Insights in metal retention role on the antibacterial behavior of montmorillonite and cellulose supported copper and silver nanoparticles

Farzaneh Noori et al.

SUPPORTING INFORMATION

Fig. S1. Color changes after reduction of Cu^{2+} and Ag^+ in the presence of NaBH₄ (a) and color changes of H20@NaMt composites after MNP_S and cation incorporation (b).

Fig. S2. Color changes of cellulose-based samples after the dispersion of metal cation and metal nanoparticles without or with the presence of $NaBH_4$ respectively.

Fig. S3. Color changes and optical microscopy images of untreated NaMt (a) and MNPs-loaded NaMt (b).

Fig. S4. Color changes and optical microscopy image of untreated CT (a) and MNPs-loaded CT (b).

Fig. S5. ED-XRF spectra of some spots on SEM images of Ag⁰/H20-NaMt.

Fig. S6. ED-XRF spectra of some spots on SEM images of Cu⁰/H20-NaMt.

Fig. S7. CO₂-TPD patterns of clay-based samples (a) and CT-based samples (b):

Fig. S8. XRD patterns of bentonite (1), NaMt (2)) and residual ash from bentonite purification (3).

Fig. S9. TGA patterns of (a) clay-based samples: NaMt (1), Cu⁰/NaMt (2) and Ag⁰/NaMt (3) and of (b) Celluloase-based materials: CT (1), H20-CT (2), Cu⁰/CT (3), Ag⁰/CT (4), Cu⁰/H20-CT (5) and Ag⁰/H20-CT (6). TGA patterns were recorded between 25 and 700 °C for clay based samples and between 25 and 200 °C for CT-based materials.

Fig. S10. Inhibition zones in *Bacillus Subtilis168* proliferation in the presence of NaMt (a) and metalloaded H20/NaMt composites (b).

Fig. S11. Antibacterial test of MNP loaded in organoclay- based samples. *Escherichia coli* (a1, b1, c1 and d1), *Bacillus subtilis168* (a2, b2, c2 and d2) were incubated for 24h at 37 °C with 5 mg of Ag⁰/H20@NaMt (a1-2); Cu⁰/H20@NaMt (b1-2); Ag⁺/H20@NaMt (c1-2) and Cu²⁺/H20@NaMt (d1-2). **This figure should be redesigned as those made by me (Azzouz).**

Samples	Zeta potential	Dortialo giza (nm)**	nII	Inhibition zone diameter (cm)		
	(mV)*	ratucie size (iiiii)	рп	<i>E. coli</i> DH5α	B. subtilis 168	
NaMt	-26.56	342.7	6.01	0	0	
Boltorn H20	-28.57	201.2	4.62	0	0	
Cu ⁰ /NaMt	-23.19	221.2	9.28	1.40	1.83	
Ag ⁰ /NaMt	-28.31	152.7	9.08	1.87	1.83	
H20-NaMt	-38.12	373.7	7.59	0	0	
Cu ⁰ /H20-NaMt	-26.91	164.2	9.25	1.77	1.83	
Ag ⁰ /H20-NaMt	-27.21	127.6	9.16	1.07	1.50	

Table S1. Zeta potential, particle size and inhibition zone diameter for claybased samples

*Average error on Zeta potential = 6.7%; **Average error on particle size = 5.7%.

Table S2. Inhibition zone diameters (cm) for different amounts of metal-loaded clay samples.

Samples	B. subtilis 168				E. coli DH5α			
Concentrations (mg powder)	1	3	6	9	1	3	6	9
NaMt-Cu ⁰	2,0	2,3	2,6	3,2	0	0,2	1,3	1,6
NaMt-Ag ⁰	0	0	0,7	1,5	0	0,9	1,3	1,6
Cuº/NaMt@H20	1,3	1,3	1,7	3,0	0,6	1,7	2,1	2,4
Ag ⁰ /NaMt@H20	0,7	1,3	2,1	2,2	0,9	1,4	1,6	1,8
Cu ²⁺ /NaMt@H20	2,3	2,8	3,4	3,5	2,0	2,4	2,5	2,5
Ag ⁺ /NaMt@H20	2,0	2,8	3,3	3,3	0,8	1,1	1,2	1,7