Supporting Information

Heterostructure Ni₃S₄-MoS₂ with interfacial electron redistribution used for enhancing hydrogen evolution

Jingmin Ge, a Jiaxing Jin, Yanming Cao, Meihong Jiang, Fazhi Zhang, Hongling

Guo,*b Xiaodong Lei*a

^a State Key Laboratory of Chemical Resource Engineering, Beijing University of

Chemical Technology, Beijing 100029, China. Tel: +86-10-64455357;

^b Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China

*Corresponding author

E-mail: guohongling1234@163.com; leixd@mail.buct.edu.cn

Fig. S1. (a-c) SEM images of pure MoS₂. (d-e) SEM images of Ni₃S₄-MoS₂.

Fig. S2. EDS spectrum of Ni_3S_4 -MoS₂.

Fig. S3. LSV curves of Ni_3S_4 -MoS₂ with different Ni contents in 1M KOH.

Fig. S4. Contact angles of Ni_3S_4 -MoS₂ (a) and MoS₂ (b).

Fig. S5. CV curves of MoS_2 (a) and Ni_3S_4 (b) at the scan rates of 5, 10, 15, 20, 25 and 30 mV s⁻¹ in 1.0 M KOH.

Fig. S6. (a and b) SEM images of Ni_3S_4 -MoS₂ after 3000 CV curves. (c) SEM image

of Ni_3S_4 -MoS₂ after a stability test for 20 h.

Fig. S7. Top-view of the initial structures for H adsorption on the (002) plane of MoS₂ (a) and the (311) plane of Ni₃S₄ (b), and for OH adsorption on the (311) plane of Ni₃S₄ (c) and the (002) plane of MoS₂ (d) in the heterostructure Ni₃S₄-MoS₂. The optimized structures for H adsorption on the (002) plane of MoS₂ (e) and the (311) plane of Ni₃S₄ (f), and for OH adsorption on the (311) plane of Ni₃S₄ (g) and the (002) plane of MoS₂ (h) in the heterostructure Ni₃S₄-MoS₂.

Fig. S8. HER reaction pathways and relevant structures of the most possible intermediate steps on the surface of MoS_2 , Ni_3S_4 and Ni_3S_4 -MoS₂, respectively.

Crystalline	ICP-OES test results
5%Ni ₄ S ₃ -MoS ₂	Ni 4.37 wt.%
10%Ni ₄ S ₃ -MoS ₂	Ni 7.7 wt.%
$20\%Ni_4S_3$ -MoS ₂	Ni 14.2 wt.%
30%Ni ₄ S ₃ -MoS ₂	Ni 20.7 wt.%

Table S1 Ni_4S_3 -MoS₂ samples with different Ni contents.

_

Element	Weight%	Atomic%
S	55.75	77.26
Ni	7.63	5.77
Mo	36.63	16.96
Totals	100.00	

Table S2 The EDS quantitative analysis results of Ni_3S_4 -MoS2.

Element	Bader Charge / e	
Mo-10	0.05	
Mo-20	0.02	
Ni-5	-0.13	
Ni-8	-0.27	
Ni-11	-0.14	
Ni-17	-0.06	
Ni-22	-0.05	
S-15	0.21	
S-35	0.19	
S-41	0.16	
S-45	0.15	

Table S3 Bader char	ge analysis	of Ni_3S_4 -MoS ₂
---------------------	-------------	--------------------------------

Table S4 The adsorption free energy (ΔE) and Gibbs free energy (ΔG) of hydrogen generations and water dissociation during HER on the surface of MoS₂, Ni₃S₄ and Ni₃S₄-MoS₂.

