Chemical vapour deposition (CVD) of nickel oxide using the novel nickel dialkylaminoalkoxide precursor [Ni(dmamp')₂] (dmamp' = 2-dimethylamino-2-methyl-1-propanolate)

Rachel L. Wilson¹, Thomas J. Macdonald^{1,2}, Chieh-Ting Lin³, Shengda Xu³, Alaric Taylor⁴, Caroline E. Knapp¹, Stefan Guldin⁴, Martyn A. McLachlan³, Claire J. Carmalt¹*, Chris S. Blackman^{1,5}*

Table S1 outlines the crystal data and structure refinement details, and Table S2 selected

bond lengths and bond angles, for [Ni(dmamp')₂].

Table S1: Crystal data and structure refinement for [Ni(dmamp')₂]

Empirical formula	$C_{12}H_{28}N_2NiO_2$
Formula weight	291.07
Temperature/K	150.5(7)
Crystal system	orthorhombic
Space group	Pbca
a/Å	7.29170(10)
b/Å	10.68490(10)
c/Å	17.7929(2)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	1386.26(3)
Ζ	4
$\rho_{calc}g/cm^3$	1.395
µ/mm ⁻¹	1.965
F(000)	632.0
Crystal size/mm ³	$0.141\times0.128\times0.064$
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/°	15.714 to 148.974
Index ranges	$-8 \le h \le 9, -13 \le k \le 13, -22 \le l \le 22$
Reflections collected	19513
Independent reflections	1410 [$R_{int} = 0.0227$, $R_{sigma} = 0.0078$]
Data/restraints/parameters	1410/0/135
Goodness-of-fit on F ²	1.094
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0209, wR_2 = 0.0566$
Final R indexes [all data]	$R_1 = 0.0224, wR_2 = 0.0582$

Table S2: Selected bond lengths and bond angles for compound (1) [Ni(dmamp')₂] (in which ¹1-X,1-Y,1-Z).

Atom - Atom	Length (Å)	Atom - Atom	Length (Å)
Ni(1) – O(1)	1.8427(7)	N(1) – C(1)	1.5239(12)
$Ni(1) - O(1)^1$	1.8427(7)	N(1) - C(5)	1.4788(13)
$Ni(1) - N(1)^1$	1.9545(8)	C(3) – C(1)	1.5319(14)
Ni(1) – N(1)	1.9546(8)	C(4) – C(1)	1.5311(14)
O(1) – C(2)	1.3992(12)	C(1) – C(2)	1.5313(14)
N(1) – C(6)	1.4896(13)		
Atom – Atom - Atom	Angle (°)	Atom – Atom - Atom	Angle (°)
$O(1) - Ni(1) - O(1)^1$	180.00	C(5) - N(1) - Ni(1)	113.89(7)
$O(1)^1 - Ni(1) - N(1)^1$	88.43(3)	C(5) - N(1) - C(6)	106.95(8)
O(1) - Ni(1) - N(1)	88.43(3)	C(5) - N(1) - C(1)	112.91(8)
$O(1)^1 - Ni(1) - N(1)$	91.57(3)	N(1) - C(1) - C(3)	108.98(8)
$O(1) - Ni(1) - N(1)^1$	91.57(3)	N(1) - C(1) - C(4)	113.07(8)
$N(1) - Ni(1) - N(1)^1$	180.0(5)	N(1) - C(1) - C(2)	104.13(8)
C(2) - O(1) - Ni(1)	112.10(6)	C(3) - C(1) - C(4)	110.37(9)
C(6) - N(1) - Ni(1)	105.98(6)	C(2) - C(1) - C(3)	108.84(8)
C(6) - N(1) - C(1)	112.61(8)	C(2) - C(1) - C(4)	111.22(8)
C(1) – N(1) – Ni(1)	104.41(6)	O(1) - C(2) - C(1)	110.15(8)

Film thickness was obtained from the ellipsometry measurements and showed an approximately linear relationship of increasing film thickness with deposition temperature (**Table S3**).

Table S3: Film thickness and refractive index values of NiO films deposited by CVD of [Ni(dmamp')₂] at various temperatures

Deposition time (hours)	Growth temp (°C)	Film thickness (nm)	<i>n @</i> 632.8 nm
24	250	17	1.5

24	300	40	2.3
24	350	85	2.6
24	400	117	1.8

Figure S1. TGA/DSC curves for [Ni(dmamp')₂].

Figure S2: Temperature dependence on the film thickness of NiO films deposited by CVD of [Ni(dmamp')₂] grown for a given time of 24 hours.

Films deposited at a growth temperature of 400 °C appeared visually non-uniform in thickness, with the inlet end of the substrate thicker than the outlet end of the substrate. Reduction of the growth temperature from 400 °C to 300 °C resulted in visually more uniform thin films with refractive index values more consistent with literature values for NiO. As a growth temperature of 300 °C appeared to provide visually uniform films with low roughness, subsequently the relationship between deposition time and NiO film thickness was investigated at this temperature (**Figure S3**).

