Supporting Information

Fast Conversion of Lithium (poly) sulfides in Lithium-Sulfur

Batteries Using Three-Dimensional Porous Carbon

Xinghua Liang^{a,*}, Xi Wu^a, Shuaibo Zeng^{b,*}, Wei Xu^b, Xingtao Jiang^a, Linxiao Lan^a

^a Guangxi University of Science and Technology, Guangxi Key Laboratory of

Automobile components and Vehicle Technology, Liuzhou 545006, China

^b China School of Automotive and Transportation Engineering, Guangdong Polytechnic Normal University, Guangzhou, 510632, China

*Corresponding author.

E-mail address: lxh304@yahoo.com.cn (Xinghua Liang), zsbqiche@163.com (Shuaibo Zeng)

Figure S1. The (a) SEM and (b) EDS diagram of spherical SiO₂ coated with ZIF.

Figure S2. The (a) SEM and (b) EDS diagram of ZIF coating without SiO₂ template.

Figure S3. SEM image of ZIF coated spherical SiO₂ material after carbonization.

Figure S4. SEM image of (a) TDPC and corresponding elemental maps of (b) overall view map, (c) C element, (d) S element, (e) Co element, and (k) N element.

Figure S5. the UV-Vis of solution 2 and solution 4 in Figure 3f.

Figure S6. Equivalent circuit. The high-frequency intercept on the real axis represents the ohmic resistance (R_e) of the cell, including the electrolyte and electrode resistances. The semicircles in the high-frequency region along with a radial oblique line in the low-frequency region correspond to the charge-transfer resistance (R_{ct}) and the Warburg impedance (W_0).

Figure S7. (b) SEM image of the corresponding electrode after washing by THF. charge-discharge curves of a) TDPC/S cathode, and b) S/C cathode at 0.25 C of different cycles.

Figure S8. Charge-discharge curves of a) TDPC/S cathode, and b) S/C cathode at different current densities.

Table	S1.	Summary	of	the	performance	of	sulfur	based	cathodes	for	Li-S	batteries	in	published
literatu	res.													

	Synthetic Method	First Discharge Capacity (mAh/g)	C-Rate Capacity (mAh/g)	Total Cycle Number	Sulphur Looading in electrode	Reference
TDPC@S	removable- template approach	1140 (0.1C)	959.9(0.25C); 813.5(0.5C); 519.6 (1C); 349.1 (2C)	500 (1C)	3.8 mg cm ⁻²	This work
HPBC -S	sol–gel route	922(0.5C)	550(2C)	300(1C)	81.29 wt%	J. Mater. Chem. A, 2014, 2, 13916–13922
C/S@PPy	in situ chemical oxidative polymerizat ion	1120(0.2C)	400(1C)	100(1C)	84 wt%	ACS Appl. Mater. Interfaces 2013, 5, 2208–2213
CNT-S	the bottom– up fabrication	995(0.05C)		150(0.05C)	6.3 mg cm ⁻²	Adv. Funct. Mater. 2014, 24, 6105–6112
Poly(S-r-DIB) copolymer	Copolymer sulfur electrode	1100(0.1C)	740(1C); 430(2C)	300 (0.25)	0.8 mg cm ⁻² 67.5%	Chem. Commun., 2016, 52, 4525 -4528
SM microgels	Microgels electrode	1118(0.1C)	750(0.5C) 620(1C)	500 (0.5)	1.0 mg cm ⁻²	Chem. Commun., 2016, 52, 4525 -4528