Supporting Information

Metal oxide/CeO₂ nanocomposites derived from Ce-BTC adsorbing with metal acetylacetonate

complexes for preferential oxidation of carbon monoxide

Dongren Cai^{*}, Bin Chen, Zhongliang Huang, Xiaoli Zeng, Jingran Xiao, Shufeng Zhou, Guowu Zhan^{*}

College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University,

668 Jimei Avenue, Xiamen, Fujian, 361021, P. R. China

*Corresponding Authors E-mail: <u>15506@hqu.edu.cn</u> (D. Cai) and <u>gwzhan@hqu.edu.cn</u> (G. Zhan)

Table of contents

Supporting Figures

Fig. S	1. The reactor of CO oxidation	.3
Fig. S	2. The catalytic activity comparison of Cu/CeO ₂ and Cu/CeO ₂ (cp) in dry condition	.3
Fig. S	3. The pore size distribution of prepared samples	.4
Fig. S	4. The FT-IR of Ce-BTC	.4
Fig. S	5. SEM and TEM images of the prepared samples	.5
Fig. S	6. The Raman spectrum of prepared samples	.5

Supporting Tables

Table S1. Catalytic performance comparison of various catalysts for CO oxidation reaction.......6

Fig. S1. The reactor of CO oxidation

Fig. S2. The catalytic activity comparison of Cu/CeO₂ and Cu/CeO₂(cp) in dry condition. (The preparation method of Cu/CeO₂(cp): The Cu/CeO₂(cp) was prepared by the conventional co-precipitation method. The molar ratio of Cu to Ce in the form of Cu(NO₃)₂ and Ce(NO₃)₃ was fixed at 1:8.6. In a typical fabrication, 1 mmol of Cu(NO₃)₂·3H₂O and 8.6 mmol of Ce(NO₃)₃·6H₂O were added to 50 mL of water under sonication for 10 min. Then, the above solution was heated to 45 °C under stirring. Subsequently, 10 mL of an aqueous NaOH solution (4 mol/L) was added dropwise and the mixture was further stirred for 8 h. After the reaction, the product was collected by centrifugation, washing twice with water and once with ethanol, and drying at 60 °C for 10 h. Finally, the sample was calcined at 500 °C for 3 h.)

Fig. S3. The pore size distribution of prepared samples

Fig. S4. The FT-IR of Ce-BTC

Fig. S5. (A,B) SEM and TEM images of Ce-BTC, (C,D) SEM and TEM images of CeO₂, (E,F) SEM and TEM images of Cu/CeO₂, (G,H) SEM and TEM images of Ni/CeO₂, (I,J) SEM and TEM images of Co/CeO₂, (K,L) SEM and TEM images of Fe/CeO₂.

Fig. S6. The Raman spectrum of prepared samples

Catalyst	Catalyst Preparation Operating parameters method		<i>Т</i> ₁₀₀ / °С	Ref
		Catalyst: 130 mg, gas: 95.00 vol% N_2 , 4.00 vol% O_2 , and 1.00 vol% CO, flow rate: 20 mL/min	100	
		Catalyst: 130 mg, gas: 90.25 vol% N_2 , 5.00 vol% H_2O , 3.80 vol% O_2 , and 0.95 vol% CO, flow rate: 20 mL/min	140	
Cu/CeO ₂	Thermolysis of MOF	Catalyst: 130 mg, gas: 75.00 vol% H ₂ , 23.75 vol% N ₂ , 1.00 vol% O ₂ , 0.25 vol% CO, flow rate: 40 mL/min	110	This work
		Catalyst: 130 mg, gas: 71.25 Vol% H ₂ , 22.55 Vol% N ₂ , 5.00 Vol% H ₂ O, 0.96 Vol% O ₂ , and 0.24 Vol% CO, flow rate: 40 mL/min	140	
CuO-CeO ₂	Co-precipitation	Catalyst: 50 mg, gas: 1 vol% CO, 1 vol% O ₂ , 20 vol% H ₂ O, 13.5 vol% CO ₂ , 50 vol% H ₂ , and He balanced, flow rate: 100 mL/min	120	1
CeO _{2/} CuO	Impregnation	Catalyst: 100 mg, gas: 1.5 vol% O_2 , 1.5 vol% CO, 55 vol% H_2 , and N_2 balanced, space velocity: 40000 ml (g/h	125	2
CeO ₂ /Co ₃ O ₄	Impregnation	Catalyst: 500 mg, gas: 10% O ₂ /He, 4% CO/He, flow rate: 20 mL/min.	135	3
CeO_2 - Al_2O_3	Gel combustion	Catalyst: 200 mg, gas: 570 ppm CO, 20 vol% O_2 , and N_2 balanced, flow rate: 1000 mL/min	160	4
Ni-Co bimetal oxides	Co-impregnation	Catalyst: 200 mg, gas: 2 vol% CO, 20 vol% O ₂ , and Ar balanced, space velocity: 600 mL/g/h	100	5
ZIF-67@LDO	Thermolysis of MOF	Catalyst: 50 mg, gas: 1 vol% CO, 10 vol% O_2 , and N_2 balanced, flow rate: 60 mL/min	140	6
Cu/CeO ₂ -Nb ₂ O ₅	Wetness impregnation	Catalyst: 150 mg, gas: 20 vol% H_2 , 2 vol% CO, 2 vol% O_2 , 5% H_2O , and balanced He, flow rate: 50 mL/min	135	7
Mn-Cu bimetal oxides	Thermolysis of MOF	Catalyst: 50 mg, gas: 95.00 vol% N_2 , 4.00 vol% O_2 , and 1.00 vol% CO, flow rate: 20 mL/min	170	8

