C(5)-H(5)	120.4
C(4)-C(5)-H(5)	120.4
C(5)-C(6)-C(1)	121.6(5)
C(5)-C(6)-H(6)	119.2
C(1)-C(6)-H(6)	119.2
O(1)-C(7)-C(1)	112.6(4)
O(1)-C(7)-C(8)	107.4(4)
C(1)-C(7)-C(8)	115.3(4)
O(1)-C(7)-H(7)	107.1
C(1)-C(7)-H(7)	107.1
C(8)-C(7)-H(7)	107.1
C(7)-C(8)-C(9)	114.1(4)
C(7)-C(8)-Br(2)	113.0(3)
C(9)-C(8)-Br(2)	107.6(4)
C(7)-C(8)-H(8)	107.3
C(9)-C(8)-H(8)	107.3
Br(2)-C(8)-H(8)	107.3
O(2)-C(9)-C(8)	107.8(4)
O(2)-C(9)-H(9A)	110.1
C(8)-C(9)-H(9A)	110.1
O(2)-C(9)-H(9B)	110.1
C(8)-C(9)-H(9B)	110.1
H(9A)-C(9)-H(9B)	108.5

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Br(1)	50(1)	29(1)	34(1)	7(1)	-9(1)	6(1)
Br(2)	30(1)	30(1)	32(1)	-11(1)	11(1)	-3(1)
O(1)	17(2)	24(2)	27(2)	-6(2)	0(1)	0(2)
O(2)	22(2)	28(2)	33(2)	9(2)	10(2)	6(2)
C(1)	16(2)	19(3)	22(3)	-3(2)	2(2)	-4(2)
C(2)	22(3)	21(3)	27(3)	-1(2)	5(2)	-2(2)
C(3)	32(3)	29(3)	24(3)	-2(2)	6(2)	-6(2)
C(4)	29(3)	18(3)	25(3)	2(2)	-9(2)	-2(2)
C(5)	18(2)	24(3)	33(3)	0(2)	1(2)	0(2)
C(6)	21(3)	19(3)	31(3)	1(2)	7(2)	-2(2)
C(7)	18(2)	23(3)	20(2)	-1(2)	6(2)	-1(2)
C(8)	18(2)	19(2)	23(3)	-1(2)	5(2)	1(2)
C(9)	20(2)	24(3)	27(3)	2(2)	4(2)	-4(2)

Table 4. Anisotropic displacement parameters (Å2x103) for 2a. The anisotropic displacement factorexponent takes the form: -2 2 [h² a*2U¹¹ + ... + 2 h k a* b* U¹²].

	Х	у	Z	U(eq)
H(1)	8195	4647	9641	35
H(2)	210	2106	9273	40
H(2A)	6610	4959	6931	28
H(3)	4852	6920	5574	34
H(5)	-281	7319	7430	31
H(6)	1565	5403	8822	28
H(7)	4820	3839	9688	24
H(8)	5565	1132	9246	24
H(9A)	1438	2190	7683	29
H(9B)	2012	298	7991	29

Table 5. Hydrogen coordinates $(x10^4)$ and isotropic displacement parameters $(Å^2x10^3)$ for **2a**.

Table 6.Torsion angles [°] for 2a.

C(6)-C(1)-C(2)-C(3)	-0.6(8)
C(7)-C(1)-C(2)-C(3)	179.3(5)
C(1)-C(2)-C(3)-C(4)	-1.2(8)
C(2)-C(3)-C(4)-C(5)	2.0(8)
C(2)-C(3)-C(4)-Br(1)	-177.5(4)
C(3)-C(4)-C(5)-C(6)	-1.0(8)
Br(1)-C(4)-C(5)-C(6)	178.5(4)
C(4)-C(5)-C(6)-C(1)	-0.9(8)
C(2)-C(1)-C(6)-C(5)	1.6(8)
C(7)-C(1)-C(6)-C(5)	-178.2(5)
C(6)-C(1)-C(7)-O(1)	-140.4(5)
C(2)-C(1)-C(7)-O(1)	39.7(7)
C(6)-C(1)-C(7)-C(8)	95.9(6)
C(2)-C(1)-C(7)-C(8)	-84.0(6)
O(1)-C(7)-C(8)-C(9)	176.0(4)
C(1)-C(7)-C(8)-C(9)	-57.6(6)
O(1)-C(7)-C(8)-Br(2)	-60.6(4)
C(1)-C(7)-C(8)-Br(2)	65.8(5)
C(7)-C(8)-C(9)-O(2)	-65.1(6)
Br(2)-C(8)-C(9)-O(2)	168.7(4)

Symmetry transformations used to generate equivalent atoms:

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1)-H(1)O(2)#1	0.82	1.89	2.699(6)	171.7
O(2)-H(2)O(1)#2	0.82	1.94	2.736(5)	162.7

Table 7. Hydrogen bonds for 2a [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y+1/2,-z+2 #2 x-1,y,z

The X-ray structure of compound $\mathbf{2e}$

Table 1. Crystal data and structure refinement for	2e.	
Identification code	2e	
Empirical formula	$C_{10}H_{13}BrO_2$	
Formula weight	245.11	
Temperature	180.00(10) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P21	
Unit cell dimensions	a = 8.30480(10) Å	α= 90°.
	b = 9.2603(2) Å	β= 90°.
	c = 27.0823(7) Å	$\gamma = 90^{\circ}.$
Volume	2082.76(7) Å ³	
Z	8	
Density (calculated)	1.563 Mg/m ³	
Absorption coefficient	3.913 mm ⁻¹	
F(000)	992	
Crystal size	$0.42 \ x \ 0.08 \ x \ 0.04 \ mm^3$	
Theta range for data collection	2.324 to 27.484°.	
Index ranges	-10<=h<=10, -12<=k<=12, -35<=l<=35	
Reflections collected	48490	
Independent reflections	4767 [R(int) = 0.0444]	
Completeness to theta = 25.242°	100.0 %	
Absorption correction	Semi-empirical from equivalent	its
Max. and min. transmission	1.00000 and 0.75718	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4767 / 4 / 249	
Goodness-of-fit on F ²	1.013	
Final R indices [I>2sigma(I)]	R1 = 0.0229, wR2 = 0.0499	
R indices (all data)	R1 = 0.0257, $wR2 = 0.0507$	
Absolute structure parameter	-0.006(3)	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.277 and -0.335 e.Å ⁻³	

