One-Step Green Synthesis of 2D Ag Dendrites-Embedded Biopolymer Hydrogel Beads for Catalytic Reactor

Jaw Hwan Jeong,^a Hee-Chul Woo,^b Mun Ho Kim^{a,*}

^aDepartment of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu,

Busan 48513, Republic of Korea

^bDepartment of Chemical Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu,

Busan 48513, Republic of Korea

* Corresponding author: M. H. Kim (munho@pknu.ac.kr)

(Tel.; +82-51-629-6459, Fax; +82-51-629-6429)

Supporting Tables

Table S1. Activity parameter, κ , values for various heterogeneous catalysts, which is obtained by dividing the reaction rate constant by the total weight of used catalyst.

Heterogeneous catalysts	Total weight of used catalyst [mg]	Reaction rate constant (k) $[10^{-3} s^{-1}]$	к [s ⁻¹ g ⁻¹]	Ref.
Hollow PS/Au-Hollow PS/Au-Ag NPs	0.40	2.14	5.35	1
Hollow PS/Pt-Ag NPs	0.40	4.57	33.43	1
PS with an open hole/Ag NPs	0.12	1.74	14.5	2
Porous PS/Ag NPs	0.15	5.79	38.6	3
Cross-linked PS/Au NPs	100	25	0.25	4
Hybrid cryogel/Ag NPs	20	5.03	0.25	5
Sodium polyacrylate water ball/Ag NPs	20	7.67	0.38	6
Mg-Al layer double hydroxide/Au-Ag NPs	1	0.48	0.48	7
Spherical covalent organic framework/Ag NPs	25	17.67	0.71	8
Covalent organic framework@Fe3O4/Au NPs	3	3.7	1.23	9
Spindle-shaped PANI/Au NPs	31.5	40.4	1.28	10
SiO2@PPy/Au NPs	31.5	44.2	1.4	11
Heterocycle-modified PS/Au NPs	15	30.7	2.05	12
Ni@SiO2 magnetic hollow microspheres/Au	4	10	2.5	13
ZnO@Fe3O4/Ag NPs	3	8.18	2.73	14
Self-assembly of surface-modified Au NPs	0.9	2.58	2.87	15
Fe3O4@PS/Ag	2	8.9	4.45	16
Ca-Al layer double hydroxide hybrid@Fe3O4/Ag NPs	1	5.3	5.3	17
CNT@PZS/Au NPs	0.3	1.78	5.93	18
MWCNT@S.lavandulifolia/Ag NPs	3	19.2	6.4	19
Graphitic carbon nitride/Au NPs	2	15	7.5	20
Silica nanosheet/Ag NPs	10	80.19	8.02	21
PAM@PPy@GO/Ag NPs	4	33.8	8.45	22
Metal-organic framework/Au NPs	1.5	24.2	16.13	23
CaCO3/Au NPs	1	18	18	24
Thiol-functionalized nGO@PEG/Au NPs	0.07	1.73	24.71	25
Fe3C@NG/Au	0.5	17	34	26
Alginate bead/Ag dendrites	0.4	16.09	40.23	This work

Supporting Figures

Fig. S1. Photographs of droplets of aqueous alginate solution containing Au nanocrystals dropped into (a) 0.125 M AgNO₃ aqueous solution and (b) pure water. (c) UV-vis absorbance spectrum and TEM image of Au nanocrystals used as pigments in this experiment.

Fig. S2. Photographs of hydrogel beads which was aged in the aqueous solution containing AgNO₃ (a) in the darkroom for 3 h and (b) under the sun light for 3 h. (c)-(d) Photographs of alginate beads obtained after immersing in 0.125 M AgNO₃ and aging at room temperature for 3 hours under light irradiation. In this experiment, Xenon lamp was used instead of UV lamp and the beads were exposed to light without stirring. (e)-(f) TEM images of Ag nanocrystals formed in the alginate beads shown in (c)-(d).

Fig. S3. FTIR spectra of pure Na-alginate (red) and alginate beads embedded with 2D Ag dendrites (black).

Fig. S4. UV–Vis absorption spectra for 10 min after the alginate hydrogel beads cross-linked by Ba^{2+} ions (i.e., not covered with Ag nanocrystals) were added to the solution that contained NaBH₄ and 4-NP.

