Supporting information

Choline Chloride-based deep eutectic solvents as effective electrolytes for

dye-sensitized solar cells

De Nguyen ^{a, c}, Tuan Van Huynh ^{b, c}, Vinh Son Nguyen ^d, Phuong-Lien Doan Cao ^{c,e}, Hai Truong Nguyen ^{c,e}, Tzu-Chien Wei ^d, Phuong Hoang Tran ^{c,e *}, Phuong Tuyet Nguyen ^{a, c *}

- a. Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam.
- ^{b.} Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh City, Vietnam.
- ^{c.} Vietnam National University Ho Chi Minh City, Vietnam.
- ^{*d.*} Department of Chemical Engineering, National Tsing-Hua University, Hsinchu 30013, Taiwan.
- e. Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam.

Section S1. Chemicals, Supplies, and Instruments for the characterization of DES-CE and DES-CU

Chemicals, Supplies

Choline chloride (assay $\geq 99\%$), Urea (Urea, ACS reagent, 99.0-100.5%), Ethylene glycol (ReagentPlus®, $\geq 99\%$) were obtained from Sigma-Aldrich.

Analytical techniques

The ¹H NMR spectra were recorded on a Bruker Advance 500 instrument using CDCl₃ or MeOD as solvent and solvent peaks or TMS as internal standards. Thermal gravimetric analysis (TGA) was measured on a TA Q500 thermal analysis system with the sample held in a platinum pan in a continuous airflow. FT-IR spectroscopy was performed on a Bruker Vertex 70. Viscosity of ionic liquids was performed using Brookfield DV-III programmable Rheometer (at room temperature ~30 °C). The ionic conductivity of ILs was measured by using Conductimeter OAKION CON 2700. HRMS (ESI) data were recorded on Bruker micrOTOF-QII MS at 80 eV.

DSC fabrication

Figure S1. Absorption spectra of the TiO_2 loaded N719 dye photo-anodes. Thickness of TiO_2 layer is 12 μ m.

Section S2. Characterization of DES

Figure S2. FT-IR spectra of pure choline chloride, pure urea, and DES-CU.

Figure S3. FT-IR spectra of pure choline chloride, pure ethylene glycol and DES-CE.

Figure S4. TGA spectra of (A) pure choline chloride, pure urea and DES-CU; (B) pure choline chloride, pure urea and DES-CE.

Figure S5. ¹H NMR spectrum of DES-CU (MeOD).

Figure S6. ¹H NMR spectrum of DES-CE (CDCl₃).

Figure S7. DSC spectrum of DES-CU.

Figure S8. DSC spectrum of DES-CE.

Section S3. Characterization of DSC devices

Figure S9. The forward and backward J-V curves of DSC devices fabricated with (A) EMTCB, (B) CE-0.5 and (C) CU-0.5 electrolytes was nearly the same, indicating no hysteresis effect in the measurement.