Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Table 51 Characteristics of antibiotic residue							
	Parameter	Content					
	Volatile matter (wt%)	75.26					
Proximate analysis	Fixed carbon (wt%)	8.51					
	Ash (wt%)	7.32					
	Moisture(wt%)	8.91					
	C (%)	47.38					
	H (%)	6.62					
Ultimate analysis	N (%)	6.26					
	S(%)	0.81					
	O ^① (%)	36.02					

Table S1 Characteristics of antibiotic residue

① Calculated by difference (100%-C%-H%-N%-S%-Ash%).

Table S2	Properties	of catalysts	

Catalyst Type	Surface area, m ² /g	Pore diameter, A ⁰
HZSM-5	380	5

MCM-41	1000	3.6
γ -Al ₂ O ₃	320	12

Fig. S1 Characterization of HZSM-5 molecular sieve by SEM and mapping

Fig. S2 Characterization of MCM-41 molecular sieve by SEM and mapping

Fig. S3 Characterization of $\gamma\text{-}Al_2O_3$ molecular sieve by SEM and mapping

Fig. S4 Van Krevelen diagram of bio-oil obtained

Table S3 chemical composition of bio-oil

Residence time (min)	Compounds	0	H1	H2	H3	M1	M2	M3	R1	R2	R3
2.24	Methane, nitroso-	0.29	1.79	1.8	2.3	3.7	1.03	0.83	1.13	1.3	0.78
15.91	2,5-Pyrrolidinedione, 1-ethyl-	0.48	0.49	0.6	0.51	0.49	2.72	0.57	0.58	0.58	0.82
17.771	2-tetradecane, 5,7,13,15-tetramethyl-	-	0.21	1.06	1.76	0.12	0.43	0.96	0.33	0.56	0.7
18.835	2-hexadecene, 3,7,11,15-tetramethyl-	0.92	1.33	1.47	1.72	3.12	4.23	2.11	2.52	3.72	2.12
21.78	Indole	0.54	0.47	0.47	-	-	0.43	0.38	-	-	-
22.055	Pyrazine, 2-ethyl-3-methyl-	0.67	0.42	0.37	0.2	0.55	1.17	0.71	0.55	0.85	0.79
24.615	2,5-Pyrrolidinedione, 1-butyl-	-	 -	0.6	0.3	-	0.46	0.58	-	-	-
28.89	2,4-Di-tert-butylphenol	1.11	0.62	0.79	0.96	0.68	0.82	-	0.59	0.65	0.68
35.6	Decanoic acid, 2-phenylethyl ester	0.71	0.54	0	1.13	0.63	-	-	0.61	0.58	0.62
38.04	Cyclo(L-prolyl-L-valine)	0.87	3.54	2.58	1.9	3.52	2.35	1.76	1.79	2.47	2.51
40.46	Pyrrolo[1,2-a]pyrazine-1,4-dione,hexahydro-3-(2-ethylpropyl)-	0.52	3.4	1.53	4.57	6.26	4.12	1.33	1.02	5.2	5.33
40.8	Dibutyl phthalate	0.52	0	0.59	0.49	0.74	0.75	0.69	1.48	0.59	0.55
41.37	n-He0adecanoic acid	2.67	0.82	0.93	1.22	0.68	0.53	0.66	1.36	1.16	1.08
41.925	He0adecanoic acid, ethyl ester	6.79	6.83	6.81	6.61	6.81	6.89	7.26	6.24	5.89	5.26
45.295	10(E),12(Z)-Conjugated linoleic acid	5.85	1.77	-	-	0.57	0.29	1.67	-	-	0.54
45.47	9,12-Octadecadienoic acid (Z,Z)-	4.53	4.61	6.3	4.93	3.06	2.15	4.7	7.69	6.73	10.45
46.06	Linoleic acid ethyl ester	28	36	26	23	35.39	31.77	36.48	33.69	31.87	32.36
46.5	Octadecanoic acid, ethyl ester	1.09	1.12	6.81	1.07	1.1	1.06	1.19	1.06	1.04	0.98
47.7	2,5-Piperazinedione, 3-benzyl-6-isopropyl-	0.75	1.94	3.69	1.14	2.78	3.54	2.11	2.1	3.4	2.32
47.76	9(E),11(E)-Conjugated linoleic acid, ethyl ester	2.5	 -	2.62	2.69	 -	2.68	1.1	-	2.29	2.08
49.1	Pyrrolo[1,2-a]pyrazine-1,4-dione, he0ahydro-3-(phenylmethyl)-	1.52	0.65	1.22	2.3	1.01	0.94	0.73	0.7	1.19	1
49.78	9,12-Octadecadienoic acid, methyl ester	1.83	1.91	2.05	2.18	1.78	2.12	2.16	1.85	1.85	1.97

50.075	13-Tetradece-11-yn-1-ol	0.89	0.87	2	2.27	0.73	0.99	1.1	0.78	0.73	0.78
51.615	Propanamide, 3-cyclopentyl-N-ethyl-	1.36	4.79	2.12	1.5	0.62	2.9	0.91	1.85	1.88	1.02
58.25	Eicosanoic acid, ethyl ester	0.59	0.66	0.65	0.58	1.29	0.42	0.62	0.63	1.03	0.69
60.825	3.alpha.,5-Cyclo-5.alphaergosta-6,8(14).22t-triene	0.72	0.83	0.9	0.56	1.03	0.62	1	0.99	1.02	1.12
63.95	8(14),22-Ergostadienol	0.75	0.85	0.81	0.49	0.94	0.71	1.03	0.89	0.83	1.37
64.925	Neoergosterol	4.61	4.75	4.75	4.24	4.93	4.57	5.5	5.09	5.15	5.88
65.47	4-[9,10-Dihydrophenanthren-2-yl]-n-butanol	0.621	0.7	0.68	0.61	0.63	0.41	0.64	0.5	0.69	0.76
66.25	.gammaSitosterol	3.11	3.41	3.6	3.46	3.86	3.19	3.99	3.95	4.07	4.02
66.9	Anthraergostatetraenol	1.65	1.85	1.75	2.02	1.87	1.75	2.13	2.01	1.3	2

Fig.S5 Boiling range of fraction

Sample	Chemical shift (Content w / %)								
	δ=0.5~1.5	δ=1.5~4.0	δ=3.0~4.4	δ=4.4~6.0	δ=6.0~8.5				
0	61.42	22.33	1.33	8.8	6.12				
H1	69.33	16.21	0.94	6.09	7.43				
H2	75.14	10.12	0.85	5.12	8.77				
H3	82.21	7.32	0.71	0.05	9.31				
M1	62.35	19.05	1.02	11.57	6.01				
M2	73.77	12.37	0.89	7.25	5.72				
M3	79.69	10.33	0.80	3.63	5.55				
R1	70.01	17.21	0.92	5.42	6.44				
R2	77.31	12.98	0.79	1.94	6.98				
R3	84.7	7.3	0.71	0.57	6.72				

Table S4 Percentage of H distribution from ¹H NMR spectra of the bio-oil