_	$\Delta E(\mathrm{H}^*)/\mathrm{eV}$	$\Delta G(\mathrm{H}^*)/\mathrm{eV}$	$\Delta E (\mathrm{H_2O})/\mathrm{eV}$	$\Delta G (\mathrm{H_2O})/\mathrm{eV}$
MoS ₂	1.69	1.93	3.73	4.18
Ni_3S_4	-0.90	-0.66	3.84	4.29
Ni ₃ S ₄ -MoS ₂	-0.60	-0.36	-0.55	-0.10

Catalyst	Electrolyte	η ₁₀ (mV)	Tafel slope (mV dec ⁻¹)	Referenc e
NiS ₂ /MoS ₂	1M KOH	235	58	[1]
MoO ₃ -MoS ₂	0.5 M H ₂ SO ₄	200	74	[2]
MoP/MoS ₂	1M KOH	92	59.8	[3]
	1M KOH	149	60.22	F 4 3
$N1_2P/MOS_2/N:CNT$	0.5 M H ₂ SO ₄	39.5	57.8	[4]
Mo ₂ N–Mo ₂ C/HGr	0.5 M H₂SO₄	154	55	[5]
	1M KOH	157	68	[3]
MoSSe@rGO	0.5 M H ₂ SO ₄	135(ŋ ₅)	51	[6]
(CoMo)S ₂ /graphene	0.5 M H ₂ SO ₄	100	60.8	[7]
Fe-MoS ₂ /Ni ₃ S ₂ /NF	1M KOH	130.6	112.7	[8]
Co_3O_4/MoS_2	1M KOH	205	98	[9]
MoS_2/Ni_3S_2	1M KOH	110	83.1	[10]
MoS_2 - Ni_3S_2	1M KOH	98	61	[11]
Ni(OH) ₂ /MoS ₂	1M KOH	156	56.4	[12]
MoS ₂ NiS MoO ₃	1M KOH	95	54.5	[13]
Ni-MoS ₂ /CC	1M NaOH	107	162	[14]

 Table S5 Summary of several representative recently reported HER electrocatalysts

 employed in acidic and alkaline electrolytes.

Ni–MoS ₂ /NCNTs	0.5 M H ₂ SO ₄ 1M KOH	158 179	69.3 62.3	[15]
MoS ₂ /rGO	0.5 M H ₂ SO ₄	160	52	[16]
MoS ₂ /g-CN	0.5 M H ₂ SO ₄	141	57	[17]
NC@MoS ₂ /Ni-NC	1M KOH	96.3	81.1	[18]
CoS ₂ -MoS ₂	1M KOH	130	66.8	[19]
Ni_3S_4 -Mo S_2	1M KOH	116	81	This work

References

- P. Y. Kuang, T. Tong, K. Fan and J. G. Yu, In Situ Fabrication of Ni-Mo Bimetal Sulfide Hybrid as an Efficient Electrocatalyst for Hydrogen Evolution over a Wide pH Range, *Acs Catalysis*, 2017, 7, 6179-6187.
- X. Hou, A. Mensah, M. Zhao, Y. Cai and Q. Wei, Facile controlled synthesis of monodispersed MoO₃-MoS₂ hybrid nanospheres for efficient hydrogen evolution reaction, *Applied Surface Science*, 2020, **529**, 147115.
- Q. Liu, Z. Xue, B. Jia, Q. Liu, K. Liu, Y. Lin, M. Liu, Y. Li and G. Li, Hierarchical Nanorods of MoS₂/MoP Heterojunction for Efficient Electrocatalytic Hydrogen Evolution Reaction, *Small*, 2020, 16, e2002482.
- M. Kim, M. A. R. Anjum, M. Lee, B. J. Lee and J. S. Lee, Activating MoS₂ Basal Plane with Ni₂P Nanoparticles for Pt-Like Hydrogen Evolution Reaction in Acidic Media, *Advanced Functional Materials*, 2019, 29, 1809151.
- H. Yan, Y. Xie, Y. Jiao, A. Wu, C. Tian, X. Zhang, L. Wang and H. Fu, Holey Reduced Graphene Oxide Coupled with an Mo₂N-Mo₂C Heterojunction for Efficient Hydrogen Evolution, *Adv Mater*, 2018, **30**, 1704156.
- B. Konkena, J. Masa, W. Xia, M. Muhler and W. Schuhmann, MoSSe@reduced graphene oxide nanocomposite heterostructures as efficient and stable electrocatalysts for the hydrogen evolution reaction, *Nano Energy*, 2016, 29, 46-53.
- L. X. Chen, Z. W. Chen, Y. Zhang, C. C. Yang and Q. Jiang, Insight into the excellent catalytic activity of (CoMo)S₂/graphene for hydrogen evolution reaction,

Applied Catalysis B: Environmental, 2019, 258, 118012.

