Chemical vapour deposition (CVD) of nickel oxide using the novel nickel dialkylaminoalkoxide precursor [Ni(dmamp')2] (dmamp' = 2-dimethylamino-2-methyl-1-propanolate)

Rachel L. Wilson¹, Thomas J. Macdonald^{1,2}, Chieh-Ting Lin³, Shengda Xu³, Alaric Taylor⁴, Caroline E. Knapp¹, Stefan Guldin⁴, Martyn A. McLachlan³, Claire J. Carmalt^{1*}, Chris S. *Blackman1,5**

Table S1 outlines the crystal data and structure refinement details, and **Table S2** selected

bond lengths and bond angles, for $[Ni(dmamp')_2]$.

Table S1: Crystal data and structure refinement for [Ni(dmamp')₂]

Table S2: Selected bond lengths and bond angles for compound (1) [Ni(dmamp')₂] (in which $11-X$, $1-Y$, $1-Z$).

Film thickness was obtained from the ellipsometry measurements and showed an approximately linear relationship of increasing film thickness with deposition temperature (**Table S3**).

Table S3: Film thickness and refractive index values of NiO films deposited by CVD of [Ni $(dmamp')_2$] at various temperatures

Deposition time (hours)	Growth temp $(^{\circ}C)$	Film thickness (nm)	n (a) 632.8 nm
24	250		ن. 1

Figure S1. TGA/DSC curves for [Ni(dmamp')₂].

Figure S2: Temperature dependence on the film thickness of NiO films deposited by CVD of $[Ni(dmamp')_2]$ grown for a given time of 24 hours.

Films deposited at a growth temperature of 400 °C appeared visually non-uniform in thickness, with the inlet end of the substrate thicker than the outlet end of the substrate. Reduction of the growth temperature from 400 °C to 300 °C resulted in visually more uniform thin films with refractive index values more consistent with literature values for NiO. As a growth temperature of 300 °C appeared to provide visually uniform films with low roughness, subsequently the relationship between deposition time and NiO film thickness was investigated at this temperature (**Figure S3**).

Figure S3: Relationship between deposition time and film thickness for NiO films deposited by CVD of $[Ni(dmamp')_2]$ at a single growth temperature of 300 °C.

Figure S4: Typical XPS survey spectrum of NiO films deposited by CVD of [Ni(dmamp')₂] at a growth temperature of 300 °C.

High resolution surface scans (Figure S5a) of the Ni2p peak confirm the presence of Ni^{2+} , with $2p_{3/2}$ and $2p_{1/2}$ peak binding energies of 855.4 eV and 873.2 eV respectively, with a peak separation of 17.8 eV. These values are within \pm 0.2 eV of literature values.^[1] Characteristic satellite peaks for the $2p_{3/2}$ and $2p_{1/2}$ peaks were observed at 861.8 \pm 0.2 eV and 880.2 \pm 0.2 eV respectively. The prominent satellite shoulder 1.8 eV above the Ni 2p_{3/2} principal peak is unique to NiO.[2]

De-convolution of the O1s peak reveals 2 peaks. The two peaks at higher binding energy, 532.8 ± 0.2 eV and 531.4 ± 0.2 eV can be attributed to surface bound carbon and surface adsorbed water, respectively. The peak with the lowest binding energy $(529.6 \pm 0.2 \text{ eV})$ is attributed to the O1s core peak of O^2 bound to Ni²⁺ (Figure S5b). Again, these peaks are consistent with literature values for these peak environments.

Figure S5: Typical high resolution surface XPS spectra of a) Ni2p peak and b) de-convoluted O1s peak for NiO films deposited by CVD of $\left[\text{Ni}(\text{d}_2)\right]$ at a growth temperature of 300 $^{\circ}C.$

Table S4: photovoltaic parameters for NiO control and NiO CVD devices.

THEIR ST. DROW VILLEY DETERMINATED TO THE CONTROL CHRISTING C FID GOVINGS.					
Photoelectrode	$J_{\rm SC}$ (mA cm ⁻²)	$V_{\rm oc}$ (V)	FF	PCE (%)	
NiO Control	21.3 (+/- 0.1)	$1.04 (+/- 0.001)$	$0.66 (+/- 0.05)$	14.1 (+/- 0.1)	
NiO CVD	$7.8 (+/- 0.5)$	$1.02 (+/- 0.01)$	0.50 (+/- 0.5)	3.9 (+/- 0.2)	

Figure S6: AFM images of 5x5 μm areas over a lateral resolution of 10 nm for five duplicate samples of FTO, CVD-deposited NiO/FTO and spin-coating-deposited NiO/FTO.

Table S5: AFM data of 5x5 μm areas over a lateral resolution of 10 nm for five duplicate samples of FTO, CVD-deposited NiO/FTO and spin-coating-deposited NiO/FTO.

¹H NMR and ¹³C $\{^1H\}$ NMR spectra for [Ni(dmamp')₂] are shown in Figure S7 and Figure S8 respectively. The ¹H NMR spectrum shows 3 singlet proton environments at 1.19 ppm, 2.20 ppm and 2.97 ppm, corresponding to 4 methyl groups on the ligand backbone (Ha), 4 methyl groups on the nitrogen atoms (Hb) and 2 ethyl groups on the ligand backbone (Hc), respectively. The carbon NMR spectrum again shows 4 different peak environments at 19.7, 40.6, 67.9 and 75.8 ppm, which are associated to the carbon environments C1, C2, C3 and C4, respectively as shown in Figure S8.

Figure S7: ¹H NMR spectrum of $[Ni(dmamp')_2]$

Figure S8: ¹³C NMR spectrum of $[Ni(dmamp')_2]$

References:

1. K.-C. Min, M. Kim, Y.-H. You, S. S. Lee, Y. K. Lee, T.-M. Chung, C. G. Kim, J.-H. Hwang, K.-S. An, N.-S. Lee, Y. Kim, *Surf. Coatings Technol.*, 2007, **201(22-23)**, 9252-9255. 2. N. S. McIntyre, M. G. Cook, *Anal. Chem.*, 1975, **47(13)**, 2208-2213.