	х	У	Z	U(eq)
Br(1)	-600(1)	1450(1)	4592(1)	24(1)
O(1)	1555(2)	4480(2)	4524(1)	31(1)
O(2)	2170(3)	-656(2)	4349(1)	25(1)
C(1)	1735(4)	3347(3)	4173(1)	28(1)
C(2)	1638(3)	1867(3)	4407(1)	19(1)
C(3)	2352(3)	671(3)	4085(1)	22(1)
C(4)	1700(3)	586(3)	3566(1)	22(1)
C(5)	325(4)	-198(3)	3449(1)	27(1)
C(6)	-250(4)	-230(4)	2967(1)	33(1)
C(7)	506(4)	496(4)	2590(1)	34(1)
C(8)	1884(4)	1274(4)	2707(1)	35(1)
C(9)	2474(4)	1326(4)	3184(1)	30(1)
C(10)	-108(5)	426(5)	2064(1)	49(1)
Br(2)	6180(1)	8809(1)	3907(1)	33(1)
O(3)	8608(3)	5726(2)	4723(1)	28(1)
O(4)	3708(2)	6716(2)	4387(1)	27(1)
C(11)	8247(3)	6911(3)	4405(1)	24(1)
C(12)	6479(3)	7335(3)	4427(1)	22(1)
C(13)	5285(3)	6104(3)	4364(1)	21(1)
C(14)	5546(3)	5176(3)	3911(1)	20(1)
C(15)	6551(4)	3975(3)	3939(1)	27(1)
C(16)	6871(4)	3142(3)	3525(1)	31(1)
C(17)	6183(4)	3478(3)	3074(1)	29(1)
C(18)	5144(4)	4644(3)	3052(1)	31(1)
C(19)	4826(4)	5491(3)	3461(1)	28(1)
C(20)	6562(5)	2614(4)	2615(1)	43(1)

Table 2. Atomic coordinates $(x10^4)$ and equivalent isotropic displacement parameters $(Å^2x10^3)$ for **2e**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Br(1)-C(2)	1.963(3)
O(1)-C(1)	1.424(4)
O(1)-H(1)	0.80(2)
O(2)-C(3)	1.431(3)
O(2)-H(2)	0.79(2)
C(1)-C(2)	1.512(4)
C(1)-H(1A)	0.9700
C(1)-H(1B)	0.9700
C(2)-C(3)	1.530(4)
C(2)-H(2A)	0.9800
C(3)-C(4)	1.507(4)
C(3)-H(3A)	0.9800
C(4)-C(5)	1.390(4)
C(4)-C(9)	1.397(4)
C(5)-C(6)	1.391(4)
C(5)-H(5)	0.9300
C(6)-C(7)	1.375(5)
C(6)-H(6)	0.9300
C(7)-C(8)	1.388(5)
C(7)-C(10)	1.514(5)
C(8)-C(9)	1.383(4)
C(8)-H(8)	0.9300
C(9)-H(9)	0.9300
C(10)-H(10A)	0.9600
C(10)-H(10B)	0.9600
C(10)-H(10C)	0.9600
Br(2)-C(12)	1.976(3)
O(3)-C(11)	1.427(4)
O(3)-H(3)	0.79(2)
O(4)-C(13)	1.429(3)
O(4)-H(4)	0.82(2)
C(11)-C(12)	1.521(4)
C(11)-H(11A)	0.9700
C(11)-H(11B)	0.9700
C(12)-C(13)	1.520(4)
C(12)-H(12)	0.9800

Table 3. Bond lengths [Å] and angles $[\circ]$ for **2e**.

C(13)-C(14)	1.514(4)
C(13)-H(13)	0.9800
C(14)-C(19)	1.389(4)
C(14)-C(15)	1.392(4)
C(15)-C(16)	1.386(4)
C(15)-H(15)	0.9300
C(16)-C(17)	1.386(5)
C(16)-H(16)	0.9300
C(17)-C(18)	1.384(4)
C(17)-C(20)	1.511(4)
C(18)-C(19)	1.384(4)
C(18)-H(18)	0.9300
C(19)-H(19)	0.9300
C(20)-H(20A)	0.9600
C(20)-H(20B)	0.9600
C(20)-H(20C)	0.9600
C(1)-O(1)-H(1)	113(3)
C(3)-O(2)-H(2)	109(3)
O(1)-C(1)-C(2)	112.5(3)
O(1)-C(1)-H(1A)	109.1
C(2)-C(1)-H(1A)	109.1
O(1)-C(1)-H(1B)	109.1
C(2)-C(1)-H(1B)	109.1
H(1A)-C(1)-H(1B)	107.8
C(1)-C(2)-C(3)	113.3(2)
C(1)-C(2)-Br(1)	109.58(19)
C(3)-C(2)-Br(1)	111.75(19)
C(1)-C(2)-H(2A)	107.3
C(3)-C(2)-H(2A)	107.3
Br(1)-C(2)-H(2A)	107.3
O(2)-C(3)-C(4)	112.6(2)
O(2)-C(3)-C(2)	107.1(2)
C(4)-C(3)-C(2)	115.5(2)
O(2)-C(3)-H(3A)	107.1
C(4)-C(3)-H(3A)	107.1
C(2)-C(3)-H(3A)	107.1
C(5)-C(4)-C(9)	117.8(3)
C(5)-C(4)-C(3)	122.3(3)

