Supporting Information

A simple method for the preparation of nickel selenide and cobalt selenide mixed catalyst to enhance bifunctional oxygen activity for Zn-air battery

Li-Juan Peng,^{ab} Jie-Ping Huang,^a Qiu-Ren Pan,^a Ying Liang,^a Na Yin,^a Hang-Chang Xu,^a

Nan Li*a

^aSchool of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Clean

Energy and Materials, Guangzhou University, Guangzhou 510006, China.

^bSchool of Chemistry and Materials Science, Jinan University, Guangzhou 510632,

China.

*Corresponding author: E-mail: <u>nanli@gzhu.edu.cn</u>

†Electronic supplementary information (ESI) available. See DOI: 10.1039/x0xx00000x

Fig. S1 The unit cell of $\mathrm{Ni}_{0.85}\mathrm{Se}$ and $\mathrm{Co}_{0.85}\mathrm{Se}$

Fig. S2 SEM of (a, b) NHCS, (c, d) $Ni_{0.85}$ Se-NHCS, (e, f) $Co_{0.85}$ Se -NHCS, (g, i) $Ni_{0.85}$ Se/Co_{0.85}Se-NHCS-2, and (j, k) 50% Ni-Co_{0.85}Se-NHCS

Fig. S3 EDX of $\mathrm{Ni}_{0.85}\mathrm{Se}\text{-NHCS}$ and corresponding element content

	6—	Element	wt%	wt% Sigma
		С	97.75	0.30
s/eV		N	0.28	0.27
	4- C	Со	0.90	0.08
	-	Se	1.07	0.11
cb		Se • • • • • • • • • • • • • • • • • • •	Se 1 ' ' ' ' ' ' ' ' ' ' 15	I ' I ' I ' I ' keV

Fig. S4 EDX of Co_{0.85}Se-NHCS and corresponding element content

Fig. S5 (a) the XRD patterns of $Ni_{0.85}$ Se/Co_{0.85}Se-NHCS-2 and (b) Raman patterns of $Ni_{0.85}$ Se/Co_{0.85}Se-NHCS-2 and NHCS, (c) N₂ adsorption/desorption isotherms and (d) corresponding pore size distributions curves of $Ni_{0.85}$ Se/Co_{0.85}Se-NHCS-2.

Fig. S6 X-ray photoelectron spectroscopy and corresponding C1s spectra

Fig. S7 LSV curves for ORR varying the 400 rpm to 2025 rpm and LSV curves for OER of NHCS.

Fig. S8 EIS spectra of Ni_{0.85}Se-NHCS, Co_{0.85}Se-NHCS, and Ni_{0.85}Se/Co_{0.85}Se-NHCS-2.

Fig. S9 LSV curves for (a) ORR, corresponding (b, c) Tafel curves, LSV curves for (d) OER and corresponding (e, f) Tafel curves of the as-synthesized catalysts.

Fig. S10 CV curves of (a) $Ni_{0.85}$ Se-NHCS, (b) $Co_{0.85}$ Se-NHCS, (c) $Ni_{0.85}$ Se/Co_{0.85}Se-NHCS-1, (d) $Ni_{0.85}$ Se/Co_{0.85}Se-NHCS-2 and (e) $Ni_{0.85}$ Se/Co_{0.85}Se-NHCS-3 at different scan rates.

Fig. S11 The methanol tolerance of $Ni_{0.85}$ Se/Co_{0.85}Se-NHCS-2 and 20 % Pt/C by the chronoamperometric test at 0.3 V *vs*. RHE in O₂-saturated 0.1 M KOH solution

Fig. S12 The chronoamperometric test of $Ni_{0.85}$ Se/Co_{0.85}Se-NHCS-2 and 20 % Pt/C at 0.3 V vs. RHE in O₂-saturated 0.1 M KOH solution

Fig. S13 The photo of the zinc-air battery assembled with $Ni_{0.85}Se/Co_{0.85}Se-NHCS-2$ driving a timer.

	E _{onset} (V)	$E_{1/2}(V)$	J _{limiting} (mA cm ⁻²)	$E_{j=10}\left(V ight)$	$\Delta E(V)$
Ni _{0.85} Se-NHCS	0.79	0.69	3.71	1.62	0.93
Co _{0.85} Se-NHCS	0.89	0.76	4.67	1.65	0.89
Ni _{0.85} Se/Co _{0.85} Se- NHCS-1	0.84	0.76	4.34	1.64	0.88
Ni _{0.85} Se/Co _{0.85} Se- NHCS-2	0.90	0.77	4.66	1.63	0.86
Ni _{0.85} Se/Co _{0.85} Se- NHCS-3	0.86	0.75	4.02	1.63	0.88
20 % Pt/C & RuO ₂	0.94	0.82	5.05	1.59	0.77

