1

Supplementary Information

Sweetsop-like α-Fe₂O₃@CoNi catalyst with superior peroxidase-like activity for sensitive and selective detection of hydroquinone Min Feng,^a Shaohua Wen,^a Xiaofang Chen,^a Die Deng,^a Xiupei Yang,^{*a} and Run Zhang^{*b} ^a College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China ^b Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia *Corresponding author at: College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000, China.

13 mail addresses: xiupeiyang@cwnu.edu.cnx (X. Yang), r.zhang@uq.edu.au (R. Zhang)

Catalyst	Substrate	<i>V_{max(}</i> 10 ⁻⁸ M⋅s ⁻¹)	<i>K_m</i> (mM)	Ref.	
α-Fe ₂ O ₃ @CoNi	ТМВ	13.5	0.23	This work	
	H_2O_2	9.3	0.42		
Fe SSN	ТМВ	20.4	0.53	[1]	
	H_2O_2	13.2	0.36		
CDs@ZIF-8-a	ТМВ	1.95	0.232	[2]	
	H_2O_2	1.22	0.737		
CB-CQDs	тмв	5.13	0.83	[3]	
	H_2O_2	4.09	0.70		
Co ₉ S ₈	ТМВ	99	1.64	[4]	
	H_2O_2	35	7.39		
Por-NiCo ₂ S ₄	ТМВ	34.86	0.3	[5]	
	H_2O_2	4.32	4.5		
HRP	ТМВ	10	0.43	[6]	
	H_2O_2	8.71	3.70		

Table S1. Comparison of Kinetic parameters (K_m and V_{max}).

No.	Method	Materials	Linear Rang(µM)	LOD(µM)	Ref.
1	Colorimetry	Pt/CdS	1.0-10	0.165	[7]
2	Colorimetry	$ZnO/ZnFe_2O_4$	0-150	3.75	[6]
3	Colorimetry	NiCo ₂ O ₄	5-110	2.70	[8]
4	Fluorescence	SiQDs	6-100	2.63	[9]
5	Fluorescence	g-CNQDs	0.5-11.6	0.04	[10]
6	Fluorescence	N/S/P-codoped CDs	0.56-375	0.16	[11]
7	ECL	MOF-rGO	10-200	0.66	[12]
8	ECL	Cotfpp/GO/GCE	1-200	0.21	[13]
9	ECL	CoFe ₂ Se ₄ /PCF	0.5-200	0.13	[14]
10	Colorimetry	α -Fe ₂ O ₃ @CoNi	0.5-30	0.16	This work

IQ.
ł

18

19 Fig. S1 Optimization of Co, Ni and EDTA dosage (A, B, C), synthesis temperature and

20 time (D and E), (inset) the oxTMB of corresponding absorption spectra.

22 Fig. S3 The FT-IR spectra of α -Fe₂O₃@CoNi, commercial Fe₂O₃ and EDTA.

23 **Fig. S4** The UV-vis absorption spectrum of commercial Fe_2O_3 , α - Fe_2O_3 @Co, α -24 Fe_2O_3 @Ni and α - Fe_2O_3 @CoNi in TMB/H₂O₂ system. (inset) The color of 25 corresponding solutions. (a) TMB+H₂O₂+ α -Fe_2O_3@CoNi, (b) TMB+H₂O₂+ Fe_2O_3 (c) 26 TMB+H₂O₂+ α -Fe₂O₃@Ni, (c) TMB+H₂O₂+ α -Fe₂O₃@Co.

28 Fig. S5 Effects of temperature (A) and pH (B) on the catalytic activity of α -

29 Fe₂O₃@CoNi.

31 Fig. S6 Effects of type and concentration of buffer solution (A, B), concentration of α -

32 Fe_2O_3@CoNi (C), dosage of TMB (D) and H_2O_2 (E) on the catalytic activity of $\alpha\text{-}$

35 **Fig. S7** The UV-vis absorption spectrum of hydroquinone (30 μ M) and Catechol (30 μ M) in α -Fe₂O₃@CoNi/TMB/H₂O₂ system and blank control.

38 **Fig. S8** The UV-vis absorption spectrum of $TMB+H_2O_2+\alpha$ -Fe₂O₃@CoNi system with 39 different alumina additions (a, blank; b-f, 0.1-0.5g alumina added into 2 mL 0.006 M 40 HQ solution; g, catechol solution before alumina treatment; h-i, HQ solution before 41 and after alumina treatment, respectively).