C(9)-C(4)-C(3)	119.9(3)
C(4)-C(5)-C(6)	120.5(3)
C(4)-C(5)-H(5)	119.8
C(6)-C(5)-H(5)	119.8
C(7)-C(6)-C(5)	122.0(3)
C(7)-C(6)-H(6)	119.0
C(5)-C(6)-H(6)	119.0
C(6)-C(7)-C(8)	117.4(3)
C(6)-C(7)-C(10)	121.6(3)
C(8)-C(7)-C(10)	121.0(3)
C(9)-C(8)-C(7)	121.6(3)
C(9)-C(8)-H(8)	119.2
C(7)-C(8)-H(8)	119.2
C(8)-C(9)-C(4)	120.8(3)
C(8)-C(9)-H(9)	119.6
C(4)-C(9)-H(9)	119.6
C(7)-C(10)-H(10A)	109.5
C(7)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
C(7)-C(10)-H(10C)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5
C(11)-O(3)-H(3)	112(3)
C(13)-O(4)-H(4)	107(3)
O(3)-C(11)-C(12)	112.2(2)
O(3)-C(11)-H(11A)	109.2
C(12)-C(11)-H(11A)	109.2
O(3)-C(11)-H(11B)	109.2
C(12)-C(11)-H(11B)	109.2
H(11A)-C(11)-H(11B)	107.9
C(13)-C(12)-C(11)	115.6(2)
C(13)-C(12)-Br(2)	110.9(2)
C(11)-C(12)-Br(2)	105.8(2)
C(13)-C(12)-H(12)	108.1
C(11)-C(12)-H(12)	108.1
Br(2)-C(12)-H(12)	108.1
O(4)-C(13)-C(14)	113.0(2)
O(4)-C(13)-C(12)	107.2(2)

C(14)-C(13)-C(12)	115.0(2)
O(4)-C(13)-H(13)	107.1
C(14)-C(13)-H(13)	107.1
C(12)-C(13)-H(13)	107.1
C(19)-C(14)-C(15)	118.2(3)
C(19)-C(14)-C(13)	122.0(2)
C(15)-C(14)-C(13)	119.7(3)
C(16)-C(15)-C(14)	121.1(3)
C(16)-C(15)-H(15)	119.5
C(14)-C(15)-H(15)	119.5
C(17)-C(16)-C(15)	120.6(3)
C(17)-C(16)-H(16)	119.7
C(15)-C(16)-H(16)	119.7
C(18)-C(17)-C(16)	118.0(3)
C(18)-C(17)-C(20)	120.6(3)
C(16)-C(17)-C(20)	121.4(3)
C(17)-C(18)-C(19)	121.8(3)
C(17)-C(18)-H(18)	119.1
C(19)-C(18)-H(18)	119.1
C(18)-C(19)-C(14)	120.1(3)
C(18)-C(19)-H(19)	119.9
C(14)-C(19)-H(19)	119.9
C(17)-C(20)-H(20A)	109.5
C(17)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20B)	109.5
C(17)-C(20)-H(20C)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Br(1)	21(1)	21(1)	30(1)	3(1)	5(1)	3(1)
O(1)	19(1)	18(1)	55(2)	-8(1)	4(1)	-1(1)
O(2)	26(1)	18(1)	32(1)	0(1)	3(1)	8(1)
C(1)	25(2)	19(2)	39(2)	-2(1)	7(1)	-1(1)
C(2)	14(1)	18(1)	26(1)	-1(1)	-2(1)	0(1)
C(3)	16(1)	18(1)	32(2)	3(1)	2(1)	0(1)
C(4)	19(1)	18(1)	27(2)	-2(1)	4(1)	3(1)
C(5)	27(2)	27(2)	27(2)	-1(1)	5(1)	-3(1)
C(6)	29(2)	35(2)	34(2)	-10(1)	-2(1)	-3(1)
C(7)	37(2)	39(2)	26(2)	-7(1)	2(2)	13(2)
C(8)	38(2)	36(2)	31(2)	3(2)	12(1)	5(2)
C(9)	27(2)	27(2)	36(2)	0(1)	7(1)	-3(1)
C(10)	52(2)	67(3)	29(2)	-8(2)	0(2)	17(2)
Br(2)	23(1)	22(1)	54(1)	15(1)	4(1)	-1(1)
O(3)	28(1)	33(1)	25(1)	3(1)	1(1)	10(1)
O(4)	18(1)	16(1)	47(1)	3(1)	10(1)	2(1)
C(11)	18(1)	28(2)	26(2)	1(1)	2(1)	2(1)
C(12)	22(2)	20(1)	26(2)	2(1)	4(1)	1(1)
C(13)	18(1)	18(1)	28(1)	5(1)	7(1)	4(1)
C(14)	16(1)	17(1)	27(1)	2(1)	4(1)	1(1)
C(15)	26(2)	20(1)	35(2)	-1(1)	-7(1)	4(1)
C(16)	23(2)	24(2)	47(2)	-8(1)	-3(1)	5(1)
C(17)	28(1)	25(2)	34(2)	-7(1)	6(1)	-7(1)
C(18)	36(2)	28(2)	27(2)	4(1)	-4(1)	-2(1)
C(19)	28(2)	20(1)	34(2)	4(1)	2(1)	5(1)
C(20)	48(2)	37(2)	45(2)	-19(2)	5(2)	-5(2)

Table 4. Anisotropic displacement parameters (Å2x103) for 2e. The anisotropic displacement factorexponent takes the form: -2 2 [h² a*2U¹¹ + ...+ 2 h k a* b* U¹²].

	Х	У	Z	U(eq)
H(1)	640(30)	4670(40)	4579(14)	46
H(2)	2690(40)	-1260(30)	4215(12)	38
H(1A)	2767	3448	4009	33
H(1B)	899	3433	3925	33
H(2A)	2269	1899	4713	23
H(3A)	3510	859	4058	26
H(5)	-215	-705	3695	32
H(6)	-1175	-759	2898	39
H(8)	2422	1772	2459	42
H(9)	3397	1859	3252	36
H(10A)	569	-203	1874	74
H(10B)	-94	1376	1922	74
H(10C)	-1190	61	2063	74
H(3)	8310(50)	5860(40)	4998(9)	43
H(4)	3080(40)	6060(30)	4451(13)	41
H(11A)	8524	6653	4069	29
H(11B)	8902	7734	4499	29
H(12)	6277	7792	4747	27
H(13)	5402	5474	4653	25
H(15)	7015	3728	4240	32
H(16)	7555	2350	3551	37
H(18)	4646	4865	2754	37
H(19)	4128	6273	3435	33
H(20A)	7460	3043	2446	65
H(20B)	5641	2609	2400	65
H(20C)	6826	1640	2706	65

Table 5. Hydrogen coordinates $(x10^4)$ and isotropic displacement parameters $(Å^2x10^3)$ for **2e**.