References

- S.H. Park, J. Kim, S.H. Hur, D.H. Kim, M.H. Kim, Heterophase polymer dispersion: A green approach to the synthesis of functional hollow polymer microparticles, Chem. Eng. J. 348 (2018) 46–56. https://doi.org/10.1016/j.cej.2018.04.194.
- [2] D.H. Kim, H.C. Woo, M.H. Kim, Room-Temperature Synthesis of Hollow Polymer Microparticles with an Open Hole on the Surface and Their Application, Langmuir. 35 (2019) 13700–13710. https://doi.org/10.1021/acs.langmuir.9b02780.
- [3] D.H. Kim, J.H. Jeong, H.C. Woo, M.H. Kim, Synthesis of highly porous polymer microspheres with interconnected open pores for catalytic microreactors, Chem. Eng. J. (2020) 127628. https://doi.org/10.1016/j.cej.2020.127628.
- [4] D. Shah, H. Kaur, Resin-trapped gold nanoparticles: An efficient catalyst for reduction of nitro compounds and Suzuki-Miyaura coupling, J. Mol. Catal. A Chem. 381 (2014) 70–76. https://doi.org/10.1016/j.molcata.2013.10.004.
- [5] A. Haleem, J. Chen, X.X. Guo, J.Y. Wang, H.J. Li, P.Y. Li, S.Q. Chen, W.D. He, Hybrid cryogels composed of P(NIPAM-co-AMPS) and metal nanoparticles for rapid reduction of p-nitrophenol, Polymer (Guildf). 193 (2020) 122352. https://doi.org/10.1016/j.polymer.2020.122352.
- [6] H.S.H.M. Ali, S.A. Khan, Stabilization of Various Zero-Valent Metal Nanoparticles on a Superabsorbent Polymer for the Removal of Dyes, Nitrophenol, and Pathogenic Bacteria, ACS Omega. 5 (2020) 7379–7391. https://doi.org/10.1021/acsomega.9b04410.
- [7] N. Arora, A. Mehta, A. Mishra, S. Basu, 4-Nitrophenol reduction catalysed by Au-Ag

bimetallic nanoparticles supported on LDH: Homogeneous vs. heterogeneous catalysis, Appl. Clay Sci. 151 (2018) 1–9. https://doi.org/10.1016/j.clay.2017.10.015.

- [8] N. Wang, F. Wang, F. Pan, S. Yu, D. Pan, Highly Efficient Silver Catalyst Supported by a Spherical Covalent Organic Framework for the Continuous Reduction of 4-Nitrophenol, ACS Appl. Mater. Interfaces. (2021). https://doi.org/10.1021/acsami.0c20444.
- [9] Y. Xu, X. Shi, R. Hua, R. Zhang, Y. Yao, B. Zhao, T. Liu, J. Zheng, G. Lu, Remarkably catalytic activity in reduction of 4-nitrophenol and methylene blue by Fe3O4@COF supported noble metal nanoparticles, Appl. Catal. B Environ. 260 (2020) 118142. https://doi.org/10.1016/j.apcatb.2019.118142.
- [10] L. Sun, S. Peng, L. Jiang, Y. Zheng, X. Sun, H. Su, C. Qi, Preparation of spindle-shaped polyaniline supported Au catalysts with enhanced catalytic reduction of 4-nitrophenol, Colloid Polym. Sci. 297 (2019) 651–659. https://doi.org/10.1007/s00396-019-04480-y.
- [11] L. Sun, L. Jiang, S. Peng, Y. Zheng, X. Sun, H. Su, C. Qi, Preparation of Au catalysts supported on core-shell SiO2/polypyrrole composites with high catalytic performances in the reduction of 4-nitrophenol, Synth. Met. 248 (2019) 20–26. https://doi.org/10.1016/j.synthmet.2018.12.024.
- [12] H. Amari, M. Guerrouache, S. Mahouche-Chergui, R. Abderrahim, B. Carbonnier, 2-Aminothiazole-functionalized triazine-modified polystyrene decorated with gold nanoparticles as composite catalyst for the reduction of 4-nitrophenol, React. Funct. Polym. 121 (2017) 58–66. https://doi.org/10.1016/j.reactfunctpolym.2017.10.018.
- [13] S. Zhang, S. Gai, F. He, Y. Dai, P. Gao, L. Li, Y. Chen, P. Yang, Uniform Ni/SiO2@Au

magnetic hollow microspheres: Rational design and excellent catalytic performance in 4nitrophenol reduction, Nanoscale. 6 (2014) 7025–7032. https://doi.org/10.1039/c4nr00338a.