Table S1. The bifunctional activity of as-synthesized catalysts for ORR and OER

catalyst	Mass	Electroly	ORR	ORR	OER	OER	Refe
	loadi	te (mol	half-	Tafel	potenti	Tafel	renc
	ng	L ⁻¹)	wave	slope	al at 10	slope	e
	(mg		poten	(mV	mA	(mV	
	cm ⁻²)		tial	dec ⁻¹)	cm ⁻²	dec ⁻¹)	
			(V)		(V)		
Ni So	0.12	0.1 M		71.7		141.6	This
NHCS		KOH	0.69		1.62		wor
NIICS							k
Cos or Se-		0.1 M					This
NHCS	0.12	KOH	0.76	62.7	1.65	136	wor
MICS		KOII					k
Ni _{0.85} Se/Co _{0.8}	0.12	0.1 M	0.78	58.2	1.63	118.3	This
₅ Se-NHCS-2		KOH					wor
							k
Ni _x Co _{0.85-x} Se	0.60	0.1 M	0.78	/	1.54	62	1
		KOH					
Co _{0.85} Se@N	0.40	1 M	/	/	1.55	75	2
С		КОН					
$Co_{0.85}Se@C$	0.23	0.1 M	0.82	69	1.58	61	3
NFs		КОН					
coral-like	0.28	0.1 M	/	/	1.53	40	4
CoSe		КОН					-
$\mathrm{Co}_{0.7}\mathrm{Fe}_{0.3}\mathrm{Se}_2$	0.51	0.5 M	0.584	110	/	/	5
		H_2SO_4					6
$CoSe_2$	1	0.1 M	/	/	1.74	67	6
		КОН					<i>.</i>
NiSe ₂	1	0.1 M	/	/	1,64	50	6
		КОН					-
$(Ni, Co)Se_2$	0.17	0.1 M	0.7	/	1.59	86	7
		КОН					0
NiCo ₂ Se ₄	0.39	1 M	0.77	/	1.56	56	8
		KOH					

Table S2. Comparison with the bifunctional activity of different catalysts for ORR and OER

Catalyst	Open circuit potential (V)	Maximum power density (mW cm ⁻²)	Reference
Ni _{0.85} Se/Co _{0.85} Se-NHCS-2	1.40	118.34	This work
20% Pt/C	1.46	154.13	This work
(Ni, Co)Se ₂	1.38	110	7
IOSHs-NSC-Co ₉ S ₈	1.49	113	9
N-CoS ₂ YSSs	1.41	81	10
Co/Co ₃ O ₄ @PGS	1.45	118.27	11
$Co/Co_x M_y$ (M=P, N)	1.43	125.2	12
Ni _{0.6} Co _{0.4} Se ₂ -O	1.41	110	13
$O-Co_{1-x}Mo_xSe_2$	1.53	120.28	14
FeCo-N-C-700	1.39	150	15
Co-MOF-800	1.38	144	16

Table S3. Comparison with the performance of zinc-air batteries of nonprecious catalysts.

References

- X. Zheng, J. Zhang, J. Wang, Z. Zhang, W. Hu and Y. Han, *Sci. China Mater.*, 2019, 63, 347-355.
- 2 T. Meng, J. Qin, S. Wang, D. Zhao, B. Mao and M. Cao, *J. Mater. Chem. A*, 2017, **5**, 7001-7014.
- 3 L. Gui, Z. Huang, D. Ai, B. He, W. Zhou, J. Sun, J. Xu, Q. Wang and L. Zhao, *Chem. Eur. J.* 2020, **26**, 4063.
- 4 M. Liao, G. Zeng, T. Luo, Z. Jin, Y. Wang, X. Kou and D. Xiao, *Electrochim. Acta*, 2016, **194**, 59-66.
- 5 B. Yu, J. Jin, H. Wu, S. Wang, Q. Xia and H. Liu, Int. J. Hydrog. Energy, 2017, 42,

236-242.

- 6 I. H. Kwak, H. S. Im, D. M. Jang, Y. W. Kim, K. Park, Y. R. Lim, E. H. Cha and J. Park, *ACS Appl. Mater. Interfaces*, 2016, **8**, 5327-5334.
- 7 C. Sun, X. Guo, J. Zhang, G. Han, D. Gao and X. Gao, *J. Energy Chem.*, 2019, **38**, 34-40.
- 8 H. Sancho, Y. Zhang, L. Liu, V. G. Barevadia, S. Wu, Y. Zhang, P.-W. Huang, Y. Zhang, T.-H. Wu, W. You and N. Liu, *J. Electrochem. Soc.*, 2020, **167**, 056503.
- 9 K. Tang, C. Yuan, Y. Xiong, H. Hu and M. Wu, Appl. Catal. B, 2020, 260, 118209
- 10 X. F. Lu, S. L. Zhang, E. Shangguan, P. Zhang, S. Gao and X. W. D. Lou, *Adv. sci.*, 2020, 7, 2001178.
- 11 Y. Jiang, Y.-P. Deng, J. Fu, D. U. Lee, R. Liang, Z. P. Cano, Y. Liu, Z. Bai, S. Hwang, L. Yang, D. Su, W. Chu and Z. Chen, *Adv. Energy Mater.*, 2018, **8**, 1702900
- 12 J. Chen, C. Fan, X. Hu, C. Wang, Z. Huang, G. Fu, J. M. Lee and Y. Tang, *Small*, 2019, **15**, 1901518.
- 13 X. Zheng, Y. Cao, X. Zheng, M. Cai, J. Zhang, J. Wang and W. Hu, ACS Appl. Mater. Interfaces, 2019, 11, 27964-27972.
- 14 S. Prabhakaran, J. Balamurugan, N. H. Kim and J. H. Lee, Small, 2020, 16, 2000797.
- 15 X. Duan, S. Ren, N. Pan, M. Zhang and H. Zheng, J. Mater. Chem. A, 2020, 8, 9355-9363.
- 16 X. Duan, N. Pan, C. Sun, K. Zhang, X. Zhu, M. Zhang, L. Song and H. Zheng, J. Energy Chem., 56, 290-298.