Table 6.Torsion angles [°] for 2e.

O(1)-C(1)-C(2)-C(3)	-161.3(2)
O(1)-C(1)-C(2)-Br(1)	73.1(3)
C(1)-C(2)-C(3)-O(2)	-179.7(2)
Br(1)-C(2)-C(3)-O(2)	-55.3(3)
C(1)-C(2)-C(3)-C(4)	-53.4(3)
Br(1)-C(2)-C(3)-C(4)	71.0(3)
O(2)-C(3)-C(4)-C(5)	36.5(4)
C(2)-C(3)-C(4)-C(5)	-87.0(3)
O(2)-C(3)-C(4)-C(9)	-144.2(3)
C(2)-C(3)-C(4)-C(9)	92.4(3)
C(9)-C(4)-C(5)-C(6)	-0.3(4)
C(3)-C(4)-C(5)-C(6)	179.0(3)
C(4)-C(5)-C(6)-C(7)	0.2(5)
C(5)-C(6)-C(7)-C(8)	0.0(5)
C(5)-C(6)-C(7)-C(10)	178.6(3)
C(6)-C(7)-C(8)-C(9)	-0.3(5)
C(10)-C(7)-C(8)-C(9)	-178.8(3)
C(7)-C(8)-C(9)-C(4)	0.2(5)
C(5)-C(4)-C(9)-C(8)	0.0(5)
C(3)-C(4)-C(9)-C(8)	-179.3(3)
O(3)-C(11)-C(12)-C(13)	-50.1(4)
O(3)-C(11)-C(12)-Br(2)	-173.2(2)
C(11)-C(12)-C(13)-O(4)	-179.0(2)
Br(2)-C(12)-C(13)-O(4)	-58.6(2)
C(11)-C(12)-C(13)-C(14)	-52.4(4)
Br(2)-C(12)-C(13)-C(14)	68.0(3)
O(4)-C(13)-C(14)-C(19)	33.7(4)
C(12)-C(13)-C(14)-C(19)	-89.8(3)
O(4)-C(13)-C(14)-C(15)	-147.0(3)
C(12)-C(13)-C(14)-C(15)	89.4(3)
C(19)-C(14)-C(15)-C(16)	2.2(4)
C(13)-C(14)-C(15)-C(16)	-177.1(3)
C(14)-C(15)-C(16)-C(17)	-0.7(5)
C(15)-C(16)-C(17)-C(18)	-1.4(5)
C(15)-C(16)-C(17)-C(20)	177.9(3)
C(16)-C(17)-C(18)-C(19)	2.0(5)

C(20)-C(17)-C(18)-C(19)	-177.3(3)
C(17)-C(18)-C(19)-C(14)	-0.5(5)
C(15)-C(14)-C(19)-C(18)	-1.6(4)
C(13)-C(14)-C(19)-C(18)	177.6(3)

Symmetry transformations used to generate equivalent atoms:
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1)-H(1)O(3)#1	0.80(2)	1.99(2)	2.759(3)	163(4)
O(2)-H(2)O(4)#2	0.79(2)	2.11(3)	2.750(3)	138(3)
O(3)-H(3)O(2)#3	0.79(2)	2.01(2)	2.781(3)	163(4)
O(4)-H(4)O(1)	0.82(2)	1.94(2)	2.760(3)	174(4)

Table 7. Hydrogen bonds for **2e** [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 x-1,y,z #2 x,y-1,z #3 x+1/2,-y+1/2,-z+1

The X-ray structure of compound ${\bf 12}$

Table 1. Crystal data and structure refinement for	12.		
Identification code	12		
Empirical formula	$C_{11}H_{14}BrClO_2$		
Formula weight	293.59		
Temperature	99.99(10) K		
Wavelength	0.71073 Å		
Crystal system	orthorhombic		
Space group	P21		
Unit cell dimensions	$a = 10.45924(4) ~ \mathring{A} \qquad \qquad \alpha = 90^{\circ}.$		
	$b = 10.51707(4) \text{ Å} \qquad \beta = 90^{\circ}.$		
	$c = 22.10012(8) \text{ Å} \qquad \qquad \gamma = 90^{\circ}.$		
Volume	2431.027(16) Å ³		
Z	4		
Density (calculated)	1.604 Mg/m ³		
Absorption coefficient	6.465 mm ⁻¹		
F(000)	1184.0		
Crystal size	0.2 x 0.15 x 0.1 mm ³		
Theta range for data collection	8.002 to 151.056°.		
Index ranges -13<=h<=12, -13<=k<=12, -27<			
Reflections collected	58808		
Independent reflections	4930 [R(int) = 0.0345]		
Completeness to theta = 25.242°	100 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	1.00000 and 0.75235		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4930 / 0 / 277		
Goodness-of-fit on F2	1.080		
Final R indices [I>2sigma(I)]	R1 = 0.0174, $wR2 = 0.0432$		
R indices (all data)	R1 = 0.0174, $wR2 = 0.0432$		
Absolute structure parameter	0.001(3)		
Extinction coefficient	n/a		
urgest diff. peak and hole 0.33 and -0.51 e.Å ⁻³			