Figure S3: Relationship between deposition time and film thickness for NiO films deposited by CVD of $[Ni(dmamp')_2]$ at a single growth temperature of 300 °C.

Figure S4: Typical XPS survey spectrum of NiO films deposited by CVD of [Ni(dmamp')₂] at a growth temperature of 300 °C.

High resolution surface scans (Figure S5a) of the Ni2p peak confirm the presence of Ni²⁺, with $2p_{3/2}$ and $2p_{1/2}$ peak binding energies of 855.4 eV and 873.2 eV respectively, with a peak separation of 17.8 eV. These values are within \pm 0.2 eV of literature values.^[1] Characteristic satellite peaks for the $2p_{3/2}$ and $2p_{1/2}$ peaks were observed at 861.8 \pm 0.2 eV and 880.2 \pm 0.2 eV respectively. The prominent satellite shoulder 1.8 eV above the Ni $2p_{3/2}$ principal peak is unique to NiO.^[2]

De-convolution of the O1s peak reveals 2 peaks. The two peaks at higher binding energy, $532.8 \pm 0.2 \text{ eV}$ and $531.4 \pm 0.2 \text{ eV}$ can be attributed to surface bound carbon and surface adsorbed water, respectively. The peak with the lowest binding energy ($529.6 \pm 0.2 \text{ eV}$) is attributed to the O1s core peak of O²⁻ bound to Ni²⁺ (Figure S5b). Again, these peaks are consistent with literature values for these peak environments.

Figure S5: Typical high resolution surface XPS spectra of a) Ni2p peak and b) de-convoluted O1s peak for NiO films deposited by CVD of [Ni(dmamp')₂] at a growth temperature of 300 °C.

Photoelectrode	$J_{\rm SC}$ (mA cm ⁻²)	$V_{\rm OC}$ (V)	FF	PCE (%)
NiO Control	21.3 (+/- 0.1)	1.04 (+/- 0.001)	0.66 (+/- 0.05)	14.1 (+/- 0.1)
NiO CVD	7.8 (+/- 0.5)	1.02 (+/- 0.01)	0.50 (+/- 0.5)	3.9 (+/- 0.2)

Figure S6: AFM images of 5x5 µm areas over a lateral resolution of 10 nm for five duplicate samples of FTO, CVD-deposited NiO/FTO and spin-coating-deposited NiO/FTO.

Table S5: AFM data of 5x5 µm areas over a lateral resolution of 10 nm for five duplicate samples of FTO, CVD-deposited NiO/FTO and spin-coating-deposited NiO/FTO.

Aggregated (Mean)				
Sample	Z range	Average	RMS roughness	
	(nm)	value (nm)	(Sq, nm)	
FTO blank	97	42	11	
substrate				
NiO (via CVD)	100	43	12	
on FTO				
NiO (via spin.)	73	35	9.7	
on FTO				
Aggregated (Standard Deviation)				
Sample	Z range	Average	RMS roughness	
-	(nm)	value (nm)	(Sq, nm)	
FTO blank	17	3.4	0.24	
-				
substrate				
substrate NiO (via CVD)	10	1.6	0.47	
substrate NiO (via CVD) on FTO	10	1.6	0.47	
substrate NiO (via CVD) on FTO NiO (via spin.)	10 2.9	1.6 2.5	0.47	

¹H NMR and ¹³C{¹H} NMR spectra for [Ni(dmamp')₂] are shown in Figure S7 and Figure S8 respectively. The ¹H NMR spectrum shows 3 singlet proton environments at 1.19 ppm, 2.20 ppm and 2.97 ppm, corresponding to 4 methyl groups on the ligand backbone (Ha), 4 methyl groups on the nitrogen atoms (Hb) and 2 ethyl groups on the ligand backbone (Hc), respectively. The carbon NMR spectrum again shows 4 different peak environments at 19.7, 40.6, 67.9 and 75.8 ppm, which are associated to the carbon environments C1, C2, C3 and C4, respectively as shown in Figure S8.

Figure S7: ¹H NMR spectrum of [Ni(dmamp')₂]

Figure S8: ¹³C NMR spectrum of [Ni(dmamp')₂]

References:

1. K.-C. Min, M. Kim, Y.-H. You, S. S. Lee, Y. K. Lee, T.-M. Chung, C. G. Kim, J.-H. Hwang, K.-S. An, N.-S. Lee, Y. Kim, *Surf. Coatings Technol.*, 2007, **201(22-23)**, 9252-9255.

2. N. S. McIntyre, M. G. Cook, Anal. Chem., 1975, 47(13), 2208-2213.