43 Fig. S9 The effect of isopropyl alcohol (IPA) on the catalytic activity of α -Fe₂O₃@CoNi.

45 References

46 [1] M. Chen, H. Zhou, X. Liu, T. Yuan, W. Wang, C. Zhao, Y. Zhao, F. Zhou, X. Wang,
47 Z. Xue, T. Yao, C. Xiong, Y. Wu, Single iron site nanozyme for ultrasensitive
48 glucose detection, Small. 16(2020) 2002343-2002348.

- Y. Wang, X. Liu, M. Wang, X. Wang, W. Ma, J. Li, Facile synthesis of CDs@ZIF-8
 nanocomposites as excellent peroxidase mimics for colorimetric detection of
 H₂O₂ and glutathione, Sens. Actuators, B. 329(2021) 129115-129123.
- 52 [3] C. Yuan, X. Qin, Y. Xu, X. Li, Y. Chen, R. Shi, Y. Wang, Carbon quantum dots
 53 originated from chicken blood as peroxidase mimics for colorimetric detection
 54 of biothiols, J. Photoch Photobio A: Chem. 396(2020) 112529-112535.
- J. Mu, J. Li, X. Zhao, E.-C. Yang, X.-J. Zhao, Novel urchin-like Co₉S₈ nanomaterials
 with efficient intrinsic peroxidase-like activity for colorimetric sensing of copper
 (II) ion, Sens. Actuators, B. 258(2018) 32-41.
- Y. He, N. Li, W. Li, X. Zhang, X. Zhang, Z. Liu, Q. Liu, 5,10,15,20-tetrakis (4carboxylphenyl) porphyrin functionalized NiCo₂S₄ yolk-shell nanospheres:
 Excellent peroxidase-like activity, catalytic mechanism and fast cascade colorimetric biosensor for cholesterol, Sens. Actuators, B. 326(2021) 128850-128860.
- K. Wang, M. Zhao, Y. Song, Q. Liu, Y. Zhang, Y. Zhuang, S. Chen, Synthesis of
 ZnFe₂O₄/ZnO heterostructures decorated three-dimensional graphene foam as
 peroxidase mimetics for colorimetric assay of hydroquinone, Sens. Actuators, B.
 283(2019) 130-137.
- K. Zhao, H. Lyu, X. Yao, C. Xu, Q. Liu, Z. Liu, X. Zhang, X. Zhang, Hydroquinone
 colorimetric sensing based on platinum deposited on CdS nanorods as
 peroxidase mimics, Microchim. Acta. 187(2020) 587-596.
- Y. Song, M. Zhao, H. Li, X. Wang, Y. Cheng, L. Ding, S. Fan, S. Chen, Facile
 preparation of urchin-like NiCo₂O₄ microspheres as oxidase mimetic for
 colormetric assay of hydroquinone, Sens. Actuators, B. 255(2018) 1927-1936.
- Y. Liu, Q. Wang, S. Guo, P. Jia, Y. Shui, S. Yao, C. Huang, M. Zhang, L. Wang,
 Highly selective and sensitive fluorescence detection of hydroquinone using
 novel silicon quantum dots, Sens. Actuators, B. 275(2018) 415-421.
- [10] J. Chen, Y. Gao, X. Hu, Y. Xu, X. Lu, Detection of hydroquinone with a novel
 fluorescence probe based on the enzymatic reaction of graphite phase carbon
 nitride quantum dots, Talanta. 194(2019) 493-500.

79 [11] Y. Wang, Q. Yue, L. Tao, C. Zhang, C.Z. Li, Fluorometric determination of
hydroquinone by using blue emitting N/S/P-codoped carbon dots, Microchim.
Acta. 185(2018) 550-558.

[12] H. Wang, Q. Hu, Y. Meng, Z. Jin, Z. Fang, Q. Fu, W. Gao, L. Xu, Y. Song, F. Lu,
Efficient detection of hazardous catechol and hydroquinone with MOF-rGO
modified carbon paste electrode, J. Hazard. Mater. 353(2018) 151-157.

[13] D.L. Huang, J. Wang, F. Cheng, A. Ali, H.S. Guo, X. Ying, L.P. Si, H.Y. Liu,
Synergistic effect of a cobalt fluoroporphyrin and graphene oxide on the
simultaneous voltammetric determination of catechol and hydroquinone,
Microchim. Acta. 186(2019) 381-391.

89 [14] D. Yin, J. Liu, X. Bo, L. Guo, Cobalt-iron selenides embedded in porous carbon
90 nanofibers for simultaneous electrochemical detection of trace of

91 hydroquinone, catechol and resorcinol, Anal. Chim. Acta. 1093(2020) 35-42.

92