	X	у	Z	U(eq)
Br(7)	9565.1(3)	8009.0(2)	7853.5(2)	26.28(7)
Br(22)	9170.2(3)	-2819.2(3)	5709.3(2)	30.95(7)
Cl(26)	3507.3(6)	3543.1(7)	5686.5(3)	33.89(15)
Cl(11)	4645.8(7)	1423.1(6)	9157.2(3)	32.70(14)
O(28)	6939.1(15)	3148.7(16)	6345.8(7)	18.3(3)
O(27)	5255.0(16)	1469.4(16)	6938.3(7)	19.0(3)
O(13)	6785.2(15)	2083.2(16)	7908.9(7)	19.9(3)
O(12)	4793.9(17)	3893.9(17)	7805.4(8)	22.4(3)
C(24)	5001(2)	1983(2)	6355.6(10)	18.4(4)
C(19)	6985(2)	1025(2)	5899.0(10)	16.6(5)
C(8)	6605(2)	3029(2)	8363.7(10)	18.4(5)
C(21)	7390(2)	-909(2)	5351.9(11)	21.7(5)
C(17)	8583(2)	-455(2)	6265.4(11)	21.9(5)
C(4)	7416(2)	4200(2)	8250.9(11)	17.5(5)
C(2)	8269(2)	5726(2)	7531.4(11)	20.3(5)
C(20)	6719(2)	226(2)	5405.1(10)	19.6(5)
C(18)	7919(2)	678(2)	6318.1(11)	19.7(5)
C(16)	8299(2)	-1237(2)	5778.9(11)	21.6(5)
C(5)	7898(2)	4929(2)	8731.7(11)	18.7(5)
C(3)	7616(2)	4607(2)	7658.1(11)	19.3(5)
C(23)	6233(2)	2244(2)	6001.1(10)	17.3(4)
C(1)	8709(2)	6446(2)	8011.1(11)	19.1(5)
C(9)	5170(2)	3361(2)	8367.2(11)	19.0(5)
C(30)	5732(2)	566(3)	4935.1(11)	24.2(5)
C(29)	7891(2)	3776(2)	5993.1(11)	21.9(5)
C(6)	8544(2)	6056(2)	8604.5(11)	19.8(5)
C(25)	4167(2)	3162(2)	6413.4(12)	24.2(5)
C(14)	7780(3)	1214(3)	8044.5(12)	26.5(6)
C(10)	4315(2)	2212(2)	8454.9(11)	24.0(5)
C(15)	7776(3)	4519(3)	9384.4(11)	26.4(5)

Table 2. Fractional atomic coordinates $(x10^4)$ and equivalent isotropic displacement parameters $(Å^2x10^3)$ for **12**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Br(7)-C(1)	1.904(2)	
Br(22)-C(16)	1.904(2)	
Cl(26)-C(25)	1.793(3)	
Cl(11)-C(10)	1.793(3)	
O(28)-C(23)	1.425(3)	
O(28)-C(29)	1.426(3)	
O(27)-C(24)	1.421(3)	
O(13)-C(8)	1.426(3)	
O(13)-C(14)	1.417(3)	
O(12)-C(19)	1.418(3)	
C(24)-C(23)	1.533(3)	
C(24)-C(25)	1.522(4)	
C(19)-C(20)	1.406(3)	
C(19)-C(18)	1.395(3)	
C(19)-C(23)	1.520(3)	
C(8)-C(4)	1.516(3)	
C(8)-C(9)	1.541(3)	
C(21)-C(20)	1.390(4)	
C(21)-C(16)	1.383(4)	
C(17)-C(18)	1.385(4)	
C(17)-C(16)	1.386(4)	
C(4)-C(5)	1.404(3)	
C(4)-C(3)	1.394(3)	
C(2)-C(3)	1.390(4)	
C(2)-C(1)	1.381(3)	
C(20)-C(30)	1.507(3)	
C(5)-C(6)	1.393(4)	
C(5)-C(15)	1.511(3)	
C(1)-C(6)	1.385(3)	
C(9)-C(10)	1.516(3)	
C(23)-O(28)-C(29)	112.24(18)	
C(14)-O(13)-C(8)	113.45(18)	
O(27)-C(24)-C(23)	111.96(18)	
O(27)-C(24)-C(25)	109.91(19)	
C(25)-C(24)-C(23)	112.3(2)	
C(20)-C(19)-C(23)	121.1(2)	

Table 3. Bond lengths [Å] and angles $[\circ]$ for **12**.

