Experimental and DFT studies of gadolinium decorated graphene oxide materials for their redox properties and as corrosion inhibition barrier layer on Mg AZ13 alloy in a 3.5% NaCl environment

Palaniappan. N,^{a*} Ivan Cole,^{b*} A. Kuznetsov,^c K.R. Justin Thomas,^d Balasubramanian K.^e Sivakumar Manickam^f

^aSchool of Chemical Sciences, Central University of Gujarat, India

^bAdvanced Manufacturing and Fabrication Research and Innovation, RMIT University,

Melbourne, Victoria 3100, Australia

^cDepartment of Chemistry, Universidad Técnica Federico Santa Maria, Campus Vitacura,

Santiago, Chile

^dOrganic Materials Laboratory, Department of Chemistry, Indian Institute of Technology

Roorkee, Roorkee 247667, India

^eDepartment of Materials Engineering, Defence Institute of Advanced Technology (DU),

Girinagar, Pune, India

^fPetroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei,

Bandar Seri Begawan BE1410, Brunei Darussalam

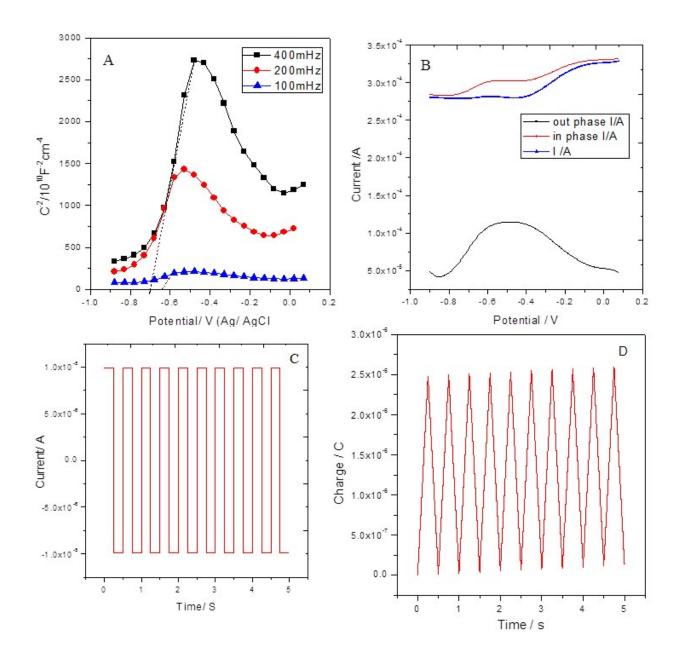


Figure S1. Motto-Schottky (a) AC-voltammetry (b) chronoamperometry (c) chronocoulometry (d) studies of Gd functionalized graphene oxide.

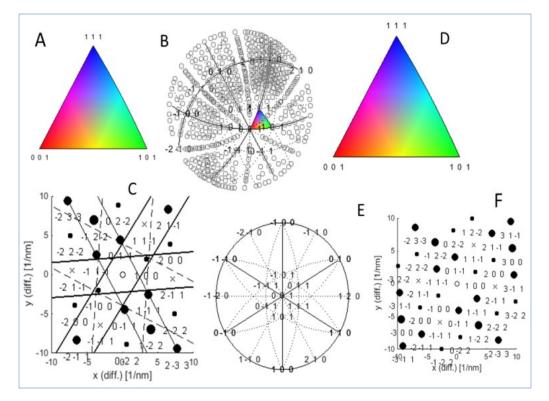


Figure S2. Epoxy and Gd+GO composite coated polycrystalline affected region of the Mg alloy surface.

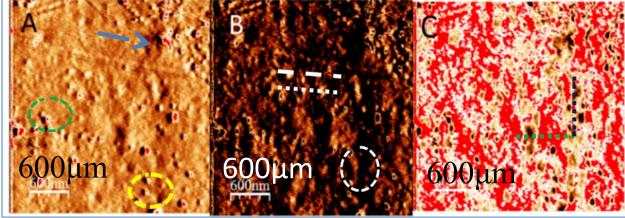


Figure S3. Topography of the epoxy coated Mg alloy immersed for 5 days in 3.5% NaCl solution.

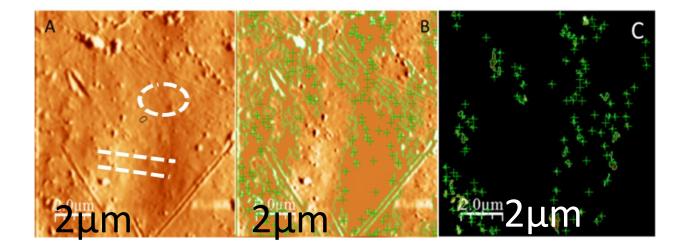


Figure S4. Topography of epoxy coated Mg alloy immersed for 5 days in 3.5% NaCl corrosion medium

S.no	-E _{Corr} mV	-I _{Corr} mA	LP	η	RCtΩ	CdlµF
Ероху	1.385	6.42	382		450	3.5710
Gd+GO	1.899	2.61	1408	59	700	0.1136

	НОМО	LUMO	ΔE	I	А	χ	?	σ	ω				
	NEUTRAL												
A	- 0.21757	-0.16128	0.0562 9	0.2175 7	0.1612 8	0.189425	0.0281 5	35.524	0.6373 3				
В	- 0.21716	-0.16033	0.0568 3	0.2171 6	0.1603 3	0.188745	0.0284 2	35.186 5	0.6267 5				
	PROTONATED												
A	- 0.22866	-0.17520	0.0534 6	0.2286 6	0.1752 0	0.20193	0.0267 3	37.411 1	0.7627 3				
В	- 0.22859	-0.17475	0.0538 4	0.2285 9	0.1747 5	0.20167	0.0269 2	37.147 1	0.7554				

Table S2. Global reactivity parameters computed for the Gd-GO system (with the implicit effects from water), for the neutral and protonated models (A.U.): HOMO-LUMO gap ΔE , ionization potential I, electron affinity A, global electrophilicity χ , global hardness η , global softness σ , and global nucleophilicity ω . A = α -HOMO & LUMO, B = α -HOMO & LUMO.