- [14] M.T. Alula, P. Lemmens, M.L. Madingwane, Determination of cysteine via its inhibition of catalytic activity of silver coated ZnO/Fe3O4 composites used for conversion of 4-nitrophenol into 4-aminophenol, Microchem. J. 156 (2020) 104976. https://doi.org/10.1016/j.microc.2020.104976.
- [15] G. Wu, X. Liu, P. Zhou, L. Wang, M. Hegazy, X. Huang, Y. Huang, A facile approach for the reduction of 4-nitrophenol and degradation of congo red using gold nanoparticles or laccase decorated hybrid inorganic nanoparticles/polymer-biomacromolecules vesicles, Mater. Sci. Eng. C. 94 (2019) 524–533. https://doi.org/10.1016/j.msec.2018.09.061.
- [16] Y. Wang, P. Gao, Y. Wei, Y. Jin, S. Sun, Z. Wang, Y. Jiang, Silver nanoparticles decorated magnetic polymer composites (Fe3O4@PS@Ag) as highly efficient reusable catalyst for the degradation of 4-nitrophenol and organic dyes, J. Environ. Manage. 278 (2021) 111473. https://doi.org/10.1016/j.jenvman.2020.111473.
- [17] M. Dinari, F. Dadkhah, Swift reduction of 4-nitrophenol by easy recoverable magnetite-Ag/layered double hydroxide/starch bionanocomposite, Carbohydr. Polym. 228 (2020) 115392. https://doi.org/10.1016/j.carbpol.2019.115392.
- [18] X. Wang, J. Fu, M. Wang, Y. Wang, Z. Chen, J. Zhang, J. Chen, Q. Xu, Facile synthesis of Au nanoparticles supported on polyphosphazene functionalized carbon nanotubes for catalytic reduction of 4-nitrophenol, J. Mater. Sci. 49 (2014) 5056–5065. https://doi.org/10.1007/s10853-014-8212-5.

- [19] H. Veisi, S. Kazemi, P. Mohammadi, P. Safarimehr, S. Hemmati, Catalytic reduction of 4nitrophenol over Ag nanoparticles immobilized on Stachys lavandulifolia extract-modified multi walled carbon nanotubes, Polyhedron. 157 (2019) 232–240. https://doi.org/10.1016/j.poly.2018.10.014.
- [20] T.B. Nguyen, C.P. Huang, R. an Doong, Enhanced catalytic reduction of nitrophenols by sodium borohydride over highly recyclable Au@graphitic carbon nitride nanocomposites, Appl. Catal. B Environ. 240 (2019) 337–347. https://doi.org/10.1016/j.apcatb.2018.08.035.
- [21] Z. Yan, L. Fu, X. Zuo, H. Yang, Green assembly of stable and uniform silver nanoparticles on 2D silica nanosheets for catalytic reduction of 4-nitrophenol, Appl. Catal. B Environ. 226 (2018) 23–30. https://doi.org/10.1016/j.apcatb.2017.12.040.
- [22] H. Mao, C. Ji, M. Liu, Z. Cao, D. Sun, Z. Xing, X. Chen, Y. Zhang, X.M. Song, Enhanced catalytic activity of Ag nanoparticles supported on polyacrylamide/polypyrrole/graphene oxide nanosheets for the reduction of 4-nitrophenol, Appl. Surf. Sci. 434 (2018) 522–533. https://doi.org/10.1016/j.apsusc.2017.10.209.
- [23] J. Liu, H. Yu, L. Wang, Effective reduction of 4-nitrophenol with Au NPs loaded ultrathin two dimensional metal-organic framework nanosheets, Appl. Catal. A Gen. 599 (2020) 117605. https://doi.org/10.1016/j.apcata.2020.117605.
- [24] Q. Ding, Z. Kang, L. Cao, M. Lin, H. Lin, D.P. Yang, Conversion of waste eggshell into difunctional Au/CaCO3 nanocomposite for 4-Nitrophenol electrochemical detection and catalytic reduction, Appl. Surf. Sci. 510 (2020) 145526. https://doi.org/10.1016/j.apsusc.2020.145526.

- [25] B. Hao, G. Lu, S. Zhang, Y. Li, A. Ding, X. Huang, Gold nanoparticles standing on PEG/PAMAM/thiol-functionalized nanographene oxide as aqueous catalysts, Polym. Chem. 11 (2020) 4094–4104. https://doi.org/10.1039/d0py00471e.
- [26] Y.L. Wang, Y.M. Dai, M.H. Tsai, Highly efficient and recyclable Fe3C/Au@NG catalyst for 4-nitrophenol reduction, Catal. Commun. 149 (2021) 106251. https://doi.org/10.1016/j.catcom.2020.106251.