C(18)-C(19)-C(20)	119.8(2)
C(18)-C(19)-C(23)	119.0(2)
O(13)-C(8)-C(4)	112.10(18)
O(13)-C(8)-C(9)	106.91(18)
C(4)-C(8)-C(9)	111.2(2)
C(16)-C(21)-C(20)	120.2(2)
C(18)-C(17)-C(16)	117.9(2)
C(5)-C(4)-C(8)	121.3(2)
C(3)-C(4)-C(8)	119.2(2)
C(3)-C(4)-C(5)	119.3(2)
C(1)-C(2)-C(3)	118.2(2)
C(19)-C(20)-C(30)	121.9(2)
C(21)-C(20)-C(19)	118.7(2)
C(21)-C(20)-C(30)	119.4(2)
C(17)-C(18)-C(19)	121.4(2)
C(21)-C(16)-Br(22)	119.46(19)
C(21)-C(16)-C(17)	121.9(2)
C(17)-C(16)-Br(22)	118.60(19)
C(4)-C(5)-C(15)	122.4(2)
C(6)-C(5)-C(4)	119.1(2)
C(6)-C(5)-C(15)	118.5(2)
C(2)-C(3)-C(4)	121.6(2)
O(28)-C(23)-C(24)	106.38(18)
O(28)-C(23)-C(19)	111.98(18)
C(19)-C(23)-C(24)	111.1(2)
C(2)-C(1)-Br(7)	119.28(18)
C(2)-C(1)-C(6)	121.5(2)
C(6)-C(1)-Br(7)	119.17(18)
O(12)-C(9)-C(8)	110.83(19)
O(12)-C(9)-C(10)	105.26(19)
C(10)-C(9)-C(8)	113.2(2)
C(1)-C(6)-C(5)	120.2(2)
C(24)-C(25)-Cl(26)	109.11
C(9)-C(10)-Cl(11)	111.43(17)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Br(7)	24.20(12)	21.43(13)	33.21(13)	2.67(11)	-2.97(10)	-5.06(10)
Br(22)	31.24(14)	20.80(13)	40.81(15)	-0.30(12)	9.42(12)	3.41(11)
Cl(26)	28.0(3)	33.2(3)	40.4(3)	6.8(3)	-13.3(3)	2.7(3)
Cl(11)	34.6(3)	26.4(3)	37.1(3)	6.6(3)	9.0(3)	-3.9(3)
O(28)	18.0(8)	18.5(8)	18.4(7)	-0.6(7)	-0.6(6)	-6.3(7)
O(27)	20.2(8)	18.8(8)	18.0(7)	0.1(6)	-0.6(6)	-4.0(7)
O(13)	21.1(8)	17.0(8)	21.5(7)	-4.7(7)	1.0(6)	5.2(7)
O(12)	22.1(9)	21.5(8)	23.5(8)	-2.0(7)	-2.3(7)	1.5(7)
C(24)	17.0(10)	18.6(11)	19.7(10)	0.1(9)	-2.4(8)	-3.2(9)
C(19)	15.9(11)	18.0(11)	15.9(10)	0.7(9)	2.3(8)	-2.8(9)
C(8)	19.1(11)	19.1(12)	17.0(10)	-4.2(9)	1.4(8)	1.4(10)
C(21)	23.5(12)	20.9(12)	20.6(12)	-4.8(9)	5.9(10)	-7.2(10)
C(17)	18.8(12)	23.7(13)	23.1(12)	4.8(10)	-0.9(9)	-1.1(10)
C(4)	14.1(10)	19.1(12)	19.2(11)	-1.6(9)	0.8(9)	3.4(9)
C(2)	18.6(11)	23.4(12)	18.8(11)	0.9(9)	-0.8(9)	1.2(10)
C(20)	17.6(11)	23.8(12)	17.4(11)	0.1(9)	2.8(9)	-7.4(10)
C(18)	20.9(12)	21.0(12)	17.2(11)	0.2(9)	-0.9(9)	-4.8(10)
C(16)	21.0(11)	17.8(11)	26.0(12)	0.1(10)	8.1(10)	-1.5(9)
C(5)	16.2(11)	22.8(12)	16.9(11)	-2.9(9)	1.0(9)	2.7(9)
C(3)	19.4(11)	21.4(12)	17.2(11)	-3.0(9)	-0.8(9)	0.1(10)
C(23)	18.7(10)	17.7(11)	15.4(9)	-0.3(9)	-2.7(8)	-2.1(9)
C(1)	13.2(10)	18.3(12)	25.9(12)	0.4(9)	0.8(9)	1.5(9)
C(9)	18.5(11)	19.2(12)	19.3(10)	-4.1(9)	1.7(9)	1.3(9)
C(30)	21.3(12)	31.1(14)	20.4(11)	-3.6(10)	-1.8(10)	-6.2(10)
C(29)	21.6(12)	21.6(13)	22.5(12)	3.5(10)	0.2(10)	-7.1(10)
C(6)	15.6(11)	22.9(12)	20.9(11)	-6.1(9)	-1.9(9)	1.7(9)
C(25)	19.2(11)	23.1(13)	30.1(12)	1.1(10)	-2.7(10)	-0.8(10)
C(14)	27.5(14)	23.4(13)	28.6(13)	2.7(11)	3.6(11)	10.5(11)
C(10)	22.2(12)	21.6(12)	28.3(12)	-4.8(10)	6.0(9)	-1.1(11)
C(15)	30.8(14)	31.0(14)	17.5(11)	-1.8(10)	1.3(10)	-4.2(11)

Table 4. Anisotropic displacement parameters (Å2x103) for 12. The anisotropic displacement factorexponent takes the form: -2 2 [h² a*2U¹¹ + ...+ 2 h k a* b* U¹²].

	X	У	Z	U(eq)
H(27)	5680	1978	7135	28
H(12)	4716	4666	7842	34
H(24)	4512	1346	6129	22
H(8)	6835	2667	8758	22
H(21)	7227	-1450	5028	26
H(17)	9202	-684	6548	26
H(2)	8405	5985	7134	24
H(18)	8099	1219	6640	24
H(3)	7306	4117	7340	23
H(23)	6013	2617	5608	21
H(9)	5003	3977	8691	23
H(30A)	4893	489	5107	36
H(30B)	5809	0	4596	36
H(30C)	5865	1425	4803	36
H(29A)	7486	4267	5681	33
H(29B)	8445	3154	5813	33
H(29C)	8383	4329	6248	33
H(6)	8866	6548	8919	24
H(25A)	4674	3869	6561	29
H(25B)	3483	3006	6700	29
H(14A)	7845	596	7726	40
H(14B)	7594	790	8419	40
H(14C)	8574	1665	8080	40
H(10A)	4444	1621	8123	29
H(10B)	3427	2479	8449	29
H(15A)	6898	4325	9472	40
H(15B)	8060	5194	9644	40
H(15C)	8291	3777	9452	40

Table 5. Hydrogen coordinates $(x10^4)$ and isotropic displacement parameters $(Å^2x10^3)$ for **12**.

Table 6.Torsion angles [°] for 12.

Br(7)-C(1)-C(6)-C(5)	178.70(18)
O(27)-C(24)-C(23)-O(28)	-60.9(2)
O(27)-C(24)-C(23)-C(19)	61.2(2)
O(27)-C(24)-C(25)-Cl(26)	-164.65(15)
O(13)-C(8)-C(4)-C(5)	-147.9(2)
O(13)-C(8)-C(4)-C(3)	36.3(3)
O(13)-C(8)-C(9)-O(12)	-62.8(2)
O(13)-C(8)-C(9)-C(10)	55.2(2)
O(12)-C(9)-C(10)-Cl(11)	-179.18(15)
C(8)-C(4)-C(5)-C(6)	-174.5(2)
C(8)-C(4)-C(5)-C(15)	7.2(4)
C(8)-C(4)-C(3)-C(2)	175.0(2)
C(8)-C(9)-C(10)-Cl(11)	59.6(2)
C(4)-C(8)-C(9)-O(12)	59.8(2)
C(4)-C(8)-C(9)-C(10)	177.82(19)
C(4)-C(5)-C(6)-C(1)	-0.2(4)
C(2)-C(1)-C(6)-C(5)	-1.4(4)
C(20)-C(19)-C(18)-C(17)	-1.1(4)
C(20)-C(19)-C(23)-O(28)	-155.7(2)
C(20)-C(19)-C(23)-C(24)	85.5 (3)
C(20)-C(21)-C(16)-Br(22)	178.19(17)
C(20)-C(21)-C(16)-C(17)	-0.7(4)
C(18)-C(19)-C(20)-C(21)	0.8(3)
C(18)-C(19)-C(20)-C(30)	-179.2(2)
C(18)-C(19)-C(23)-O(28)	26.8(3)
C(18)-C(19)-C(23)-C(24)	-92.0(2)
C(18)-C(17)-C(16)-Br(22)	-178.40(18)
C(18)-C(17)-C(16)-C(21)	0.5(4)
C(16)-C(21)-C(20)-C(19)	0.0(3)
C(16)-C(21)-C(20)-C(30)	180.0(2)
C(16)-C(17)-C(18)-C(19)	0.4(4)
C(5)-C(4)-C(3)-C(2)	-0.8(4)
C(3)-C(4)-C(5)-C(6)	1.3(4)
C(3)-C(4)-C(5)-C(15)	-177.0(2)
C(3)-C(2)-C(1)-Br(7)	-178.28(18)
C(3)-C(2)-C(1)-C(6)	1.8(4)

