# Removal of Per- and Polyfluoroalkyl Substances (PFAS) from Water by Ceric (IV) Ammonium Nitrate 

Jun Sun, ${ }^{\text {Ila }}$ Sreenu Jennepalli, ${ }^{\text {Ia }}$ Matthew Lee, ${ }^{\text {c }}$ Denis M. O’Carroll, ${ }^{c}$ Björn Åkermark, ${ }^{\text {b }}$ Michael J. Manefield, ${ }^{\text {c }}$ Biswanath Das, ${ }^{\text {II*a,b }}$ Naresh Kumar*a

a. School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
${ }^{\text {b. Department of Organic Chemistry, Stockholm University, Stockholm 10691, Sweden }}$
c. School of Civil and Environmental Engineering, Water Research Centre, The University of New South Wales, Sydney, NSW 2052, Australia

II Contributed equally to the experimental work.

## Materials and Methods

Materials: Ceric (IV) ammonium nitrate (CAN) ( $\geq 98.5 \%$ ), Cerium (III) chloride heptahydrate, Iron (II) chloride, Ammonium acetate, Methanol (hypergrade for LC-MS) and Acetic Acid ( $\geq 99.99 \%$ trace metals basis) were purchased from Sigma-Aldrich (https://www.sigmaaldrich.com). Cobalt(II) chloride hexahydrate was purchase from May and Baker. Ammonium nitrate (AN) ( $>95 \%$ ) was purchased from Merck (https://www.merckmillipore.com/AU/en). Cerium sulfate was purchased from LabChem (https://www.labchem.com/). Perfluoro-n-octanoic acid (PFOA) (98\%) was purchased from Synquest Laboratories (http://www.synquestlabs.com). Potassium salt of perfluorooctanesulfonic acid (PFOS) (98\%) (branched isomers is $15 \%$ and Linear PFOS is 85\% according to LC-MS) was purchased from Matrix Scientific (https://www.matrixscientific.com). Milli Q water was used in all experiments.

Adsorption Experiments: For testing low concentration PFAS system, PFASs were dissolved in Milli Q water as stock solution ( $30 \mu \mathrm{M}$ for PFOA, $20 \mu \mathrm{M}$ for PFOS). Ce( $\left.\mathrm{SO}_{4}\right)_{2}$, CAN, AN and other metal salts $\left(\mathrm{FeCl}_{2}, \mathrm{CoCl}_{2}, \mathrm{CoCl}_{2}, \mathrm{CeCl}_{3}\right)$ were dissolved in Milli Q water to make 6 mM stock solution. 0.5 ml or 0.75 ml PFAS stock solution ( 0.5 ml for PFOA and 0.75 ml for PFOS), different amount CAN (or $\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2}$, AN, other metal salts solution) and Milli Q water were mixed to achieve 1 ml system. Then the tubes were shaken 3 minutes at room temperature. After that, all samples were centrifuged at 10000 rpm and $100 \mu$ l supernatant was taken out and diluted uniformly (to reach below 100 ppb concentration) before LC-MS testing.
For high concentration PFAS system, PFASs were dissolved in Milli Q water to prepare the stock solutions ( 3 mM for PFOA, 2 mM for PFOS). CAN was dissolved in Milli Q water to make 0.6 M stock solution. 0.5 ml or 0.75 ml PFAS stock solution ( 0.5 ml for PFOA, 0.75 ml for PFOS), different amount CAN stock solution and Milli $Q$ water were added to 2 ml centrifuge tube to achieve 1 ml adsorption-complexation system. Then the tubes were shaken by a Vortex for 3 minutes at room temperature. After that, samples were centrifuged at 10000 rpm , then $100 \mu$ l supernatant was taken out and diluted uniformly (to reach below 100 ppb concentration) before LC-MS testing.

In order to investigate the effect of time, the tubes were kept for 3 days at room temperature. Then all the samples were centrifuged and $100 \mu$ l supernatant was taken out and diluted equally (to reach below 100 ppb concentration) before LCMS testing.

Measurement of PFAS: The concentration of different PFASs including PFOA and PFOS were analyzed by a Shimadzu LCMS-8050 and Nexera X2 LC system (Shimadzu, Kyoto, Japan). Shimpack XR-ODSIII column was used for separation at $40{ }^{\circ} \mathrm{C}$ using binary gradient of solvent A (methanol) and B ( 5 mM ammonium acetate in 0.05 \% acetic acid). The total flow rate was 0.4 $\mathrm{mLmin}^{-1}$. To identify the PFAS compounds, the electrospray negative ionization mode was used.


