Supporting Information

for

Ferritin-catalyzed synthesis of ferrihydrite nanoparticles with high mimetic peroxidase activity for biomolecules detection

Hai Chen,* Liang Ma and Yuhao Zhang*

College of Food Science, Southwest University, Chongqing, 400715, China

Supplementary Figures (Figs. S1-S5)

Figure S1. (a) SDS-PAGE and (b) Native-PAGE analyses. Land M, protein markers and their corresponding molecular masses; Land 1, purified rHuHF; Land 2, holo rHuHF with loading 800 iron/protein within the inner cavity.

Figure S2. Relationship between the absorbance at 652 nm and the iron content. Insert: A near linear relationship between the absorbance at 652 nm and the iron content. Conditions: 1.0 mM TMB, 10 mM H₂O₂, and [apo ferritin or $_{fs}FNs$] = 0.25 μ M.

Figure S3. Comparison of the catalytic activity between natural holo horse spleen ferritin (HoSF) and $_{fs}$ FNs. (a) Time-dependence absorbance changes at 652 nm of buffer (black), $_{fs}$ FNs (blue) and natural holo HoSF (red). (b) Relative catalytic activity of buffer, $_{fs}$ FNs and natural holo HoSF with respect to 100% absorbance assumed for $_{fs}$ FNs at 652 nm. TEM images of $_{fs}$ FNs containing 800 iron/shell (c) and natural holo HoSF (d) without uranyl acetate staining.

Figure S4. Effect of different experimental conditions on the peroxidase-like activity of $_{fs}$ FNs, which include (a) pH value, (b) temperature, and (c) storage time. Conditions: 1.0 mM TMB, 10 mM H₂O₂, and [$_{fs}$ FNs] = 0.25 μ M.

Figure S5. Determination of the selectivity for glucose detection. The concentration of glucose and fructose, lactose, sucrose, and maltose are $80 \mu M$.

Supplementary table

Catalyst	Substrate	V _{max} (M s ⁻¹)	K_m (M)	Ref.
_{fs} FNs	TMB	4.4×10^{-7}	4.5×10^{-4}	This work
_{fs} FNs	H_2O_2	4.5×10^{-8}	3.1 × 10 ⁻⁵	This work
HRP	TMB	3.3 × 10 ⁻⁸	3.2×10^{-4}	[1]
HRP	H_2O_2	$2.4 imes 10^{-8}$	5.5 × 10 ⁻⁵	[1]
Au-Ft	TMB	$7.5 imes 10^{-8}$	9.7 × 10 ⁻⁵	[2]
Au-Ft	H_2O_2	9.3 × 10 ⁻⁸	199.4 × 10 ⁻³	[2]
Pt-Ft	TMB	5.6 × 10-7	2.2×10^{-4}	[3]
Pt-Ft	H_2O_2	3.2×10^{-4}	187.3 × 10 ⁻³	[3]
$M\text{-}HFn\text{-}Co_xFe_{3-x}O_4$	TMB	$1.3 imes 10^{-8}$	1.3 × 10 ⁻⁴	[4]
M-HFn-Co _x Fe _{3-x} O ₄	H_2O_2	$0.7 imes10^{-8}$	17.0×10^{-3}	[4]
Fe ₃ O ₄ MNPs	TMB	3.4 ×10 ⁻⁸	9.8× 10 ⁻⁵	[5]
Fe ₃ O ₄ MNPs	H_2O_2	9.8 ×10 ⁻⁸	154× 10 ⁻³	[5]

Table 1. Comparison of kinetic parameters of TMB oxidation by $_{\rm fs} \rm FNs$ and HRP.

References

- 1. Y. L. Liu, X. J. Zhao, X. X. Yang and Y. F. Li, Analyst, 2013, 138, 4526.
- F. Jia, J. J. Yin, N. Bo, X. Wu, H. Ye, M. Ferrari, G. J. Anderson, J. Wei, Y. Zhao, and G. Nie, *Biomaterials*, 2011, **32**, 1611.
- 3. X. Jiang, C. Sun, Y. Guo, G. Nie, and L. Xu, Biosens. Bioelectron., 2015, 64, 165-170.
- 4. T. Zhang, C. Cao, T. Xu, C. Yao, & Y. Pan, Nanotechnology, 2016, 28, 045704.
- 5. L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett & X. Yan, *Nat. Nanotechnol.*, 2007, 2, 577.