C(23)-C(24)-C(25)-Cl(26)	70.0(2)
C(23)-C(19)-C(20)-C(21)	-176.6(2)
C(23)-C(19)-C(20)-C(30)	3.4(3)
C(23)-C(19)-C(18)-C(17)	176.5(2)
C(1)-C(2)-C(3)-C(4)	-0.7(4)
C(9)-C(8)-C(4)-C(5)	92.5(3)
C(9)-C(8)-C(4)-C(3)	-83.3(3)
C(29)-O(28)-C(23)-C(24)	-161.54(19)
C(29)-O(28)-C(23)-C(19)	76.9(2)
C(25)-C(24)-C(23)-O(28)	63.3(2)
C(25)-C(24)-C(23)-C(19)	-174.59(19)
C(14)-O(13)-C(8)-C(4)	89.9(2)
C(14)-O(13)-C(8)-C(9)	-148.0(2)
C(15)-C(5)-C(6)-C(1)	178.2(2)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for 12 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)

The determination of enantiomeric excess

Table 2, entry 1

Br Br 2a

HPLC Condition: Column: Chiralpak AS-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (90/10); **Flow rate:** 1.0 mL/min; **Detection:** UV203 nm.

Racemic standard

Enantio-enriched product

Table 2, entry 2

HPLC Condition: Column: Chiralpak AS-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (90/10); **Flow rate:** 1.0 mL/min; **Detection:** UV202 nm.

Enantio-enriched product

12

100

75

50

25

0

HPLC Condition: Column: Chiralpak AD-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (90/10); **Flow rate:** 1.0 mL/min; **Detection:** UV208 nm.

Racemic standard

Table 2, entry 4

HPLC Condition: Column: Chiralpak AS-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (90/10); **Flow rate:** 1.0 mL/min; **Detection:** UV207 nm.

Enantio-enriched product

HPLC Condition: Column: Chiralpak AS-H, Daicel Chemical Industries, Ltd.; Eluent: Hexanes/IPA (90/10); Flow rate: 1.0 mL/min; Detection: UV203 nm.

Racemic standard Enantio-enriched product PDA Multi 1 203nm,4nm 200 0.044 200 150 150 100 100 50 0 7.5 10.0 12.5 5.0 15.0 17.5 7.5 5.0 PDA Ch1 203nm Peak# Ret T 1 203nr Peak Start 9.675 11.232 Peak End 10.720 12.811 10.044 11.652

Table 2, entry 6

HPLC Condition: Column: Chiralpak AS-H, Daicel Chemical Industries, Ltd.; Eluent: Hexanes/IPA (90/10); Flow rate: 1.0 mL/min; Detection: UV195 nm.

Racemic standard

Enantio-enriched product

HPLC Condition:Column:ChiralpakAS-H,DaicelChemicalIndustries,Ltd.;Eluent:Hexanes/IPA (90/10);Flow rate:1.0 mL/min;Detection:UV195 nm.

Racemic standard

Table 2, entry 8

150

100-

50

0.0

HPLC Condition: Column: Chiralpak AS-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (90/10); **Flow rate:** 1.0 mL/min; **Detection:** UV194 nm.

Racemic standard

Enantio-enriched product

HPLC Condition:Column:ChiralpakAD-H,DaicelChemicalIndustries,Ltd.;Eluent:Hexanes/IPA (90/10);Flow rate:1.0 mL/min;Detection:UV205 nm.Racemic standardEnantio-enriched product

Table 2, entry 10

HPLC Condition: Column:Chiralpak AD-H, Daicel Chemical Industries, Ltd.;Eluent:Hexanes/IPA (90/10);Flow rate:1.0 mL/min;Detection:UV204 nm.

Racemic standard

Enantio-enriched product

HPLC Condition:Column:ChiralpakAD-H,DaicelChemicalIndustries,Ltd.;Eluent:Hexanes/IPA (90/10);Flow rate:1.0 mL/min;Detection:UV191 nm.

Racemic standard

Enantio-enriched product

Table 2, entry 12

HPLC Condition:Column:ChiralpakAD-H,DaicelChemicalIndustries,Ltd.;Eluent:Hexanes/IPA (90/10);Flow rate:1.0 mL/min;Detection:UV204 nm.Racemic standardEnantio-enriched product

HPLC Condition: Column: Chiralpak AD-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (90/10); **Flow rate:** 1.0 mL/min; **Detection:** UV205 nm.

Racemic standard

00-50-00-50-00-50-00-50-00-50-00-50-00-50-00-50-00-50-00-50-00-50-00-50-00-50-10.5 10.0 12.5 15.0 17.5 15.0 17.5 10.0 12.5 15.0 17.5 10.0 12.5 15.0 17.5 10.9 12.5 15.0 17.5 10.9 12.5 15.0 17.5 10.9 12.5 15.0 17.5 10.9 12.5 15.0 17.5 10.9 12.5 10.9 12.5 15.0 17.5 10.9 12.5 10.9 12.5 15.0 17.5 10.9 12.5 10.9 12.5 15.0 17.5 10.9 12.5 15.0 17.5 10.9 12.5 15.0 17.5 10.9 12.5 15.0 17.5 10.9 15.7 10.0 12.5 15.0 10.9 15.7 10.0 12.5 15.0 17.5 10.9 15.7 10.9 15.7 10.9 15.7 10.9 15.7 10.9 15.7 10.9 15.7 10.9 15.7 10.0 15.7 10.0 17.5 10.0 17.5 10.0 17.5 10.0 17.5 10.0 17.5 10.0 17.5 10.0 17.5 10.0 17.5 10.0 17.5 10.0 17.5 10.0 17.5 10.0 17.5 10.0 17.5 10.0 17.5 10.0 17.5 10.0 17.5 10.0 17.5 10.0 10

