Supplementary information

For

Consequences of gamma-ray irradiation on structural and electronic

properties of PEDOT: PSS polymer under air and vacuum environments

Aswin kumar Anbalagan ^a, Shivam Gupta ^b, Mayur Chaudhary ^b, Rishi Ranjan Kumar ^b, Yu-Lun Chueh ^b, Nyan-Hwa Tai ^b and Chih-Hao Lee ^{a,c,*}

^a Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan, 30013

^b Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, 30013

^c Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, Taiwan,
30013

*Corresponding author: chlee@mx.nthu.edu.tw

Resistivity measurement

Figure S1 shows the resistivity change as a function of dose for PEDOT: PSS films irradiated in air and vacuum environment at 0, 500, 1000, 1500 and 3000 Gy, respectively.

Figure S1. Resistivity change as a function of dose for the PEDOT: PSS films irradiated in air and vacuum environment.

X-ray diffraction (XRD)

XRD studies revealed the amorphous nature of PEDOT: PSS films before and after irradiation in air and vacuum environment up to 3 kGy as shown in **Figure S2**.

Figure S2. XRD of pristine and 3000 Gy gamma-irradiated PEDOT: PSS films in air and vacuum environment.

Atomic Force Microscopy (AFM)

AFM was performed by tapping mode across $10 \ \mu m * 10 \ \mu m$ at various positions for pristine and irradiated samples at air and vacuum environments. **Figure S3** revealed no significant difference in the morphology of the samples before and after irradiation.

Figure S3. AFM topographies (10 μm x 10 μm) of: (a) Pristine and 3000 Gy irradiated PEDOT: PSS films: (b) in air and (c) vacuum environment.