Figure. S1. Standard curve of PFOA


Figure. S2. Standard curve of PFOS


Figure. S3. The LC-MS detected concentrations of $15 \mu \mathrm{M}$ of PFOS in water before [PFOS:Ce(IV)]=1:0) and after the treatment ( 3 minutes) with $0.094 \mathrm{mM}, 0.19 \mathrm{mM}, 0.38 \mathrm{mM}$ and 0.75 mM of CAN.


Figure. S4. The LC-MS detected concentrations of $15 \mu \mathrm{M}$ of PFOA in water before [PFOA:Ce(IV)]=1:0) and after the treatment ( 3 minutes) with $0.38 \mathrm{mM}, 0.75 \mathrm{mM}, 1.5 \mathrm{mM}, 3 \mathrm{mM}$ and 4.5 mM of CAN.


Figure. S5. Precipitates for 1.5 mM PFAS (PFOA and PFOS) in water after treatment with 0.15 M , $0.075 \mathrm{M}, 0.038 \mathrm{M}$, and 0.019 M of CAN for three days.

## ${ }^{19}$ F-NMR and HRMS experiments:

${ }^{19} \mathrm{~F}$ NMR spectra were recorded in the solvents specified using a Bruker Avance 400 MHz spectrometer as designated. Chemical shifts are quoted in parts per million (ppm), to the nearest 0.01 ppm and internally referenced relative to the solvent nuclei. High-resolution mass spectrometry was performed by the Bioanalytical Mass Spectrometry facility, UNSW.


Figure. S6. ${ }^{19} \mathrm{~F}$ NMR of PFOS dissolved in DMSO-d6


Figure. S7. ${ }^{19} \mathrm{~F}$ NMR of PFOS filtrate from the PFOS and CAN reaction


Figure. S8. ${ }^{19} \mathrm{~F}$ NMR of PFOS precipitate after the CAN reaction


Figure. S9. Stacked ${ }^{19} \mathrm{~F}$ NMR of PFOS (a) PFOS dissolved in DMSO-d6 (b) The filtrate from the PFOS and CAN reaction (c). PFOS precipitate after the CAN reaction.


Figure. S10. ${ }^{19}$ F NMR of PFOA dissolved in DMSO-d6


Figure. S11. ${ }^{19} \mathrm{~F}$ NMR of PFOA filtrate from the PFOA and CAN reaction


Figure. S12. ${ }^{19} \mathrm{~F}$ NMR of PFOA precipitate after the CAN reaction


Figure. S13. Stacked ${ }^{19}$ F NMR of PFOA (a) PFOA dissolved in DMSO-d6 (b) The filtrate from the PFOA and CAN reaction (c). PFOA precipitate after the CAN reaction


Figure. S14. Stacked ${ }^{19}$ F NMR of PFOS (a) PFOS dissolved in DMSO-d6 (b) The filtrate from the PFOS and Ammonium Nitrate $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$ reaction.


Figure. S15. Stacked ${ }^{19} \mathrm{~F}$ NMR of PFOA (a) PFOA dissolved in DMSO-d6 (b) The filtrate from the PFOA and Ammonium Nitrate $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$ reaction.


Figure. S16. Stacked ${ }^{19}$ F NMR of PFOS (a) PFOS dissolved in DMSO-d6 (b) The filtrate from the PFOS and $\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2}$ reaction (c). PFOS precipitate after the $\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2}$ reaction


Figure. S17. Stacked ${ }^{19} \mathrm{~F}$ NMR of PFOA (a) PFOA dissolved in DMSO-d6 (b) The filtrate from the PFOA and $\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2}$ reaction (c) PFOA precipitate after the $\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2}$ reaction.
Sample submission report
Sample Analysis Request \# 3092932
Samples submitted by Jun Sun
Date run 2020-12-08
Operator Chowdhury Sarowar
Report prepared by Chowdhury Sarowar

Notes:

Sample: 7
Full spectrum

:
UNSW Research Infrastructure

Figure. S18. HRMS data for PFOA precipitate (dissolved in 1:20 DMSO:Water) formed after the reaction of PFOA and CAN.

Sample submission report
Sample Analysis Request \# 3092932 Samples submitted by

Jun Sun 2020-12-08
Chowdhury Sarowar
Chowdhury Sarowar

Operator
Report prepared by

Sample: 9
Full spectrum
Sample_9_Neg_Full \#2-40 RT: 0.05-1.11 AV: 39 NL: 1.43E7
T: FTMS-p NSI Full ms [100.00-2000.00]


Figure. S19. HRMS data for PFOS precipitate (dissolved in 1:20 DMSO:Water) formed after the reaction of PFOS and CAN.

