Electronic Supplementary Information

Photocatalytic degradation of unsymmetrical dimethylhydrazine on

TiO₂/SBA-15 under 185/254 nm vacuum-ultraviolet

Yuanzheng Huang ^a, Ying Jia ^{a,} *, Ruomeng Hou ^a, Zhiyong Huang ^a, Keke Shen ^a, Guofeng Jin ^a, Li'an Hou ^a

^a Xi'an High Technology Institute, Xi'an 710025, China.

Corresponding Author*

*E-mail: jysx603@yeah.net

This supplementary material portion contains 3 texts, 14 figures and 1 table.

- Text S1. Quantitative analysis of unsymmetrical dimethylhydrazine (UDMH).
- Text S2. Details of GC/MS conditions for analysis of UDMH intermediates.
- Text S3. Preparation of TiO_2 by hydrolysis method.
- Fig. S1 The experimental set-up of the PCD reactor.
- Fig. S2 The calibration curve of UDMH solution.
- Fig. S3 EDS images of the samples.
- Fig. S4 HRTEM image of TiO₂ nanoparticle encapsulated in TS-2.
- Fig. S5 XPS spectra of TS-2 survey spectra.
- Fig. S6 The UV absorption curve of UDMH at $190 \sim 500$ nm.
- Fig. S7 GC/MS spectrum of intermediate product: Dimethylamino acetonitrile.
- Fig. S8 GC/MS spectrum of intermediate product: Hydrazinecarboxamide.
- Fig. S9 GC/MS spectrum of intermediate product: Methyl formamide.
- Fig. S10 GC/MS spectrum of intermediate product: Formamide.
- Fig. S11 GC/MS spectrum of intermediate product: Dimethylformamide.
- Fig. S12 GC/MS spectrum of intermediate product: Methanol.
- Fig. S13 GC/MS spectrum of intermediate product: Acetic acid.
- Fig. S14 GC/MS spectrum of intermediate product: N-Nitrosodimethylamine.
- Table S1The intermediate products for the degradation of UDMH in VUV/TS-
2 process.

Text S1. Quantitative analysis of unsymmetrical dimethylhydrazine (UDMH)

Trace amounts of UDMH react with amino ferrocyanide sodium in a weakly acidic aqueous solution and form a red complex (S1). In the measurement range, the absorbance measured at 500 nm with a spectrophotometer is proportional to the concentration of UDMH. In this part, the calibration curve of UDMH solution at different concentration ranging from $0.08 - 0.52 \text{ mg} \cdot \text{L}^{-1}$ was made and displayed in Fig. S2.

$$H_{3}C$$

$$N \longrightarrow NH_{3} + Na_{3}[Fe(CN)_{5}NH_{3}] \longrightarrow Na_{3} \left\{ Fe(CN)_{5}H_{2}N \longrightarrow N \right\} + NH_{3}$$

$$H_{3}C$$

$$S1$$

Text S2. Details of GC/MS conditions for analysis of UDMH intermediates.

The GC/MS column used was PE Elite-WAX ETR (30 m * 0.25 μ m * 0.25 mm) polar capillary column. The flow rate of carrier gas (He) was 1.5 mL min⁻¹. The injection volume was 1 μ L in a split mode at the split ratio of 10:1. The pre-injection sample washes was two. The temperature of injector was 150 °C. An oven isothermal program was held at 50 °C for 1 min, then ramped up to 100 °C for 1 min (10 °C min⁻¹), and finally ramped up to 180 °C for 1 min (10 °C min⁻¹). The mass spectrometer was performed in a full scan mode and collected data from m/z 30-100 amu with 1.9 min of solvent delay. Electron impact ionization was 70 eV and an ion source temperature was 200 °C.

Text S3. Preparation of TiO₂ by hydrolysis method.

TiO₂ prepared by hydrolysis method via the following steps: 10 mL titanium butoxide was added into a three-necked flask containing 100 mL water under magnetic stirring conditions. After aging for 24 h, the slurry was filtered, washed by water, dried at 60 °C and calcined at 500 °C for 4 h in air. The sample was denoted as H-TiO₂, and the specific surface area of H-TiO₂ was 185.46 m²·g⁻¹.

Fig. S1. The experimental set-up of the PCD reactor.

Fig. S2. The calibration curve of UDMH solution.

Fig. S3. EDS images of the samples.

Fig. S4. HRTEM image of TiO_2 nanoparticle encapsulated in TS-2.

Fig. S5. XPS spectra of TS-2 survey spectra.

Fig. S5. The UV absorption curve of UDMH at $190 \sim 500$ nm.

Fig. S6. GC/MS spectrum of intermediate product: Dimethylamino acetonitrile.

Fig. S7. GC/MS spectrum of intermediate product: Hydrazinecarboxamide.

Fig. S8. GC/MS spectrum of intermediate product: Methyl formamide.

Fig. S9. GC/MS spectrum of intermediate product: Formamide.

Fig. S10. GC/MS spectrum of intermediate product: Dimethylformamide.

Fig. S11. GC/MS spectrum of intermediate product: Methanol.

Fig. S12. GC/MS spectrum of intermediate product: Acetic acid.

Fig. S13. GC/MS spectrum of intermediate product: N-Nitrosodimethylamine.

Rank*	Retention time (min)	Name	CAS	Chemical structure	Exact mass (m/z)
1	4.331	Dimethylamino acetonitrile	926-64-7	N N	84
2	7.049	Hydrazine carboxamide	57-56-7	H ₂ N H NH ₂	75
3	8.875	Methyl formamide	123-39-7	Н Сно	59
4	10.491	Formamide	75-12-7	O NH ₂	45
5	5.461	Dimethylformamide	68-12-2		73
6	4.104	Methanol	67-56-1	——он	32
7	6.679	Acetic acid	64-19-7	ОН	60
8	5.282	N- Nitrosodimethylami ne	62-75-9		74

Table S1. The intermediate products for the degradation of UDMH in VUV/TS-2 process.

*Ranked by peak intensity.