Tuble Sti Calary de performance companson of various calarysts for CO ontactor reaction	Table S1. Cataly	ytic performance co	omparison of various	s catalysts for CO	oxidation reaction
---	------------------	---------------------	----------------------	--------------------	--------------------

		Catalyst: 500 mg, gas: 97.00 vol%		
CoCe	Impregnation	N_2 , 2.00 vol% O_2 , and 1.00 vol% CO,	255	9
		space velocity: 30000 mL/g/h		
Mn ₅ Co ₁ O _x -400	Co-impregnation	Gas: 1 vol% CO in air	275	10

References

1. D.H. Kim, J.E. Cha. A CuO-CeO₂ mixed-oxide catalyst for CO clean-up by selective oxidation in hydrogen-rich mixtures. Catal. Lett. 2002, 86: 107-112

2. S. Zeng, K. Liu, L. Zhang, B. Qin, T. Chen, Y. Yin, H. Su. Deactivation analyses of CeO₂/CuO catalysts in the preferential oxidation of carbon monoxide. J. Power Sources. 2014, 261: 46-54.

3. C. Tang, L. Hsu, S. Yu, C. Wang, S. Chien. In situ FT-IR and TPD-MS study of carbon monoxide oxidation over a CeO_2/Co_3O_4 catalyst. J. Vibration. Spectrosc. 2013, 65: 110-115.

4. D.N. Nhiem, L.M. Dai, D.N. Van, D.T. Lim. Catalytic oxidation of carbonmonoxide over nanostructured CeO_2 -Al₂O₃ prepared by combustion method using polyvinyl chloride. Ceram. Int. 2013, 39: 3381-3385.

5. Y. Gou, X. Liang, B. Chen. Porous Ni-Co bimetal oxides nanosheets and catalytic properties for CO oxidation. J. Alloy Compd. 2013, 574: 181-187.

6. W. Kong, J. Li, Y. Chen, Y. Ren, Y. Guo, S. Niu, Y. Yang. ZIF-67-derived hollow nanocages with layered double oxides shell as high-Efficiency catalysts for CO oxidation. Appl. Surf. Sci. 2018, 437: 161-168.

F. O. Jardim, S. Rico-Frances, Z. Abdelouahab-Reddam, F. Coloma, J. SilvestreAlbero, A. Sepulveda-Escribano, E.V. Ramos-Fernandez. High performance of Cu/CeO₂-Nb₂O₅ catalyst for preferential CO oxidation and total combustion of toluene. Appl. Catal. A. 2015, 502: 129-137.
 B. Chen, X. Yang, X. Zeng, Z. Huang, J. Xiao, J. Wang, G. Zhan. Multicomponent metal oxides derived from Mn-BTC anchoring with metal acetylacetonate complexes as excellent catalysts for

VOCs and CO oxidation. Chem. Eng. J. 2020, 397: 125424.

9. K. Rida, A.L. Camara, M.A. Pena, C.L. Bolivar-Diaz, A. Martinez-Arias. Bimetallic Co-Fe and Co-Cr oxide systems supported on CeO₂: Characterization and CO oxidation catalytic behavior. Int. J. Hydrogen Energy. 2015, 40: 11267-11278.

10. F. Bin, X. Wei, B. Li, K.S. Hui. Self-sustained combustion of carbon monoxide promoted by the Cu-Ce/ZSM-5 catalyst in $CO/O_2/N_2$ in atmosphere. Appl. Catal. B. 2015, 162: 282-288.