Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Halogen-free ionic liquids as high performance extractants for phenols separation

Yufeng Yang^a, Qing Liu^b, Aibing Chen^a, Youan Ji^{a,*}

^a College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China

^b Division of Materials Science and Chemical Engineering, Yokohama National University, Yokohama 240-8501, Japan

*Corresponding author

Email address: jiyouan@126.com; Tel./Fax: +86 311 88632183

List of table captions

- Table S1 Chemical materials used in this study.
- Table S2 The amount of phenol dissolved in HFILs during separation.
- Table S3 Comparison of this method with other methods.

List of figure captions

- **Fig. S1** Results of *n*-hexane phase analysis by GC.
- **Fig. S2** Phenol content in oil as a function of water to [Emim][Ac] mole ratio. Conditions: initial phenol content, 103.22 g·dm⁻³; temperature, 298.2 K; separation time, 20 min.

 Table S1 Chemical materials used in this study.

Chemical name	CAS number	Purity a	Supplier
phenol	108-95-2	99%	Aladdin Chemical Co., Ltd., Shanghai, China
toluene	108-88-3	98%	Beijing Tongguang Fine Chemicals Co., Ltd., Beijing, China
o-cresol	95-48-7	98%	Aladdin Chemical Co., Ltd., Shanghai, China
<i>m</i> -cresol	108-39-4	98%	Aladdin Chemical Co., Ltd., Shanghai, China
1,3-dihydroxybenzene	108-46-3	99%	Aladdin Chemical Co., Ltd., Shanghai, China
[Emim][LLac]	878132-19-5	98%	Shanghai Cheng Jie Chemical Co., Ltd., Shanghai, China
[Emim][Ac]	143314-17-4	98%	Shanghai Cheng Jie Chemical Co., Ltd., Shanghai, China
[Bmim][DMP]	891772-94-4	98%	Shanghai Cheng Jie Chemical Co., Ltd., Shanghai, China
[Emim][ES]	342573-75-5	98%	Shanghai Cheng Jie Chemical Co., Ltd., Shanghai, China
[Emim][TFMS]	145022-44-2	98%	Shanghai Cheng Jie Chemical Co., Ltd., Shanghai, China
<i>n</i> -hexane	110-54-3	98%	Beijing Tongguang Fine Chemicals Co., Ltd., Beijing, China
diethyl ether	60-29-7	98%	Beijing Tongguang Fine Chemicals Co., Ltd., Beijing, China

^a The purities of the chemicals are provided by the suppliers.

 Table S2
 The amount of phenol dissolved in HFILs during separation.

Mole ratio of [Emim][LLac] to phenol	0.11	0.20	0.30	0.40	0.49	0.61	0.70	0.79	0.95
Amount of phenol dissolved/g	0.434	1.030	1.442	1.760	1.925	1.966	1.987	2.001	2.022
Mole ratio of [Emim][Ac] to phenol	0.11	0.22	0.30	0.43	0.52	0.61	0.70	0.83	1.01
Amount of phenol dissolved/g	0.343	0.863	1.290	1.736	1.930	1.993	2.006	2.018	2.028

Table S3 Comparison of this method with other methods.

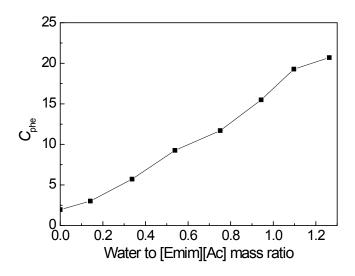
Separation agents	$C_0/\mathbf{g}\cdot\mathbf{dm}^{-3}$	SE	MUCP/g·dm ⁻³
[Emim][Ac]	103.215	98.6%	1.96
ChCl a	97.67	90%	8.89
$\mathrm{DIL}\ ^{b}$	100	96.6%	3.90
[Bmim]Cl c	100	98.5%	1.2
Amide compounds	200.67	97.0%	-
L-car d	105	94.6%	14
Amino acid ILs	100	99.0%	1.40

^a Choline chloride, a kind of quaternary ammonium salt.

^b Imidazolium-based dicationic ionic liquids, separating phenol via forming deep eutectic solvents.

^c 1-Butyl-3-methylimidazolium chloride.

^d L-carnitine, a kind of inner salt.


 Table S4 Comparison of this method with other methods.

Chemicals	Frequency/cm ⁻¹	Functional group	Assignment	
Phenol	3322	-ОН	stretching vibration	
	3021	C-H in benzene ring	stretching vibration	
	1335	-OH	bending vibration	
	1234	C-O	stretching vibration	
	3452	C=O	stretching vibration	
[Emim][LLac]	3412 (overlapping peak)	-ОН	stretching vibration	
	3111	C-H in imidazole ring	stretching vibration	
	2700-3000	C-H in CH ₃ and CH ₂	stretching vibration	
	1643 (overlapping peak) and 1416	-COO-	stretching vibration	
	1589	imidazole ring	skeleton vibration	
	1456	C-H in CH ₃	bending vibration	
	1172	imidazole ring	stretching vibration	
	500-1000	С-Н	in-plane bending vibration	
[Emim][Ac]	3437	C=O	stretching vibration	
	3111	C-H in imidazole ring	stretching vibration	
	2700-3000	C-H in CH ₃ and CH ₂	stretching vibration	
	1654 (overlapping	-COO-	stretching vibration	

	peak) and 1402		
	1572	imidazole ring	skeleton vibration
	1452	C-H in CH ₃	bending vibration
	1169	imidazole ring	stretching vibration
	500-1000	С-Н	in-plane bending vibration
[Emim][LLac] +phenol	about 3200	-OH in phenol	stretching vibration
[Emim][Ac]+ phenol	3111	-OH in phenol	stretching vibration

Fig. S1 Results of *n*-hexane phase analysis by GC.

Fig. S2 Phenol content in oil as a function of water to [Emim][Ac] mass ratio. Conditions: initial phenol content, 103.22 g·dm⁻³; temperature, 298.2 K; separation time, 20 min.

.