Supplementary Information

Antifouling Hydrogel Film Based on Sandwich Array for Salivary Glucose Monitoring

Zifeng Zhang,^{a, b} Shiwen Wang,^b Guanjiang Liu,^b Debo Hu,^{b, c} Bei Yang,^{b, c} Qing Dai^{a, b, c}, Qian

Dou*b

^aSchool of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P.

China

^bDivision of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for

Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China

*E-mail: douq@nanoctr.cn;

^cCenter of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Fig. S1 The different thickness of HFSA obtained at different spinning speed.

Fig. S2

Fig. S2 Effect of thickness of HFSA on protein resistance and glucose sensitivity.

Fig. S3 The thickness of HFSA obtained by SEM.

Fig. S4

Fig. S4 The mechanism of glucose recognition between phenylboronic acid and glucose molecules

Fig. S5

Fig. S5 The protein resistance of pSBMA modified hydrogel at polymerization time of 30 min.

Fig. S6 (a) The detection of glucose in diluted saliva by IPN hydrogel film-coated QCM sensor. (b) Relationship between frequency shift and glucose concentration.

Fig. S7 Au film-coated IPN hydrogel

Fig. S8 The photograph of system

Table S1. Elemental surface composition of initiator on the IPN hydrogel and HFSA determined from XPS.

Sample	Element (atom %)						
	С	0	S	Ν	Br	В	Au
Initiator on the IPN hydrogel	40.963	7.83	2.882		2.631		48.575
HFSA	60.324	15.821	4.347	3.437			16.07

Film	Glucose level (mg/L)	Mean of glucose response (Hz)	Standard deviations	% RSD
IPN hydrogel	10	7.9	0.2	2.5%
HFSA	10	11.4	0.49	4.3%

 Table S2.
 The % RSD of IPN hydrogel film after eight association-dissociation cycles.

Sample	Element (atom %)						
	С	0	S	Ν	Br	В	Au
IPN hydrogel	69.623	16.733	0.162	12.167		1.315	

 Table S3.
 Elemental surface composition of IPN hydrogel determined from XPS.

Table S4 Comparison of analytical properties of the QCM sensor with previous reports for gluce	ose
detection	

Glucose-responsive	Detection	Limit of	Response	Specimen	Deference	
material	range	detection	time	Specimen	Reference	
	10 - 5994		100 c	7.5 PBS	1	
r dA	mg/L		100 \$		1	
				Distilled		
ConA	1.8 - 1350	0.9 mg/L		water,	2	
	mg/L	(3δ)		cattle	2	
				serum		
DRA	900 – 9000				3	
РВА	mg/L			9.0 F D 3	5	
				7.4 PBS,		
СР	1.8 - 3600		30 min	10%	Δ	
	mg/L			human	-	
				serum		
РВА	1 - 36	1 mg/l	5 min	7 5 PBS	5	
	mg/L	1	5 11111	7.51 25	C C	
	0 – 50 mg/L	10 mg/L	2 min	7.5 PBS,	6	
DRA				10% saliva,		
				1% diluted		
				serum		
	0 - 160	3 mg/L	10 min	PBS,		
РВА	mg/L			artificial	7	
	0,			saliva		
РВА	0 - 40	5 mg/L	5 min	PBS, 50%	8	
	mg/L	- 07	-	saliva		
РВА	0 – 50	3 mg/L	5 min	PBS, 10%	Our work	
	mg/L	c6/ -	<u> </u>	saliva		

Reference:

- Q, Dou, D. B. Hu, H. K. Gao, Y. M. Zhang, A. K. Yetisen, H. D. Butt, J. Wang, G. J. Nie and Q. Dai, RSC Adv., 2017, 7, 41384-42390.
- 2. D. P. Tang, Q. F. Li, J. Tang, B. L. Su and G. N. Chen, Anal. Chim. Acta., 2011, 686, 144-149.
- 3. C. Sugnaux, H. A. Klok, Macromol. Rapid Commun, 2014, 35, 1402-1407.
- 4. C. Li, X. Chen, F. Y. Zhang, X. X. He, G. Z. Fang, J. F. Liu and S. Wang, Anal. Chem., 2017, 89, 10431-10438.
- Z. Z. Zhang, Q. Dou, S. W. Wang, D. B. Hu, X. D. Guo, B. X. Liao, Z. P. Zhao, H. L. Liu and Q. Dai, J. Mater. Chem. C, 2020, 8, 9655-9662.
- Z. Z. Zhang, Q. Dou, S. W. Wang, D. B. Hu, B. Yang, Z. P. Zhao, H. L. Liu, Q. Dai, Nanoscale, 2020, 12, 22787-22797.
- 7. Q. Dou, Z. F. Zhang, Y. X. Wang, S. W. Wang, D. B. Hu, Z. P. Zhao, H. L. Liu and Q. Dai, ACS Appl. Mater. Interfaces, 2020, 12, 34190-34197.
- Q. Dou, S. W. Wang, Z. F. Zhang, Y. X. Wang, Z. P. Zhao, H. J. Guo, H. L. Liu and Q. Dai, Nanoscale, 2020, 12, 19317-19324.