Electronic Supplementary Information

A comprehensive study on Lithium-based reactive hydride composite (Li-RHC) as a reversible solid-state hydrogen storage system toward potential mobile applications

Fahim Karimi,*a Philipp Klaus Pranzas,^a Julián Atilio Puszkiel,^{c,a} María Victoria Castro Riglos,^b Chiara Milanese,^d Ulla Vainio,^e Claudio Pistidda,^a Goekhan Gizier,^a Thomas Klassen,^a Andreas Schreyer,^f and Martin Dornheim^a

^aDepartment of Nanotechnology, Institute of Materials Research, Helmholtz–Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany.Address here.

^bDepartment of Metalphysics, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Centro Atómico Barilo-che, Av. Bustillo km 9500 S.C. de Bariloche, Argentina.

^cDepartment of Physicochemistry of Materials, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Centro Atómico Bariloche, Av. Bustillo km 9500 S.C. de Bariloche, Argentina.

^dC.S.G.I. & Department of Chemistry, Physical Chemistry Section, University of Pavia, Viale Taramelli 16 - 27100 Pavia- ITALY.

^eHitachi High-Tech Analytical Science Finland, Finland

^fEuropean Spallation Source ERIC Box 176 S-22100 Lund, Sweden.

Figure S1. a) Layered structure of MgB₂ and b) Closo-structure of Boron Crystal structure.

Figure S2. a) ASAXS curves collected at six energies close to the K-absorption edge of Nb (18.9 keV) b) ASAXS curves corrected for Kapton and incoherent scattering.

Figure S3. Merged SANS/USANS curves of pure 2LiBH₄+MgH₂ with different isotopes after the first desorption.

Fitting model

For the SAXS/ASAXS and SANS/USANS scattering curves spherical particle distribution is assumed. The form factor of a sphere is given by:

$$F(q, r, \Delta \eta(E)) = 3\Delta \eta(E) \frac{\sin(qr) - qr\cos(qr)}{(qr)^3}$$
(1)

and the size distribution of the spheres are assumed to be log-normal:

$$N(r) = \frac{1}{(2\pi)^2 r\sigma} exp\left(-\ln\left(\frac{r}{\mu}\right)^2/2\sigma^2\right)$$
(2)

Table S1. Kinetic models for fitting the volumetric measurements of pure- and doped Li-RHC.¹⁻³

Equation of the model	Model description
$\alpha(t) = kt$	Chemisorption/recombination
	on the particle surface is the
	rate-limiting step.
$[-ln^{in}(1-\alpha(t))]^{1/2} = kt$	2-dimensional growth of
	existing nuclei with constant
	interface velocity (2D-
	KJMA).
$[-ln^{[10]}(1-\alpha(t))^{1/3}) = kt$	3-dimensional growth of
	existing nuclei with constant
	interface velocity (3D-
	KJMA).
$[-ln^{m}(1-\alpha(t)]^{2/3}) = kt$	Diffusion controlled 3-
	dimensional growth of
	existing nuclei with
	decreasing interface velocity
	(DC: 3D-KJMA).
$1 - (1 - \alpha(t))^{1/2}) = kt$	2-dimensional growth of
	contracting volume with
	constant interface velocity
(4.10)	(2D-CV).
$1 - (1 - \alpha(t))^{(1/3)} = kt$	3-dimensional growth of
	contracting volume with
	constant interface velocity
	(3D-CV).
$1 - (2\alpha(t)/3) - (1 - \alpha(t))^{2/3}) = kt$	Diffusion controlled 3-
	dimensional growth of
	contracting volume with
	constant interface velocity
	(DC: 3D-CV).

Figure S4. Kinetic models for the first desorption of a) pure Li-RHC and b) doped Li-RHC with the corresponding best fits.

References

- 1. M. Avrami, *The Journal of Chemical Physics*, 1939, 7, 1103-1112.
- 2. M. Avrami, The Journal of Chemical Physics, 1940, 8, 212-224.
- 3. M. Avrami, *The Journal of Chemical Physics*, 1941, 9, 177-184.