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16 1 Experimental Section

17 1.1 Chemicals 

18 PDI, CuCl2.2H2O, urea, potassium ferrocyanide (K4Fe(CN)6), phosphate Buffer Saline (PBS), 

19 potassium ferricyanide (K3Fe(CN)6), glucose, fructose, ascorbic acid, urea, uric acid and, cysteine 

20 were bought from Sigma-Aldrich and used as received. Human serum samples were collected from 

21 the lab of a local hospital on voluntarily basis and stored at 4°C. All aqueous solutions were 

22 prepared with doubly distilled water.

23 UV-Vis spectrums were observed on Perkin Elmer Lambda 25 UV-Vis spectrometer within the 

24 bounds of 800-200 nm. FTIR spectroscopy was conducted on Thermo Scientific Nicolet 6700 in 

25 ATR mode. To analyze the morphology of modified electrodes, working interface was manually 

26 cut and analyzed through TESCAN VEGA 3 for SEM micrographs. An (XRD-6000) 

27 diffractometer was employed for X-ray diffraction study of synthesized materials at voltage of 40 

28 kV using monochromated Cu Kα radiation (λ = 1.54 Å, 40 kV, 30 mA). Raman (Renishaw invia 

29 microscope) was used to calculate ratio of inplane vibrations of the sp2 carbon (G-band) and 

30 disorder-induced mode (D-band) at excitation wavelength.
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1 1.2 Instrumentation

2 For electrochemical analysis Amel-2553 potentiostat/galvanostat equipped with ZPlus software 

3 was used. All the experiments were conducted at room temperature with a three-electrode system 

4 containing GPE as working, Ag/AgCl/Sat. KCl electrode as a reference electrode with a standard 

5 potential of (E=+0.197 V saturated), and platinum based counter electrode. Electrochemical 

6 Impedance Spectroscopy (EIS) measurements were performed in the presence of 5 mM ferro/ferri 

7 solution (1:1) in the range of 0.1 Hz-100000 Hz. Working interface i.e. graphitic pencil electrode 

8 was manually cut and used for microscopic analysis. Fourier Transform Infrared (FTIR) spectrums 

9 were recorded on Thermo scientific Nicolet 6700 in ATR mode to examine the functional groups 

10 exist in the pristine and composite materials. The X-ray diffraction (XRD) measurements by using 

11 a Rigaku D/max-2550 instrument equipped with a Cu-Kα radiation source (λ=1.5418 Å) has been 

12 employed to analyze phase composition. Raman spectrums were recorded on Renishaw in Via-

13 reflex spectrometer. The surface morphologies of modified electrodes were studied by scanning 

14 electron microscopy (SEM) at TESCAN VEGA 3 and atomic force  microscopy (AFM) at Park 

15 Systems AFM XE7 in non-contact mode and. 
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17 2 Results and Discussion Section
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1
2 Fig S1. Linear graph of CuO-PDI-GPE showing relationship between square root of scan rate and oxidative peak 

3 current (A), linear plot showing relationship between natural log of scan rate and natural log of anodic peak current 

4 (B) and linear graph showing relation between natural log of scan rate versus oxidative peak potential (C).

5  



S4

1
2 Fig S2. Amperometry (A) and its corresponding linear graph (B) for CuO-PDI-GPE at concentrations bounds of 5 µM 

3 to 500 µM in phosphate buffer (pH 7.4) at a scan rate of 50 mV/s.

4
5

6
7 Fig S3. EDX analysis of CuO-PDI-GPE.
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1 Table S1: Comparison of major features of CuO-PDI-GPE and previously reported modified surfaces for dopamine 

2 determination.

Electrode matrix Sensitivity

 (µA µM-1 cm-2)

LOD

(nM)

Linear range

(µM)

Reproducibility

(RSD %)

Ref.

CuO nanostructures 0.012 110 5-40 >5 [1]

TC-GQD/GCE 4.9 220 1-500 - [2]

CuO/CN-5 0.331 60 16-78.7 - [3]

rGO–Cu2O 10.52 50 10-900 4.2 [4]

MBIP/PGE - 6 0.02-7 3.5 [5]

Sn@rGO/MnO2 0.092 120 0–50 - [6]

(HNP) PtTi alloy - 3200 4-500 2.5 [7]

N-rGO-180-8/NH3 1.82 410 0.5–150 6.22 [8]

AuNPs@MIPs - 7.8 0.02-0.54 4.4 [9]

Mo NPs@f-MWCNTs 4.925 1.26 0.01-161 2.8 [10]

N2/ Ar/GS/GNR/GCE 652 2.5 0.01-400 2.2 [11]

S-Fe2O3 NPs−Nafion 0.1315 31.25 0.2-107 - [12]

Au@ZIF-8 0.006 10 0.1-50 0.9-3.3 [13]

Ppy-PBA/GCE - 33 0.05-10 4.3 [14]

        CuO-PDI-GPE 4 6 5-100 2.9 This work

100-500

3
4 TC-GQD/GCE= titania-ceria-graphene quantum dots, CuO/CN-5=copper oxide/carbon nitride, rGO–Cu2O= opper (I) 

5 oxide nanostructure decorated reduced graphene oxide, MBIP= molecularly bioimprinted polymer, Sn= Stannum, 

6 MnO2 = Maganese oxide, rGO= reduced graphene oxide, (HNP) PtTi alloy= hierarchical nanoporous PtTi alloy, N-

7 rGOs= N-doped reduced graphene oxides, AuNPs@MIPs= gold nanoparticles doped molecularly imprinted polymers, 

8 Mo= Molebdenum, f-MWCNT= Functionalized carbon nanotubes , N2/ Ar/GS/GNR= nitrogen/argon plasma 

9 functionalized graphene nanosheet/graphene nanoribon, S-Fe2O3 NPs = shuttle like hematite nanoparticles, Au@ZIF-

10 8=Gold NPs@zeolitic imidazolate, Ppy-PBA= Pyrrole-phenylboronic acid.
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