Table 2, entry 14

HPLC Condition:Column:ChiralpakAS-H,DaicelChemicalIndustries,Ltd.;Eluent:Hexanes/IPA (90/10);Flow rate:1.0 mL/min;Detection:UV204 nm.Racemic standardEnantio-enriched product

HPLC Condition: Column: Chiralpak OD-H, Daicel Chemical Industries, Ltd.; Eluent: Hexanes/IPA (90/10); Flow rate: 1.0 mL/min; Detection: UV193 nm. **Racemic standard Enantio-enriched product**

Table 2, entry 16

HPLC Condition: Chiralpak AS-H, Daicel Chemical Industries, Ltd.; **Column:** Flow rate: 1.0 mL/min; Detection: UV207 nm. Eluent: Hexanes/IPA (90/10); **Racemic standard Enantio-enriched product**

20.0

HPLC Condition: Column: Chiralpak AS-H, Daicel Chemical Industries, Ltd.; **Eluent:** Hexanes/IPA (95/5); **Flow rate:** 1.0 mL/min; **Detection:** UV204 nm.

Table 2, entry 18

HPLC Condition:Column:ChiralpakAS-H,DaicelChemicalIndustries,Ltd.;Eluent:Hexanes/IPA (90/10);Flow rate:1.0 mL/min;Detection:UV205 nm.Racemic standardEnantio-enriched product

PDA Multi 1 205nm,4nm

609

Peak End 5.931 7.829

7.5

HPLC Condition:Column:ChiralpakAS-H,DaicelChemicalIndustries,Ltd.;Eluent:Hexanes/IPA (90/10);Flow rate:1.0 mL/min;Detection:UV203 nm.Racemic standardEnantio-enriched product

Scheme 3, epoxide 4

HPLC Condition:Column:ChiralpakAS-H,DaicelChemicalIndustries,Ltd.;Eluent:Hexanes/IPA (90/10);Flow rate:1.0 mL/min;Detection:UV203 nm.Racemic standardEnantio-enriched product

Scheme 5, acetal 5

HPLC Condition:Column:ChiralpakAD-H,DaicelChemicalIndustries,Ltd.;Eluent:Hexanes/IPA (95/5);Flow rate:1.0 mL/min;Detection:UV204 nm.Racemic standardEnantio-enriched product

Scheme 5, sulfide 6

HPLC Condition:Column:ChiralpakAD-H,DaicelChemicalIndustries,Ltd.;Eluent:Hexanes/IPA (90/10);Flow rate:1.0 mL/min;Detection:UV190 nm.Racemic standardEnantio-enriched product

Scheme 6, azide 7

HPLC Condition:Column:ChiralpakAS-H,DaicelChemicalIndustries,Ltd.;Eluent:Hexanes/IPA (90/10);Flow rate:1.0 mL/min;Detection:UV205 nm.Racemic standardEnantio-enriched product

Scheme 6, chloride 8

HPLC Condition:Column:ChiralpakAS-H,DaicelChemicalIndustries,Ltd.;Eluent:Hexanes/IPA (98/2);Flow rate:1.0 mL/min;Detection:UV204 nm.Racemic standardEnantio-enriched product

Scheme 6, epoxide 9

HPLC Condition:Column:ChiralpakAS-H,DaicelChemicalIndustries,Ltd.;Eluent:Hexanes/IPA (90/10);Flow rate:1.0 mL/min;Detection:UV205 nm.Racemic standardEnantio-enriched product

Scheme 6, sulfide 10

HPLC Condition:Column:ChiralpakAS-H,DaicelChemicalIndustries,Ltd.;Eluent:Hexanes/IPA (90/10);Flow rate:1.0 mL/min;Detection:UV205 nm.Racemic standardEnantio-enriched product

Scheme 7, azide 11

HPLC Condition:Column:Chiralpak OD-H, Daicel Chemical Industries, Ltd.;Eluent:Hexanes/IPA (90/10);Flow rate:1.0 mL/min;Detection:UV205 nm.Racemic standardEnantio-enriched product

Scheme 7, chloride 12

HPLC Condition:Column:ChiralpakOD-H,DaicelChemicalIndustries,Ltd.;Eluent:Hexanes/IPA (95/5);Flow rate:1.0 mL/min;Detection:UV222 nm.Racemic standardEnantio-enriched product

Table 2, Entry 2, **2b**

.

878.38.396 138.396 228.322 228.322 228.320 228.180

- .

161.6S----

146.43

76.218 76.912 776.912 777.529

mqq 0 mqq 101 20 005.61----30 40 50 ----l---28.52 695.43 70 13.814 710.512 777.530 842.77 Table 2, Entry 7, 2g ΗQ 90 E. 100 Ъ HO 190 180 170 160 150 140 130 120 110 Me 582.321 525.783 525.325 525.355 525.355 525.355 525 200 210

Ē

Table 2, Entry 8, **2h**

160.97 722.77 720.77

785.0£1---

126.649 127.821 228.849

69E'6I----

₽I0.82---

898.43

102.ET 216.9T 222.TT 2649 777.549

126.738 127.448 123.929 133.929 133.929 123.428

.

928:LS 619:LS 69L·Þ9----

S-97

Ē

mdd 0 محدا معمد ما معمد معمد المعب 10 20 30 بينيابين 40 50 0 110 100 90 80 210 200 190 180 170 160 150 140 130 120 110 100 المتعقب المتعادين والمتعادين والمتعادين والمتعادين والمتعادين والمتعادين والمتعادين والمتعادين والمتعادين والمتعادين والمتعاد والمت

Scheme 3, epoxide 4

ЧÓ ò Б

122.399	
855. <i>1</i> 21	
698'IEI	
₽70.251	

.

881.33----

91.1.16 269.29

6₽S·*LL*

S-112

Ē