- J. Y. Xue, F. L. Li, Z. Y. Zhao, C. Li, C. Y. Ni, H. W. Gu, P. Braunstein, X. Q. Huang and J. P. Lang, A hierarchically-assembled Fe-MoS₂/Ni₃S₂/nickel foam electrocatalyst for efficient water splitting, *Dalton Transactions*, 2019, 48, 12186-12192.
- A. Muthurasu, V. Maruthapandian and H. Y. Kim, Metal-organic framework derived Co₃O₄/MoS₂ heterostructure for efficient bifunctional electrocatalysts for oxygen evolution reaction and hydrogen evolution reaction, *Applied Catalysis B-Environmental*, 2019, **248**, 202-210.
- J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. H. Dong, S. H. Liu, X. D. Zhuang and X. L. Feng, Interface Engineering of MoS₂/Ni₃S₂ Heterostructures for Highly Enhanced Electrochemical Overall-Water-Splitting Activity, *Angewandte Chemie-International Edition*, 2016, **55**, 6702-6707.
- Y. Q. Yang, K. Zhang, H. L. Ling, X. Li, H. C. Chan, L. C. Yang and Q. S. Gao, MoS₂-Ni₃S₂ Heteronanorods as Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting, *Acs Catalysis*, 2017, 7, 2357-2366.
- Z. Y. He, Q. Y. Liu, Y. M. Zhu, T. Tan, L. X. Cao, S. J. Zhao and Y. Chen, Defect-Mediated Adsorption of Metal Ions for Constructing Ni Hydroxide/MoS2 Heterostructures as High-Performance Water-Splitting Electrocatalysts, *Acs Applied Energy Materials*, 2020, **3**, 7039-7047.
- C. Wang, B. Tian, M. Wu and J. Wang, Revelation of the Excellent Intrinsic Activity of MoS₂|NiS|MoO₃ Nanowires for Hydrogen Evolution Reaction in

Alkaline Medium, ACS Applied Materials & Interfaces, 2017, 9, 7084-7090.

- Y. Li, L. X. Wang, A. L. Song, M. R. Xia, Z. P. Li and G. J. Shao, The study on the active origin of electrocatalytic water splitting using Ni-MoS₂ as example, *Electrochimica Acta*, 2018, 268, 268-275.
- T. Dong, X. Zhang, P. Wang, H.-S. Chen and P. Yang, Formation of Ni-doped MoS₂ nanosheets on N-doped carbon nanotubes towards superior hydrogen evolution, *Electrochimica Acta*, 2020, **338**, 135885.
- Y. Wang, F. Lu, K. Su, N. Zhang, Y. Zhang, M. Wang and X. Wang, Engineering Mo-O-C interface in MoS₂@rGO via charge transfer boosts hydrogen evolution, *Chemical Engineering Journal*, 2020, **399**, 126018.
- M. Q. Guan, C. Wang, S. Li, H. W. Du and Y. P. Yuan, Understanding the Enhanced Electrocatalytic Hydrogen Evolution via Integrating Electrochemically Inactive g-C₃N₄: The Effect of Interfacial Engineering, *Acs Sustainable Chemistry* & Engineering, 2020, 8, 10313-10320.
- Q. Luo, C. Wang, H. Xin, Y. Qi, Y. Zhao, J. Sun and F. Ma, Hollow Sandwiched Structure of Ni-Modified MoS₂ Wrapped into Symmetrical N-Doped Carbon toward a Superior Hydrogen Evolution Electrocatalyst, ACS Sustainable Chemistry & Engineering, 2021, 9, 732-742.
- Y. X. Zhou, W. Zhang, M. H. Zhang, X. X. Shen, Z. X. Zhang, X. D. Meng, X. S. Shen, X. H. Zeng and M. Zhou, Hetero-structured CoS₂-MoS₂ hollow microspheres with robust catalytic activity for alkaline hydrogen evolution, *Applied Surface Science*, 2020, **527**, 146847.